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1.(d) Example: 3 determinacy.
2. Games of length w-w with 3 payoff.

3. Continuously coded games with Z% payoff.
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Recall: A is the set of all reals which satisfy a
given X3 statement ¢. A € M names the set of
reals of M0 (w:9) which satisfy ¢ in MOl w:d)

G is the game in which I and II play =z =
(xg,x1,...) € R and in addition play moves in
the auxiliary game Alzx].

[ |zg ap_g a1-I T2

II | ap—_11 1 a1_I1
The game is played in M. Infinite runs of GG
are won by II.

Using opjy to ascribe auxiliary moves for II we
showed that

Case 1. If I wins G in M, then (in V) I has a
winning strategy in G, (A).

Let B in M name the set of reals which do not
satisfy ¢ in MCO!(w:d)

Define x — B[z] and =z — B*[x] as before, but
changing A to B and interchanging I and II.
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We have 7gen(z, g] and 7|z, g] as before, but
with the roles of I and II switched.

Let H be the following game, defined and
played inside M:

I|zg bo-1 bp_1 w2
II bo—_11 r1 bi_n

I and II alternate playing natural numbers, pro-
ducing =z = (xzg,x1,...) € R. In addition they
play moves bg_1,bo_1, ... in Blx].

This time I is the closed player; she wins if she
can last all w moves. Otherwise II wins.

Case 2: II wins H. Then an argument similar
to that of Case 1 shows that (in V) II has a
strategy to get into B = R—A. In other words,
II wins G, (A) in V. [1(Case 2.)



We showed:
e If I wins G in M, then (in V) I wins G,,(A).

e IfII wins H in M, then (in V) Il wins G,,(A).

It is now enough to check that one of these
cases must occur.

Suppose not. I.e., assume that, in M, II wins
G and I wins H. Fix strategies X! ¢ M and
>! ¢ M witnessing this. We wish to derive a
contradiction.



Recall the progress of the games G and H:

G: 1 X0 ag—i al1_—i
II ap—11 %1 a1_11
H: I|xg bO—I bl—I
II bo—11 r1 b1

Working in M]|g], construct z = (zg,x1,...),
d = (ag—1, @011, - - -)» and b = (bo_1,bo_11,- - -) as
follows:

e X1 (playing for Il in G) produces z, for odd
n, and a,_g for all n.

® ogenlx, g] produces a,,_j for all n.

e X! (playing forIin H) produces z, for even
n and b,,_1 for all n.

e Tgen[z, g] produces b,,_g; for all n.

We get = € A[g] by Lemma 1. Similarly we get
x & B[g] through our use of 7gen.

But A and B name complementary sets. Since
x € M|g] this is a contradiction. ]



To sum: Defined in M the game

G: 1 ’xo an—1 aq_j
II | ag_11 1 a1_I1
where I, II collaborate to produce z € R, and
in addition play auxiliary moves: 1 trying to
witness x € A[h] for some h, II trying to witness
the opposite. G is a closed game.

If in M I wins G, showed (using op;,) that in V
I wins to get into some j,(A)[R], and hence by
absoluteness into A.

Defined in M the game

H: 1 ‘ZEO bO—I bl—I
II | bo_11 r1 b1

This time II is trying to witness « € B[h] for
some h, and I is trying to witness the opposite.

If in M II wins H, showed (using 7,;,) that in
V II wins to get into some 5;,(B)[h], and hence
by absoluteness into B =R — A.



Finally, if both cases fail, we worked in M]|g]
(using ogen and 7gen) to construct x € M]|g]
which belongs to neither A[g] nor B[g], a con-

tradiction.



Fix C C R¥ a 1 set, say the set of all se-
quences (yg,y1,--.) € R¥ which satisfy the >3
statement ¢.

We wish to prove that Gu..,(C) is determined.

Fix M and an increasing sequence d1,0o,...,0w
SO that

e M is a class model.
e Each 4, is a Woodin cardinal in M.
e In V there is g which is col(w, é,)—gen/M.
e M is iterable.
The existence of such M is our large cardi-

nal assumption (needed to prove determinacy).
We use d and goo to refer to 6, and g.



Let Ao € M name the set of elements of R¥ N
M [goo] Which satisfy ¢ in M|[goo].

For (yn | n < w) € RY we have the associated
game Axlyn | n < w]. (Formally we should
think of (yn | n < w) as coded by some real x.)

The association is continuous, and we may talk
about Asolyo,--.,Yr_1], @ game of k41 rounds.

@) @) @)
We use ay” 1, ag’ o a1, €tc. to refer to moves
in Axo.

We use ay° to denote (a’ ;,a>° ;1) and refer to
runs of A~ as a*°.

(Recall that moves in Ax[yn | n < w] are ar-
ranged so that I tries to witness (yn | n < w) €
Aso[h] for some h, and II tries to witness the
opposite.)



