Determinacy Proofs for Long games

Itay Neeman

Department of Mathematics
University of California Los Angeles
Los Angeles, CA 90095-1555
ineeman@math.ucla.edu

1.(d) Example: Σ^1_2 determinacy.

2. Games of length $\omega \cdot \omega$ with Σ^1_2 payoff.

3. Continuously coded games with Σ^1_2 payoff.
Recall: A is the set of all reals which satisfy a given Σ^1_2 statement ϕ. $\dot{A} \in M$ names the set of reals of $M^{\text{col}(\omega,\delta)}$ which satisfy ϕ in $M^{\text{col}(\omega,\delta)}$.

G is the game in which I and II play $x = \langle x_0, x_1, \ldots \rangle \in \mathbb{R}$ and in addition play moves in the auxiliary game $A[x]$.

<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>$a_{0-\text{I}}$</th>
<th>$a_{1-\text{I}}$</th>
<th>x_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>$a_{0-\text{II}}$</td>
<td>x_1</td>
<td>$a_{1-\text{II}}$</td>
<td></td>
</tr>
</tbody>
</table>

The game is played in M. Infinite runs of G are won by II.

Using σ_{piv} to ascribe auxiliary moves for II we showed that

Case 1. If I wins G in M, then (in V) I has a winning strategy in $G_\omega(A)$.

Let \dot{B} in M name the set of reals which do not satisfy ϕ in $M^{\text{col}(\omega,\delta)}$.

Define $x \mapsto B[x]$ and $x \mapsto B^*[x]$ as before, but changing \dot{A} to \dot{B} and interchanging I and II.
We have $\tau_{\text{gen}}[x, g]$ and $\tau_{\text{piv}}[x, g]$ as before, but with the roles of I and II switched.

Let H be the following game, defined and played inside M:

<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>b_{0-I}</th>
<th>b_{1-I}</th>
<th>x_2</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>x_0</td>
<td>b_{0-I}</td>
<td>b_{1-I}</td>
<td>x_2</td>
<td>\ldots</td>
</tr>
<tr>
<td>II</td>
<td>b_{0-II}</td>
<td>x_1</td>
<td>b_{1-II}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I and II alternate playing natural numbers, producing $x = \langle x_0, x_1, \ldots \rangle \in \mathbb{R}$. In addition they play moves $b_{0-I}, b_{0-II}, \ldots$ in $B[x]$.

This time I is the closed player; she wins if she can last all ω moves. Otherwise II wins.

Case 2: II wins H. Then an argument similar to that of Case 1 shows that (in V) II has a strategy to get into $B = \mathbb{R} - A$. In other words, II wins $G_\omega(A)$ in V. \square (Case 2.)
We showed:

- If I wins G in M, then (in V) I wins $G_{\omega}(A)$.
- If II wins H in M, then (in V) II wins $G_{\omega}(A)$.

It is now enough to check that one of these cases must occur.

Suppose not. I.e., assume that, in M, II wins G and I wins H. Fix strategies $\Sigma^{\text{II}} \in M$ and $\Sigma^{\text{I}} \in M$ witnessing this. We wish to derive a contradiction.
Recall the progress of the games G and H:

\[
\begin{array}{c|ccccc}
G: & I & x_0 & a_{0-I} & a_{1-I} & \ldots \\
 & II & a_{0-II} & x_1 & a_{1-II} & \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
H: & I & x_0 & b_{0-I} & b_{1-I} & \ldots \\
 & II & b_{0-II} & x_1 & b_{1-II} & \\
\end{array}
\]

Working in $M[g]$, construct $x = \langle x_0, x_1, \ldots \rangle$, $\vec{a} = \langle a_{0-I}, a_{0-II}, \ldots \rangle$, and $\vec{b} = \langle b_{0-I}, b_{0-II}, \ldots \rangle$ as follows:

- Σ^{II} (playing for II in G) produces x_n for odd n, and a_{n-II} for all n.
- $\sigma_{\text{gen}}[x, g]$ produces a_{n-I} for all n.
- Σ^{I} (playing for I in H) produces x_n for even n and b_{n-I} for all n.
- $\tau_{\text{gen}}[x, g]$ produces b_{n-II} for all n.

