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1.(d) Example: Σ1
2 determinacy.

2. Games of length ω · ω with Σ1
2 payoff.

3. Continuously coded games with Σ1
2 payoff.
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Recall: A is the set of all reals which satisfy a

given Σ1
2 statement φ. Ȧ ∈ M names the set of

reals of Mcol(ω,δ) which satisfy φ in Mcol(ω,δ).

G is the game in which I and II play x =
〈x0, x1, . . .〉 ∈ R and in addition play moves in
the auxiliary game A[x].

I x0 a0−I a1−I x2 . . .

II a0−II x1 a1−II

The game is played in M . Infinite runs of G

are won by II.

Using σpiv to ascribe auxiliary moves for II we
showed that

Case 1. If I wins G in M , then (in V) I has a
winning strategy in Gω(A).

Let Ḃ in M name the set of reals which do not

satisfy φ in Mcol(ω,δ).

Define x 7→ B[x] and x 7→ B∗[x] as before, but
changing Ȧ to Ḃ and interchanging I and II.
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We have τgen[x, g] and τpiv[x, g] as before, but

with the roles of I and II switched.

Let H be the following game, defined and

played inside M :

I x0 b0−I b1−I x2 . . .

II b0−II x1 b1−II

I and II alternate playing natural numbers, pro-

ducing x = 〈x0, x1, . . .〉 ∈ R. In addition they

play moves b0−I, b0−II, . . . in B[x].

This time I is the closed player; she wins if she

can last all ω moves. Otherwise II wins.

Case 2: II wins H. Then an argument similar

to that of Case 1 shows that (in V) II has a

strategy to get into B = R−A. In other words,

II wins Gω(A) in V. �(Case 2.)
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We showed:

• If I wins G in M , then (in V) I wins Gω(A).

• If II wins H in M , then (in V) II wins Gω(A).

It is now enough to check that one of these

cases must occur.

Suppose not. I.e., assume that, in M , II wins

G and I wins H. Fix strategies ΣII ∈ M and

ΣI ∈ M witnessing this. We wish to derive a

contradiction.
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Recall the progress of the games G and H:

G : I x0 a0−I a1−I . . .

II a0−II x1 a1−II

H : I x0 b0−I b1−I . . .

II b0−II x1 b1−II

Working in M [g], construct x = 〈x0, x1, . . .〉,

~a = 〈a0−I, a0−II, . . .〉, and ~b = 〈b0−I, b0−II, . . .〉 as

follows:

• ΣII (playing for II in G) produces xn for odd

n, and an−II for all n.

• σgen[x, g] produces an−I for all n.

• ΣI (playing for I in H) produces xn for even

n and bn−I for all n.

• τgen[x, g] produces bn−II for all n.

We get x 6∈ Ȧ[g] by Lemma 1. Similarly we get

x 6∈ Ḃ[g] through our use of τgen.

But Ȧ and Ḃ name complementary sets. Since

x ∈ M [g] this is a contradiction. �
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To sum: Defined in M the game

G : I x0 a0−I a1−I . . .

II a0−II x1 a1−II

where I, II collaborate to produce x ∈ R, and

in addition play auxiliary moves: I trying to

witness x ∈ Ȧ[h] for some h, II trying to witness

the opposite. G is a closed game.

If in M I wins G, showed (using σpiv) that in V

I wins to get into some jb(Ȧ)[h], and hence by

absoluteness into A.

Defined in M the game

H : I x0 b0−I b1−I . . .

II b0−II x1 b1−II

This time II is trying to witness x ∈ Ḃ[h] for

some h, and I is trying to witness the opposite.

If in M II wins H, showed (using τpiv) that in

V II wins to get into some jb(Ḃ)[h], and hence

by absoluteness into B = R − A.
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Finally, if both cases fail, we worked in M [g]

(using σgen and τgen) to construct x ∈ M [g]

which belongs to neither Ȧ[g] nor Ḃ[g], a con-

tradiction.
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Fix C ⊂ Rω a Σ1
2 set, say the set of all se-

quences 〈y0, y1, . . .〉 ∈ Rω which satisfy the Σ1
2

statement φ.

We wish to prove that Gω·ω(C) is determined.

Fix M and an increasing sequence δ1, δ2, . . . , δω

so that

• M is a class model.

• Each δξ is a Woodin cardinal in M .

• In V there is g which is col(ω, δω)–gen/M .

• M is iterable.

The existence of such M is our large cardi-

nal assumption (needed to prove determinacy).