A k-sequences is a sequence

<y07 . ayk—17a807 IO 7azo—1>/7>
sO that

e Each y; is a real,

® ag’,...,ap_ ¢ IS @ position in the auxiliary
game Axlyo,---,yr—1]; and

e v is an ordinal.

We use S to denote k-sequences.



A valid extension for a k-sequence is a triplet
Yk, ap o,y SO that

e vy, IS a real;

o ap® = (ay’y,ap’ ) where ag®; and af° g are
legal moves for I and II respectively in the
game Asolyo,...,yr_1],* following the po-
sition ag’,...,ag” 1; and

e +* is an ordinal smaller than ~.

We use S—,yg,ap’,v* to denote the k + 1-
sequence

<y07 s e 7yk—17yk7a807 <. 7a']20—17a2077*>'

*Observe that knowledge of y; is not needed to deter-
mine the rules for round k of this game.
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For expository simplicity, fix for each n some gp,
which is col(w, én,)—generic/M. Do this so that
the sequence (g, | n < w) belongs to M|gso]
and each gn belongs to Mg, 1]

Below we define sets in M|[gn] where strictly

speaking we should be defining names in
MCOl(w,(Sn).

We work to define sets A in M[g.] (k > 1).
A will be a set of k-sequences.

Given ag®,...,ag” 1, v we let Aglag®,...,a?° 1,7]
be the set of tuples (yg,...,yr_1) SO that

<y07' .. 7yk—17a807"'7a']20_177> S Ak
Apla,...,a° {,7] then is a subset of R¥ in

Mlgi]. Really we are defining names, not sets.
So we have a name Ag[ad’, ..., a° 1,7].
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Let Aglvo, ..., yk—1,08",...,a7° 1,v] be auxiliary
game associated to (yg,...,yr_1) and the name

Ak[a’807 ° '70’20_17/}/]'

We use A.[S] to denote this game, and use
ak 1, af_ etc. to denote moves in the game.

(Recall that these moves are such that I tries
to witness that S belongs to Ai[h] for some h.
II tries to witness the opposite.)

Given S = (yo,.-,Yk—1,a8",---,051,7), A k-
sequence, define a game Gi(S) in which:

I and II play a valid extension ~v*,ag%,yg. In
addition I tries to witness that the extended
sequence, S—,yk,ago,fy*, belongs to Apyq. 1I
tries to witness the opposite.
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G(5):

k41
I ‘7*:azo_1 Y1 (0) aoi_I -
I ‘ CLEO—II Ao_11
k41
al_l_l yk(2)
k+1
Y (1) al—_|_11
I and II play
o V¥,

 ap° = (aplpap’y), and

which form a valid extension of S. (In partic-
ular v* is smaller than ~.)

In addition they play auxiliary moves in the
game Apy1[S—,yg, a7’ v"].

IT is the closed player; she wins if she can last

w moves. Otherwise I wins.
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Define the sets A, by:
S € A, iff I has a winning strategy in G(S)
(for a k-sequence S € M|gi]).

If S belongs to A, we expect to be able to
extend to S* = S—,yi,a7°,v" which belongs
to a “shift” of Agy ;.

Our definition of A, depends on some knowl-
edge of Apyiq1. (We need knowledge of Gy,
which involves the auxiliary game Ay 1.)

The definition is by induction, not on k, but
on .

Figuring out the rules of Gi(S), where
S = (x,...,%,7), requires knowledge of the sets
Apyilag®, ..., a2°,v*], but only for v* < .

Determining whether S belongs to A; thus re-
quires knowledge of Ag4 1, but only for k + 1-
sequences ending with ~v* < ~.
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A 0O-seqguence is simply an ordinal ~v. We have
for each v the game Gg(v). This game belongs
to M.

Case 1: There exists some ~ so that (in M) I
has a winning strategy in Gg(v).

We will show that (in V) I has a winning strat-
egy in Gu.w(C).

Fix g € M, a winning strategy for I (the open
player) in Gg(v).

Fix an imaginary opponent, playing for II in
Guw-w(C).

We will use 3¢, the strategies opjy_1, Tpiv—2; - - -
the strategy opiy_oo, @nd an iteration strategy
for M, to play against the imaginary opponent.
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Go(v):
1

I |76 a8 yo(0)  ag_g
i
I ’ ag 11 aAn_11

a%_I y0(2)
yo(1) a%_ﬂ

Our opponent, g, opjy_o (for the first round),
and opjy—1 (for the remaining rounds) cover all
moves in the game.

We obtain an iteration tree U° of length 3,
played by opiy_oe, With final model PY, embed-
ding 78 »: M — P§, and moves 73,ag° in PY.

We obtain yg € R, and an iteration tree 7
(played by opjy—1) with illfounded even model.

The iteration strategy picks an odd branch, bg
say. Let M; be the direct limit along bg and
let jo,1 be the direct limit embedding.
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70,2

N
M=Py P P§

70,2

b N
M My =P} PP P
1o

Let Ut = jo.1(U®), and similarly with P3, 7§ ,.
Let v§ = jo,1(73) and similarly ag®.