We get $x \notin \hat{A}[g]$ by Lemma 1. Similarly we get $x \notin \hat{B}[g]$ through our use of τ_{gen}.

But \hat{A} and \hat{B} name complementary sets. Since $x \in M[g]$ this is a contradiction. □
To sum: Defined in M the game

$$
G : \begin{array}{l|llll}
I & x_0 & a_{0-I} & a_{1-I} & \ldots \\
II & a_{0-II} & x_1 & a_{1-II} & \\
\end{array}
$$

where I, II collaborate to produce $x \in \mathbb{R}$, and in addition play auxiliary moves: I trying to witness $x \in \dot{A}[h]$ for some h, II trying to witness the opposite. G is a closed game.

If in M I wins G, showed (using σ_{piv}) that in V I wins to get into some $j_b(\dot{A})[h]$, and hence by absoluteness into A.

Defined in M the game

$$
H : \begin{array}{l|llll}
I & x_0 & b_{0-I} & b_{1-I} & \ldots \\
II & b_{0-II} & x_1 & b_{1-II} & \\
\end{array}
$$

This time II is trying to witness $x \in \dot{B}[h]$ for some h, and I is trying to witness the opposite.

If in M II wins H, showed (using τ_{piv}) that in V II wins to get into some $j_b(\dot{B})[h]$, and hence by absoluteness into $B = \mathbb{R} - A$.

5
Finally, if both cases fail, we worked in $M[g]$ (using σ_{gen} and τ_{gen}) to construct $x \in M[g]$ which belongs to neither $\dot{A}[g]$ nor $\dot{B}[g]$, a contradiction.
Fix $C \subset \mathbb{R}^\omega$ a Σ^1_2 set, say the set of all sequences $\langle y_0, y_1, \ldots \rangle \in \mathbb{R}^\omega$ which satisfy the Σ^1_2 statement ϕ.

We wish to prove that $G_{\omega^\omega}(C')$ is determined.

Fix M and an increasing sequence $\delta_1, \delta_2, \ldots, \delta_\omega$ so that

- M is a class model.
- Each δ_ξ is a Woodin cardinal in M.
- In V there is g which is $\text{col}(\omega, \delta_\omega)$–gen$/M$.
- M is iterable.

The existence of such M is our large cardinal assumption (needed to prove determinacy). We use δ_∞ and g_∞ to refer to δ_ω and g.
Let $\dot{A}_\infty \in M$ name the set of elements of $\mathbb{R}^\omega \cap M[g_\infty]$ which satisfy ϕ in $M[g_\infty]$.

For $\langle y_n \mid n < \omega \rangle \in \mathbb{R}^\omega$ we have the associated game $\mathcal{A}_\infty[y_n \mid n < \omega]$. (Formally we should think of $\langle y_n \mid n < \omega \rangle$ as coded by some real x.)

The association is continuous, and we may talk about $\mathcal{A}_\infty[y_0, \ldots, y_{k-1}]$, a game of $k+1$ rounds.

We use $a_0^\infty_{\text{-I}}$, $a_0^\infty_{\text{-II}}$, $a_1^\infty_{\text{-I}}$, etc. to refer to moves in \mathcal{A}_∞.

We use a_n^∞ to denote $\langle a_n^\infty_{\text{-I}}, a_n^\infty_{\text{-II}} \rangle$ and refer to runs of \mathcal{A}_∞ as \vec{a}^∞.

(Recall that moves in $\mathcal{A}_\infty[y_n \mid n < \omega]$ are arranged so that I tries to witness $\langle y_n \mid n < \omega \rangle \in \dot{A}_\infty[h]$ for some h, and II tries to witness the opposite.)
A \textbf{k-sequences} is a sequence

\[\langle y_0, \ldots, y_{k-1}, a_0^\infty, \ldots, a_{k-1}^\infty, \gamma \rangle \]

so that

\begin{itemize}
 \item Each \(y_i \) is a real;
 \item \(a_0^\infty, \ldots, a_{k-1}^\infty \) is a position in the auxiliary game \(A^\infty[y_0, \ldots, y_{k-1}] \); and
 \item \(\gamma \) is an ordinal.
\end{itemize}

We use \(S \) to denote \(k \)-sequences.
A valid extension for a k-sequence is a triplet $y_k, a_k^\infty, \gamma^*$ so that

- y_k is a real;
- $a_k^\infty = \langle a_{k-\mathrm{I}}^\infty, a_{k-\mathrm{II}}^\infty \rangle$ where $a_{k-\mathrm{I}}^\infty$ and $a_{k-\mathrm{II}}^\infty$ are legal moves for I and II respectively in the game $A_\infty[y_0, \ldots, y_{k-1}],^*$ following the position $a_0^\infty, \ldots, a_{k-1}^\infty$; and
- γ^* is an ordinal smaller than γ.