We use δ∞ and g∞ to refer to δω and g.
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Let Ȧ∞ ∈ M name the set of elements of Rω ∩

M [g∞] which satisfy φ in M [g∞].

For 〈yn | n < ω〉 ∈ Rω we have the associated

game A∞[yn | n < ω]. (Formally we should

think of 〈yn | n < ω〉 as coded by some real x.)

The association is continuous, and we may talk

about A∞[y0, . . . , yk−1], a game of k+1 rounds.

We use a∞0−I, a∞0−II, a∞1−I, etc. to refer to moves

in A∞.

We use a∞n to denote 〈a∞n−I, a
∞
n−II〉 and refer to

runs of A∞ as ~a∞.

(Recall that moves in A∞[yn | n < ω] are ar-

ranged so that I tries to witness 〈yn | n < ω〉 ∈

Ȧ∞[h] for some h, and II tries to witness the

opposite.)
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A k-sequences is a sequence

〈y0, . . . , yk−1, a∞0 , . . . , a∞k−1, γ〉

so that

• Each yi is a real;

• a∞0 , . . . , a∞k−1 is a position in the auxiliary

game A∞[y0, . . . , yk−1]; and

• γ is an ordinal.

We use S to denote k-sequences.
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A valid extension for a k-sequence is a triplet

yk, a∞k , γ∗ so that

• yk is a real;

• a∞k = 〈a∞k−I, a
∞
k−II〉 where a∞k−I and a∞k−II are

legal moves for I and II respectively in the

game A∞[y0, . . . , yk−1],
∗ following the po-

sition a∞0 , . . . , a∞k−1; and

• γ∗ is an ordinal smaller than γ.

We use S−−, yk, a∞k , γ∗ to denote the k + 1-

sequence

〈y0, . . . , yk−1, yk, a∞0 , . . . , a∞k−1, a∞k , γ∗〉.

∗Observe that knowledge of yk is not needed to deter-
mine the rules for round k of this game.
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For expository simplicity, fix for each n some gn

which is col(ω, δn)–generic/M . Do this so that

the sequence 〈gn | n < ω〉 belongs to M [g∞]

and each gn belongs to M [gn+1].

Below we define sets in M [gn] where strictly

speaking we should be defining names in

Mcol(ω,δn).

We work to define sets Ak in M [gk] (k ≥ 1).

Ak will be a set of k-sequences.

Given a∞0 , . . . , a∞k−1, γ we let Ak[a
∞
0 , . . . , a∞k−1, γ]

be the set of tuples 〈y0, . . . , yk−1〉 so that

〈y0, . . . , yk−1, a∞0 , . . . , a∞k−1, γ〉 ∈ Ak.

Ak[a
∞
0 , . . . , a∞k−1, γ] then is a subset of Rk in

M [gk]. Really we are defining names, not sets.

So we have a name Ȧk[a
∞
0 , . . . , a∞k−1, γ].
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Let Ak[y0, . . . , yk−1, a∞0 , . . . , a∞k−1, γ] be auxiliary

game associated to 〈y0, . . . , yk−1〉 and the name

Ȧk[a
∞
0 , . . . , a∞k−1, γ].

We use Ak[S] to denote this game, and use

ak
0−I, ak

0−II etc. to denote moves in the game.

(Recall that these moves are such that I tries

to witness that S belongs to Ȧk[h] for some h.

II tries to witness the opposite.)

Given S = 〈y0, . . . , yk−1, a∞0 , . . . , a∞k−1, γ〉, a k-

sequence, define a game Gk(S) in which:

I and II play a valid extension γ∗, a∞k , yk. In

addition I tries to witness that the extended

sequence, S−−, yk, a∞k , γ∗, belongs to Ak+1. II

tries to witness the opposite.
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Gk(S):

I γ∗, a∞k−I yk(0) ak+1
0−I

II a∞k−II ak+1
0−II

ak+1
1−I yk(2) . . .

yk(1) ak+1
1−II

I and II play

• γ∗,

• a∞k = 〈a∞k−I, a
∞
k−II〉, and

• yk = 〈yk(0), yk(1), . . .〉

which form a valid extension of S. (In partic-

ular γ∗ is smaller than γ.)

In addition they play auxiliary moves in the

game Ak+1[S−−, yk, a∞k , γ∗].

II is the closed player; she wins if she can last

ω moves. Otherwise I wins.
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Define the sets Ak by:

S ∈ Ak iff I has a winning strategy in Gk(S)

(for a k-sequence S ∈ M [gk]).