Our use of opjy_1 guarantees that there exists
some hj so that

1. hy is col(w, 63 )—generic/M;, and

2. (yo,ad’, 75 € Ajlh1].
(xS denotes jg 1 (7§ 5(*)).)

Note that by 2, player I (the open player) has
a winning strategy in G3(yo,a3°, 7). Fix X1 €
Mj1[h1], a strategy for I witnessing this.
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I ’7T7a<io—1 y1(0) a%—l
D
I ’ ag g ag_11

a%_l y1(2)
y1(1) a%_ﬂ

Note, X1 belongs to Mj[h1], @ small generic
extension of M. (Small with respect to > and
doo.) This allows us to shift X1 along the even
branch of trees given by opjy_oo aNd opjy_o.

Using X1 and jg.1(0pjv—o0) We get

7T8 2 7T(Q),4
) SN TN
M °My=pP} P} P} P} P}

7o

Then using jg.1(opjy—2) and shifts of >; get

b b
M 2 My LMy = Pg P2
T T

(where P$ = j1 2(Pg), etc.).
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We get ~7, a3®, and y;. Our use of opjy_»o
guarantees that there exists ho so that

1. hp is col(w,é5°)—generic/ Mo, and

2. <y07y17a80_57a%077i> - Aés[hz]

(A second ® stands for application of jj som3 4.)

By 2, player I (the open player) wins

GSS(yanlaaO Saa(]D_Oa’YT)'
This game belongs to M[hs]. Fix X5 € M|[hs],
a strategy witnessing that I wins.

Continue as before.
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In general we have:

k k

70,2k T2k 2k—+2
My, = Fg Py Py Pho
T
Tk k+1 - _WSZ;JFQ Tk k+1
Mgy = FAHE o

In P4 we have the k-sequence

S...S

,...,azo_l_ _,’YZ_1>

Sk — <y07 s Yk—1, CLBO_

Sk+1 (in Pé“,;:_lz) is obtained as a valid extension
Of Ji k41(75y 211 2(Sk)). In particular:
(1) ~; is smaller than jk,k+1(7rl2€k,2k+2(71:—1>)'
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We end with a sequence of reals (yn | n < w),
a sequence of iteration trees

b b
My 2 M My e - Moo
To T

and an iteration tree U ON M as follows:

oo O
70,2 24

TN e
MOOZPSO P P5° Pgo P ...

By (1) the even branch of Uy is illfounded.

The iteration strategy for M produces an odd
branch ¢ of Us. Let M. be the direct limit, and
let mc: M~ — M. be the direct limit embedding.

Note M., played by an iteration strategy, is
wellfounded.
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Now U~ is part of a play according to
jO,oo(Uin—oo)[yn | n < w].

Our use of jg oo (opiv—oo) [yn | » < w] guarantees
that there exists some hoo SO that

1. heo is col(w, mc(Jo,00(dc0)))—9eneric/ M, and

2. (yn|n<w) € 71'C(jO,oo(Aoo))[hoo]-

From 2 we see that (yn | n < w) satisfies the
>3 statement ¢, inside Mc[hoo].

By absoluteness ¢ is satisfied in V.
So (yn | n < w) € C and I won, as required.
[1(Case 1.)

Assuming there is some v so that (in M) I wins
Go(7), we showed that (in V) I wins Gu..(C).
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FiX v < vy indiscernibles for M, above d«.

Suppose S = (Yo, - -+, Yk—1,03s---,az° 1,7L) IS a
k-sequence in M|gi] and does not belong Aj.

So Il wins G(S). By indiscernibility II also wins
Gr(SH) where Sy = {*,...,v4). Fix a winning
strategy ZII—k'

k+1
I "7*76120_1 Yy, (0) agi_l -
11 ‘ a’zo—II An_11
k41
al_l_l yi(2)
k+1
Y (1) a’]_i—H

Play v* = L. Use Xy, ogen—ocor Ogen—(k+1)
to obtain a{°, @* 11, and (half of) y; in M[ggy1].

Our use oOf ogen_(x41) 9uarantees that
S = (Su—, Yk, a2 7)) € Agt1l9x+1]-

If S’ belongs to M([gx41] this means that II wins

Gr+1(S").
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Continue this way. Our use of ogen—~ guar-
antees that (yn, | n < w) does not belong to

A[goo]-

If there is v so that I wins the closed game
Go(v), then I has a winning strategy in
Gu-w(C).

Mirroring this with sets B, and games H; we
get:

If there is v so that II wins the closed game
Hp(vy), then II has a winning strategy in
Gu-w(C).

Finally, if II wins Ggo(y.) and I wins Hg(v.),
we can work in M[gn], n < w, and produce
(yn | n < w) € M[goo] * Which belongs to neither
Algoo] Nor Blgeo], @ contradiction.

It follows that Gu.(C) is determined.

*Note (gn | n < w) € M[goo].
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