1. Preliminaries:
 (a) The games.
 (b) Extenders, iteration trees.
 (c) Auxiliary game representations.
 (d) Example: Σ^1_2 determinacy.

2. Games of length $\omega \cdot \omega$ with Σ^1_2 payoff.

3. Continuously coded games with Σ^1_2 payoff.
Let $C \subset \mathbb{R}^{<\omega_1}$ be given. Let $f : \mathbb{R} \to \mathbb{N}$, a partial function, be given. $G_{\text{cont}}(C)$ is played as follows:

\[
\begin{array}{c|cccc}
I & \ldots & y_\alpha(0) & y_\alpha(2) \\
II & & y_\alpha(1) & y_\alpha(3) & \ldots
\end{array}
\]

In round α, I and II alternate playing natural numbers $y_\alpha(i)$, $i < \omega$, producing a real y_α.

If $f(y_\alpha)$ is not defined, the game ends. I wins iff $\langle y_0, y_1, \ldots, y_\alpha \rangle \in C$.

Otherwise we set $n_\alpha = f(y_\alpha)$. If there exists $\xi < \alpha$ so that $n_\alpha = n_\xi$, the game ends. Again I wins iff $\langle y_0, y_1, \ldots, y_\alpha \rangle \in C$.

Otherwise the game continues.

The game ends at a countable α; the map $\xi \mapsto n_\xi$ embeds α into \mathbb{N}. This map is produced continuously in ξ. The game is said to have \textit{continuously coded length}.

*Following standard abuse of notation, we use \mathbb{R} to denote \mathbb{N}^ω.\]
Let \(C \subset \mathbb{R}^\omega = \mathbb{N}^{\omega \cdot \omega} \) be given. In \(G_{\omega \cdot \omega}(C) \) the players play \(\omega \) rounds as follows, producing \(y_k \in \mathbb{R} \) for \(k < \omega \).

\[
\begin{array}{ccc}
I & y_0(0) & \cdots & y_1(0) & \cdots \\
II & y_0(1) & & y_1(1) & \cdots \\
\end{array}
\]

I wins iff \(\langle y_k \mid k < \omega \rangle \) belongs to \(C \).

Let \(C \subset \mathbb{R} = \mathbb{N}^\omega \) be given. In \(G_\omega(C) \) the players play one round as follows, producing \(y \in \mathbb{R} \).

\[
\begin{array}{ccc}
I & y(0) & y(2) & \cdots \\
II & y(1) & y(3) & \cdots \\
\end{array}
\]

I wins iff \(y \in C \).
We intend to prove that $G_{\text{cont-}f}(C)$ are determined, for all continuous f and all Σ^1_2 payoff sets C.

As an illustrative case we will first prove that $G_{\omega \cdot \omega}(C)$ are determined, for all Σ^1_2 payoff sets C.

Before that, we will prove that $G_\omega(C)$ are determined for all Σ^1_2 sets $C \subset \mathbb{R}$.

Determinacy for games of length ω was proved by Martin and Steel.

Determinacy for games of fixed length $\omega \cdot \alpha$, α limit, was proved by Woodin.

Determinacy for games of continuously coded length was proved by Neeman.
An **extender** on κ is a directed system of measures on κ. If E is an extender on κ, we use $\text{dom}(E)$ to denote κ.

An extender E allows us to form an **ultrapower** of \mathcal{V}, denoted $\text{Ult}(\mathcal{V}, E)$, and an elementary **ultrapower embedding** $\pi : \mathcal{V} \rightarrow \text{Ult}(\mathcal{V}, E)$.

We use P, Q, M, N to denote models of ZFC.

We say that Q and Q^* **agree** to κ if $\mathcal{P}(\kappa) \cap Q^* = \mathcal{P}(\kappa) \cap Q$.

Suppose $Q \models "E \text{ is an extender on } \kappa"$. Suppose Q^* and Q agree to κ. Then E can be applied also to Q^*: We can form the **ultrapower** $\text{Ult}(Q^*, E)$, and an elementary **ultrapower embedding** $\sigma : Q^* \rightarrow \text{Ult}(Q^*, E)$.