We use $S_{--}, y_k, a_k^\infty, \gamma^*$ to denote the $k + 1$-sequence

$$\langle y_0, \ldots, y_{k-1}, y_k, a_0^\infty, \ldots, a_{k-1}^\infty, a_k^\infty, \gamma^* \rangle.$$

Observe that knowledge of y_k is not needed to determine the rules for round k of this game.
For expository simplicity, fix for each n some g_n which is $\text{col}(\omega, \delta_n)$–generic$/M$. Do this so that the sequence $\langle g_n \mid n < \omega \rangle$ belongs to $M[g_\infty]$ and each g_n belongs to $M[g_{n+1}]$.

Below we define sets in $M[g_n]$ where strictly speaking we should be defining names in $M^{\text{col}(\omega,\delta_n)}$.

We work to define sets A_k in $M[g_k]$ ($k \geq 1$). A_k will be a set of k-sequences.

Given $a_0^\infty, \ldots, a_{k-1}^\infty, \gamma$ we let $A_k[a_0^\infty, \ldots, a_{k-1}^\infty, \gamma]$ be the set of tuples $\langle y_0, \ldots, y_{k-1} \rangle$ so that

$$\langle y_0, \ldots, y_{k-1}, a_0^\infty, \ldots, a_{k-1}^\infty, \gamma \rangle \in A_k.$$

$A_k[a_0^\infty, \ldots, a_{k-1}^\infty, \gamma]$ then is a subset of \mathbb{R}^k in $M[g_k]$. Really we are defining names, not sets. So we have a name $\dot{A}_k[a_0^\infty, \ldots, a_{k-1}^\infty, \gamma]$.

11
Let \(A_k[y_0, \ldots, y_{k-1}, a_0^\infty, \ldots, a_{k-1}^\infty, \gamma] \) be auxiliary game associated to \(\langle y_0, \ldots, y_{k-1} \rangle \) and the name \(\dot{A}_k[a_0^\infty, \ldots, a_{k-1}^\infty, \gamma] \).

We use \(A_k[S] \) to denote this game, and use \(a_{0-I}^k, a_{0-II}^k \) etc. to denote moves in the game.

(Recall that these moves are such that I tries to witness that \(S \) belongs to \(\dot{A}_k[h] \) for some \(h \). II tries to witness the opposite.)

Given \(S = \langle y_0, \ldots, y_{k-1}, a_0^\infty, \ldots, a_{k-1}^\infty, \gamma \rangle \), a \(k \)-sequence, define a game \(G_k(S) \) in which:

I and II play a valid extension \(\gamma^*, a_k^\infty, y_k \). In addition I tries to witness that the extended sequence, \(S—, y_k, a_k^\infty, \gamma^* \), belongs to \(A_{k+1} \). II tries to witness the opposite.
\[G_k(S): \]

<table>
<thead>
<tr>
<th></th>
<th>(\gamma^*), (a_k^\infty)</th>
<th>(y_k(0))</th>
<th>(a_{\infty-1})</th>
<th>(a_{\infty-0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\gamma^*), (a_k^\infty)</td>
<td>(y_k(0))</td>
<td>(a_{\infty-1})</td>
<td>(a_{\infty-0})</td>
</tr>
<tr>
<td>II</td>
<td>(a_k^\infty)</td>
<td>(y_k(1))</td>
<td>(a_{\infty-1})</td>
<td>(a_{\infty-0})</td>
</tr>
</tbody>
</table>

I and II play

- \(\gamma^* \),
- \(a_k^\infty = \langle a_k^\infty, a_k^\infty \rangle \), and
- \(y_k = \langle y_k(0), y_k(1), \ldots \rangle \)

which form a valid extension of \(S \). (In particular \(\gamma^* \) is **smaller** than \(\gamma \).)