If S belongs to Ak, we expect to be able to

extend to S∗ = S−−, yk, a∞k , γ∗ which belongs

to a “shift” of Ak+1.

Our definition of Ak depends on some knowl-

edge of Ak+1. (We need knowledge of Gk,

which involves the auxiliary game Ak+1.)

The definition is by induction, not on k, but

on γ.

Figuring out the rules of Gk(S), where

S = 〈∗, . . . , ∗, γ〉, requires knowledge of the sets

Ak+1[a
∞
0 , . . . , a∞k , γ∗], but only for γ∗ < γ.

Determining whether S belongs to Ak thus re-

quires knowledge of Ak+1, but only for k + 1-

sequences ending with γ∗ < γ.
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A 0-sequence is simply an ordinal γ. We have

for each γ the game G0(γ). This game belongs

to M .

Case 1: There exists some γ so that (in M) I

has a winning strategy in G0(γ).

We will show that (in V) I has a winning strat-

egy in Gω·ω(C).

Fix Σ0 ∈ M , a winning strategy for I (the open

player) in G0(γ).

Fix an imaginary opponent, playing for II in

Gω·ω(C).

We will use Σ0, the strategies σpiv−1, σpiv−2, . . .,

the strategy σpiv−∞, and an iteration strategy

for M , to play against the imaginary opponent.
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G0(γ):

I γ∗
0, a∞0−I y0(0) a1

0−I

II a∞0−II a1
0−II

a1
1−I y0(2) . . .

y0(1) a1
1−II

Our opponent, Σ0, σpiv−∞ (for the first round),

and σpiv−1 (for the remaining rounds) cover all

moves in the game.

We obtain an iteration tree U0 of length 3,

played by σpiv−∞, with final model P0
2 , embed-

ding π0
0,2:M → P0

2 , and moves γ̄∗
0, ā∞0 in P0

2 .

We obtain y0 ∈ R, and an iteration tree T0

(played by σpiv−1) with illfounded even model.

The iteration strategy picks an odd branch, b0
say. Let M1 be the direct limit along b0 and

let j0,1 be the direct limit embedding.
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M = P0
0

π0
0,2

!!

P0
1 P0

2

M
b0

//iiiiiiiiiiiii

T0

UUUUUUUUUUUUU
M1 = P1

0

π1
0,2

!!

P1
1 P1

2

Let U1 = j0,1(U
0), and similarly with P1

2 , π1
0,2.

Let γ∗
0 = j0,1(γ̄

∗
0) and similarly a∞0 .

Our use of σpiv−1 guarantees that there exists

some h1 so that

1. h1 is col(ω, δ s
1)–generic/M1, and

2. 〈y0, a∞0 , γ∗
0〉 ∈ Ȧ s

1[h1].

(∗ s denotes j0,1(π
0
0,2(∗)).)

Note that by 2, player I (the open player) has

a winning strategy in G s
1(y0, a∞0 , γ∗

0). Fix Σ1 ∈

M1[h1], a strategy for I witnessing this.
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I γ∗
1, a∞1−I y1(0) a2

0−I

II a∞1−II a2
0−II

a2
1−I y1(2) . . .

y1(1) a2
1−II

Note, Σ1 belongs to M1[h1], a small generic

extension of M . (Small with respect to δ2 and

δ∞.) This allows us to shift Σ1 along the even

branch of trees given by σpiv−∞ and σpiv−2.

Using Σ1 and j0,1(σpiv−∞) we get

M
b0

//iiiiiiiiiiiii

T0

UUUUUUUUUUUUU
M1 = P1

0

π0
0,2

!!

P1
1 P1

2

π0
2,4

!!

P1
3 P1

4

Then using j0,1(σpiv−2) and shifts of Σ1 get

M
b0

//iiiiiiiiiiiii

T0

UUUUUUUUUUUUU
M1

b1
//iiiiiiiiiiiii

T1

UUUUUUUUUUUUU
M2 = P2

0

π2
0,4

!!

P2
4

(where P2
0 = j1,2(P

1
0 ), etc.).
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We get γ∗
1, a∞1 , and y1. Our use of σpiv−2

guarantees that there exists h2 so that

1. h2 is col(ω, δ s s
2 )–generic/M2, and

2. 〈y0, y1, a∞0
– s , a∞1 , γ∗

1〉 ∈ Ȧ s s
2 [h2].

(A second s stands for application of j1,2◦π1
2,4.)