$\text{Ult}(Q^*, E)$ needn’t always be wellfounded. If it is wellfounded, we assume it’s transitive.
An **iteration tree** T of length ω consists of

- a tree order T on ω,
- a sequence of models $\langle M_k \mid k < \omega \rangle$, and
- embeddings $j_{k,l} : M_k \rightarrow M_l$ for $k T l$.

Each model M_{l+1} for $l + 1 > 0$ is an ultrapower of a preceeding model. More precisely: $M_{l+1} = \text{Ult}(M_k, E_l)$, where E_l an extender picked from M_l, and $k \leq l$ is the T predecessor of $l + 1$. $j_{k,l+1}$ is the ultrapower embedding.

\[
\begin{array}{c}
M_{l+1} \\
j_{k,l+1} \\
M_k
\end{array}
\]

$E_l \in M_l$

$(M_l$ and M_k must agree to $\text{dom}(E_l)$.)

An iteration tree on M is a tree with $M_0 = M$.

5
Our trees will generally have an **even branch**, \(M_0, M_2, M_4, \ldots \), giving rise to the direct limit \(M_{\text{even}} \).

The tree structure on the odd models will usually be some permutation of \(\omega^{<\omega} \). With each **odd branch** \(b \) we associate the direct limit \(M_b \).

(In this example, \(0 T 1, 0 T 2, 1 T 3, 0 T 3 \), etc.)
In the iteration game* on M, players “good” and “bad” collaborate to produce a sequence of iteration trees as follows:

```
M ←_\mathcal{T}_0 \rightarrow b_0 M_1 ←_\mathcal{T}_1 \rightarrow b_1 M_2 ←_\mathcal{T}_2 \rightarrow b_2 M_3 ---->

----> M_\omega ←_\mathcal{T}_\omega \rightarrow b_\omega M_{\omega+1} ---->
```

“Bad” plays an iteration tree \mathcal{T}_ξ on M_ξ. “Good” plays a branch b_ξ through \mathcal{T}_ξ. We let $M_{\xi+1}$ be the direct limit model determined by b_ξ and proceed to the next round. For limit λ we let M_λ be the direct limit of M_ξ for preceding ξ. We start with $M_0 = M$.

If ever a model $(M_\xi, \xi < \omega_1)$ is reached which is illfounded, “bad” wins. Otherwise “good” wins.

*The definition given here is specialized to our context. The concept of iteration games is due to Martin–Steel.
We also consider iteration games were round ξ has the following form:

```
M_\xi \xleftarrow{b_\xi} P_\xi \xrightarrow{E_\xi} M_{\xi+1}
```

“Bad” plays an iteration tree T_ξ on M_ξ. “Good” plays a branch b_ξ, giving rise to the direct limit, P_ξ.

Then “good” plays an extender E_ξ in P_ξ, with $\text{dom}(E_\xi)$ within the level of agreement between M_ξ and P_ξ. We set $M_{\xi+1} = \text{Ult}(M_\xi, E_\xi)$ and continue to the next round.

If ever a model (P_ξ or M_ξ, $\xi < \omega_1$) is reached which is illfounded, “bad” wins. Otherwise “good” wins.

We refer to this game too as an **iteration game**.
M is **iterable** if the good player has a winning strategy for each of the iteration games described above. We refer to such winning strategies as **iteration strategies**.

Countable elementary substructures of V are iterable in this sense (Martin–Steel).
Suppose $M \models \text{“}\delta \text{ is a Woodin cardinal”}\text{, and in } V\text{ there are } M\text{-generics for } \text{col}(\omega, \delta)$. Let \dot{A} name a set of reals in $M^{\text{col}(\omega, \delta)}$.

Work with some $x \in \mathbb{R}$. We work to define an auxiliary game, $A[x]$, of ω moves, taken from M. In this game I tries to witness that $x \in \dot{A}[h]$ for some generic h. II tries to witness the opposite.

The auxiliary game is played as follows:

<table>
<thead>
<tr>
<th>I</th>
<th>\ldots l_n, X_n, p_n \ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>$\mathcal{F}_n, \mathcal{D}_n$ \ldots</td>
</tr>
</tbody>
</table>

In round n I plays

- $l = l_n$, a number $< n$, or $l_n =$ “new”.
- X_n, a set of names for reals of $M^{\text{col}(\omega, \delta)}$.
- p_n, a condition in $\text{col}(\omega, \delta)$.