In addition they play auxiliary moves in the game \(A_{k+1}[S \longrightarrow, y_k, a_k^\infty, \gamma^*] \).

II is the closed player; she wins if she can last \(\omega \) moves. Otherwise I wins.
Define the sets A_k by:

$$S \in A_k \text{ iff } I \text{ has a winning strategy in } G_k(S)$$

(for a k-sequence $S \in M[g_k]$).

If S belongs to A_k, we expect to be able to extend to $S^* = S\langle *, \ldots, *, \gamma \rangle$ which belongs to a “shift” of A_{k+1}.

Our definition of A_k depends on some knowledge of A_{k+1}. (We need knowledge of G_k, which involves the auxiliary game A_{k+1}.)

The definition is by induction, not on k, but on γ.

Figuring out the rules of $G_k(S)$, where $S = \langle *, \ldots, *, \gamma \rangle$, requires knowledge of the sets $A_{k+1}[a_0^\infty, \ldots, a_k^\infty, \gamma^*]$, but only for $\gamma^* < \gamma$.

Determining whether S belongs to A_k thus requires knowledge of A_{k+1}, but only for $k + 1$-sequences ending with $\gamma^* < \gamma$.

A 0-sequence is simply an ordinal γ. We have for each γ the game $G_0(\gamma)$. This game belongs to M.

Case 1: There exists some γ so that (in M) I has a winning strategy in $G_0(\gamma)$.

We will show that (in V) I has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Fix $\Sigma_0 \in M$, a winning strategy for I (the open player) in $G_0(\gamma)$.

Fix an imaginary opponent, playing for II in $G_{\omega \cdot \omega}(C)$.

We will use Σ_0, the strategies $\sigma_{piv-1}, \sigma_{piv-2}, \ldots$, the strategy $\sigma_{piv-\infty}$, and an iteration strategy for M, to play against the imaginary opponent.
\(G_0(\gamma):\)

<table>
<thead>
<tr>
<th>I</th>
<th>(\gamma_0^*, a_{0-I}^\infty)</th>
<th>(y_0(0))</th>
<th>(a_{0-I}^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(a_{0-II}^\infty)</td>
<td>(a_{0-II}^1)</td>
<td></td>
</tr>
</tbody>
</table>

\[
y_0(1) \quad a_{1-II}^1 \quad y_0(2) \quad \ldots
\]

Our opponent, \(\Sigma_0, \sigma_{\text{piv} - \infty}\) (for the first round), and \(\sigma_{\text{piv} - 1}\) (for the remaining rounds) cover all moves in the game.

We obtain an iteration tree \(\mathcal{U}^0\) of length 3, played by \(\sigma_{\text{piv} - \infty}\), with final model \(P_2^0\), embedding \(\pi_{0,2}^0: M \to P_2^0\), and moves \(\tilde{\gamma}_0^*, \tilde{a}_0^\infty\) in \(P_2^0\).

We obtain \(y_0 \in \mathbb{R}\), and an iteration tree \(T_0\) (played by \(\sigma_{\text{piv} - 1}\)) with illfounded even model.

The iteration strategy picks an odd branch, \(b_0\) say. Let \(M_1\) be the direct limit along \(b_0\) and let \(j_{0,1}\) be the direct limit embedding.
Let $\mathcal{U}^1 = j_{0,1}(\mathcal{U}^0)$, and similarly with P_2^1, $\pi_0^{1,2}$. Let $\gamma_*^0 = j_{0,1}(\tilde{\gamma}_0^*)$ and similarly a_∞^0.

Our use of $\sigma_{\text{piv}^{-1}}$ guarantees that there exists some h_1 so that

1. h_1 is $\text{col}(\omega, \delta_1^s)$–generic/$M_1$, and
2. $\langle y_0, a_\infty^0, \gamma_*^0 \rangle \in \dot{A}_1^s[h_1]$.

(*s denotes $j_{0,1}(\pi_0^{0,2}(*)$).)