By 2, player I (the open player) wins

G s s
2 (y0, y1, a∞0

– s , a∞1 , γ∗
1).

This game belongs to M [h2]. Fix Σ2 ∈ M [h2],

a strategy witnessing that I wins.

Continue as before.
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In general we have:

Mk = P k
0

πk
0,2k

%%

jk,k+1

��

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

Tk

��
��
��
��
��
��
��
��
��
��

P k
2k

πk
2k,2k+2

&&

P k
2k+1 P k

2k+2

jk,k+1

��

Mk+1 = P k+1
0

πk+1
0,2k+2

**

P k+1
2k+2

In P k
2k we have the k-sequence

Sk = 〈y0, . . . , yk−1, a∞0
– s ··· s , . . . , a∞k−1

––···–, γ∗
k−1〉.

Sk+1 (in P k+1
2k+2) is obtained as a valid extension

of jk,k+1(π
k
2k,2k+2(Sk)). In particular:

(†) γ∗
k is smaller than jk,k+1(π

k
2k,2k+2(γ

∗
k−1)).
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We end with a sequence of reals 〈yn | n < ω〉,

a sequence of iteration trees

M0
b0

//iiiiiiiiiiiii

T0

UUUUUUUUUUUUU
M1

b1
//iiiiiiiiiiiii

T1

UUUUUUUUUUUUU
M2 · · · //______ M∞

and an iteration tree U∞ on M∞ as follows:

M∞ = P∞
0

π∞
0,2

""

P∞
1 P∞

2

π∞
2,4

""

P∞
3 P∞

4

  z
s

l e ^ W P
I

A

· · ·

By (†) the even branch of U∞ is illfounded.

The iteration strategy for M produces an odd

branch c of U∞. Let Mc be the direct limit, and

let πc:M∞ → Mc be the direct limit embedding.

Note Mc, played by an iteration strategy, is

wellfounded.
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Now U∞ is part of a play according to

j0,∞(σpiv−∞)[yn | n < ω].

Our use of j0,∞(σpiv−∞)[yn | n < ω] guarantees

that there exists some h∞ so that

1. h∞ is col(ω, πc(j0,∞(δ∞)))–generic/Mc, and

2. 〈yn | n < ω〉 ∈ πc(j0,∞(Ȧ∞))[h∞].

From 2 we see that 〈yn | n < ω〉 satisfies the

Σ1
2 statement φ, inside Mc[h∞].

By absoluteness φ is satisfied in V.

So 〈yn | n < ω〉 ∈ C and I won, as required.

�(Case 1.)

Assuming there is some γ so that (in M) I wins

G0(γ), we showed that (in V) I wins Gω·ω(C).

22



Fix γL < γH indiscernibles for M , above δ∞.

Suppose S = 〈y0, . . . , yk−1, a∞0 , . . . , a∞k−1, γL〉 is a

k-sequence in M [gk] and does not belong Ak.

So II wins Gk(S). By indiscernibility II also wins

Gk(SH) where SH = 〈∗, . . . , γH〉. Fix a winning

strategy ΣII−k.

I γ∗, a∞k−I yk(0) ak+1
0−I

II a∞k−II ak+1
0−II

ak+1
1−I yk(2) . . .

yk(1) ak+1
1−II

Play γ∗ = γL. Use ΣII−k, σgen−∞, σgen−(k+1)

to obtain a∞k , ~ak+1, and (half of) yk in M [gk+1].

Our use of σgen−(k+1) guarantees that

S′ = 〈SH−−, yk, a∞k , γL〉 6∈ Ȧk+1[gk+1].

If S′ belongs to M [gk+1] this means that II wins

Gk+1(S
′).
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Continue this way. Our use of σgen−∞ guar-

antees that 〈yn | n < ω〉 does not belong to

Ȧ[g∞].

If there is γ so that I wins the closed game

G0(γ), then I has a winning strategy in

Gω·ω(C).

Mirroring this with sets Bk and games Hk we

get:

If there is γ so that II wins the closed game

H0(γ), then II has a winning strategy in

Gω·ω(C).

Finally, if II wins G0(γL) and I wins H0(γL),

we can work in M [gn], n < ω, and produce

〈yn | n < ω〉 ∈ M [g∞] ∗ which belongs to neither

Ȧ[g∞] nor Ḃ[g∞], a contradiction.

It follows that Gω·ω(C) is determined.

∗Note 〈gn | n < ω〉 ∈ M [g∞].
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