Note that by 2, player I (the open player) has a winning strategy in $G_1^s(y_0, a_\infty^0, \gamma_*^0)$. Fix $\Sigma_1 \in M_1[h_1]$, a strategy for I witnessing this.
\[
\begin{array}{c|ccc}
I & \gamma_1^*, a_{1-I}^\infty & y_1(0) & a_{0-I}^2 \\
II & a_{1-II}^\infty & a_{0-II}^2 & \\
\hline & a_{1-I}^2 & y_1(2) & \ldots \\
& y_1(1) & a_{1-II}^2 & \\
\end{array}
\]

Note, \(\Sigma_1 \) belongs to \(M_1[h_1]\), a \textbf{small} generic extension of \(M\). (Small with respect to \(\delta_2\) and \(\delta_\infty\).) This allows us to shift \(\Sigma_1\) along the even branch of trees given by \(\sigma_{\text{piv}-\infty}\) and \(\sigma_{\text{piv}-2}\).

Using \(\Sigma_1\) and \(j_{0,1}(\sigma_{\text{piv}-\infty})\) we get

\[
M \begin{array}{c} b_0 \end{array} M_1 = P_0^1 \begin{array}{c} \pi_{0,2}^0 \end{array} P_1^1 \begin{array}{c} \pi_{2,4}^0 \end{array} P_2^1 \begin{array}{c} \pi_{2,4}^0 \end{array} P_3^1 \begin{array}{c} \pi_{0,4}^2 \end{array} P_4^1
\]

Then using \(j_{0,1}(\sigma_{\text{piv}-2})\) and \textbf{shifts} of \(\Sigma_1\) get

\[
M \begin{array}{c} b_0 \end{array} M_1 \begin{array}{c} b_1 \end{array} M_2 = P_0^2 \begin{array}{c} \pi_{0,4}^2 \end{array} P_4^2
\]

(where \(P_0^2 = j_{1,2}(P_0^1)\), etc.).
We get γ_1^*, a_1^∞, and y_1. Our use of $\sigma_{\text{piv} - 2}$ guarantees that there exists h_2 so that

1. h_2 is col(ω, δ_2^s)–generic/M_2, and

2. $\langle y_0, y_1, a_0^{\infty-s}, a_1^\infty, \gamma_1^* \rangle \in \dot{A}_2^s[h_2]$. (A second s stands for application of $j_{1,2} \circ \pi_{2,4}^1$.)

By 2, player I (the open player) wins $G_2^s(y_0, y_1, a_0^{\infty-s}, a_1^\infty, \gamma_1^*)$.

This game belongs to $M[h_2]$. Fix $\Sigma_2 \in M[h_2]$, a strategy witnessing that I wins.

Continue as before.
In general we have:

\[
M_k = P_0^k \
\]

\[
\pi_{0,2k}^k
\]

\[
P_{2k}^k
\]

\[
\pi_{2k,2k+2}^k
\]

\[
P_{2k+1}^k
\]

\[
P_{2k+2}^k
\]

\[
T_k
\]

\[
j_{k,k+1}
\]

\[
M_{k+1} = P_0^{k+1}
\]

\[
\pi_{0,2k+2}^{k+1}
\]

\[
j_{k,k+1}
\]

In \(P_{2k}^k \) we have the \(k \)-sequence

\[
S_k = \langle y_0, \ldots, y_{k-1}, a_0^\infty-s \ldots s, \ldots, a_{k-1}^\infty-\ldots-\gamma_{k-1}^* \rangle.
\]

\(S_{k+1} \) (in \(P_{2k+2}^{k+1} \)) is obtained as a valid extension of \(j_{k,k+1}(\pi_{2k,2k+2}^k(S_k)) \). In particular:

\(\uparrow \) \(\gamma_{k}^* \) is smaller than \(j_{k,k+1}(\pi_{2k,2k+2}^k(\gamma_{k-1}^*)) \).
We end with a sequence of reals $\langle y_n \mid n < \omega \rangle$, a sequence of iteration trees

$$
\begin{align*}
M_0 & \xrightarrow{b_0} M_1 \xleftarrow{b_1} M_2 \quad \cdots \quad \longrightarrow M_\infty \\
\text{T}_0 & \quad \text{T}_1
\end{align*}
$$

and an iteration tree \mathcal{U}_∞ on M_∞ as follows:

$$
M_\infty = P_0^\infty \xrightarrow{\pi^\infty_{0,2}} P_1^\infty \xrightarrow{\pi^\infty_{2,4}} P_2^\infty \xrightarrow{\pi^\infty_3} P_3^\infty \xrightarrow{\pi^\infty_4} \cdots
$$

By (†) the even branch of \mathcal{U}_∞ is illfounded.

The iteration strategy for M produces an odd branch c of \mathcal{U}_∞. Let M_c be the direct limit, and let $\pi_c : M_\infty \to M_c$ be the direct limit embedding. Note M_c, played by an iteration strategy, is wellfounded.
Now \mathcal{U}_∞ is part of a play according to $j_{0,\infty}(\sigma_{\text{piv}-\infty})[y_n \mid n < \omega]$.

Our use of $j_{0,\infty}(\sigma_{\text{piv}-\infty})[y_n \mid n < \omega]$ guarantees that there exists some h_∞ so that

1. h_∞ is $\text{col}(\omega, \pi_c(j_{0,\infty}(\delta_\infty)))$–generic$/M_c$, and
2. $\langle y_n \mid n < \omega \rangle \in \pi_c(j_{0,\infty}(\dot{A}_\infty))[h_\infty]$.

From 2 we see that $\langle y_n \mid n < \omega \rangle$ satisfies the Σ^1_2 statement ϕ, inside $M_c[h_\infty]$.

By absoluteness ϕ is satisfied in V.

So $\langle y_n \mid n < \omega \rangle \in C$ and I won, as required.

□(Case 1.)

Assuming there is some γ so that (in M) I wins $G_0(\gamma)$, we showed that (in V) I wins $G_{\omega \cdot \omega}(C)$.

22
Fix $\gamma_L < \gamma_H$ indiscernibles for M, above δ_∞.

Suppose $S = \langle y_0, \ldots, y_{k-1}, a_0^\infty, \ldots, a_{k-1}^\infty, \gamma_L \rangle$ is a k-sequence in $M[g_k]$ and does not belong A_k.

So II wins $G_k(S)$. By indiscernibility II also wins $G_k(S_H)$ where $S_H = \langle *, \ldots, \gamma_H \rangle$. Fix a winning strategy Σ_{II-k}.

$$
\begin{array}{c|ccc}
I & \gamma^*, a_{k-1}^\infty & y_k(0) & a_{0-1}^{k+1} \\
II & a_k^\infty & y_k(2) & \ldots \\
 & a_{1-1}^{k+1} & a_{1-2}^{k+1} & y_k(1) \\
\end{array}
$$

Play $\gamma^* = \gamma_L$. Use Σ_{II-k}, $\sigma_{gen-\infty}$, $\sigma_{gen-(k+1)}$ to obtain a_k^∞, a_{k+1}, and (half of) y_k in $M[g_{k+1}]$.

Our use of $\sigma_{gen-(k+1)}$ guarantees that $S' = \langle S_H --, y_k, a_k^\infty, \gamma_L \rangle \notin A_{k+1}[g_{k+1}]$.

If S' belongs to $M[g_{k+1}]$ this means that II wins $G_{k+1}(S')$.

23
Continue this way. Our use of $\sigma_{\text{gen} - \infty}$ guarantees that $\langle y_n \mid n < \omega \rangle$ does not belong to $\dot{A}[g_\infty]$.

If there is γ so that I wins the closed game $G_0(\gamma)$, then I has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Mirroring this with sets B_k and games H_k we get:

If there is γ so that II wins the closed game $H_0(\gamma)$, then II has a winning strategy in $G_{\omega \cdot \omega}(C)$.

Finally, if II wins $G_0(\gamma_L)$ and I wins $H_0(\gamma_L)$, we can work in $M[g_n]$, $n < \omega$, and produce $\langle y_n \mid n < \omega \rangle \in M[g_\infty]$ * which belongs to neither $\dot{A}[g_\infty]$ nor $\dot{B}[g_\infty]$, a contradiction.

It follows that $G_{\omega \cdot \omega}(C)$ is determined.

*Note $\langle g_n \mid n < \omega \rangle \in M[g_\infty]$. 24