II plays

- \mathcal{F}_n a function from X_n into the ordinals.
- \mathcal{D}_n, a function from X_n into $\{\text{dense sets in } \text{col}(\omega, \delta)\}$.
\[\mathcal{A}[x] : \begin{array}{c|c c c} & I & \ldots & l_n, \mathcal{X}_n, p_n & \ldots \\ \hline II & & & \mathcal{F}_n, \mathcal{D}_n & \ldots \end{array} \]

If \(l_n = \text{“new”} \) we make no requirements on I. Otherwise, we require \(p_n < p_l \) and \(\mathcal{X}_n \subset \mathcal{X}_l \). We further require that for every name \(\dot{x} \in \mathcal{X}_n \):

1. \(p_n \) forces \(\dot{x} \in \dot{\mathcal{A}} \).
2. \(p_n \) forces \(\dot{x}(0) = \tilde{x}_0 \), \ldots, \(\dot{x}(l) = \tilde{x}_l \).
3. \(p_n \) belongs to \(\mathcal{D}_l(\dot{x}) \).

We make the following requirement on II:

4. For every name \(\dot{x} \in \mathcal{X}_n \), \(\mathcal{F}_n(\dot{x}) < \mathcal{F}_l(\dot{x}) \).

If there is \(h \) so that \(x \in \dot{\mathcal{A}}[h] \), I can pick a name for \(x \), play \(\mathcal{X}_n \) containing this name, and play \(p_n \in h \). Condition 4 ensures defeat for II.

On the other hand, if there is an infinite run of \(\mathcal{A}[x] \) where I covered all possible names and chains of conditions, condition 4 ensures that \(x \not\in \dot{\mathcal{A}}[h] \) for all generic \(h \).
Note 1. Rather than play the sets \(\mathcal{X}_n \) directly, I plays their *type*. I plays \(\kappa_n < \delta \), and a set \(u_n \) of formulae with parameters in \(M \| \kappa_n \cup \{ \kappa_n, \delta, \dot{A} \} \).* We take \(\mathcal{X}_n \) to be the set of names which satisfy all these formulae.

The fact that this still allows I enough control over her choice of \(\mathcal{X}_n \) has to do with our assumption that \(\delta \) is a Woodin cardinal.

\(\mathcal{F}_n \) and \(\mathcal{D}_n \) are played similarly.

Observe that moves in \(A[x] \) are therefore elements of \(M \| \delta \).

Note 2. The association \(x \mapsto A[x] \) is continuous: The rules governing the first \(n + 1 \) rounds of \(A[x] \) depend only on \(x \upharpoonright n \).

We in fact defined an association \(s \mapsto A[s] \) (\(s \in \omega^{<\omega} \), \(A[s] \) a game of \(\text{lh}(s) + 1 \) many rounds). This association belongs to \(M \).

*By \(M \| \kappa_n \) we mean \(V^{M}_{\kappa_n} \).
Recall that \(g \) is \(\text{col}(\omega, \delta) \)-generic/\(M \). We alternate between thinking of \(g \) as a generic enumeration of \(\delta \), and as a generic enumeration of \(M\|\delta \).

Let \(\sigma_{\text{gen}}[x, g] \), a strategy for I in \(A[x] \) be defined as follows:

\(\sigma_{\text{gen}}[x, g] \) plays in each round the first (with respect to the enumeration \(g \)) legal move.

Note. The association \(x, g \mapsto \sigma_{\text{gen}}[x, g] \) is continuous.

Lemma 1. Suppose that there exists an infinite run of \(A[x] \), played according to \(\sigma_{\text{gen}}[x, g] \). Then \(x \notin \dot{A}[g] \). (This is only useful if \(x \in M[g] \).)

Proof: In playing for I, \(\sigma_{\text{gen}}[g, x] \) goes over all possible names and all possible generics. (This uses the genericity of the enumeration \(g \).) So in fact \(x \notin \dot{A}[h] \) for all generic \(h \). \(\square \)
We wish to phrase a similar lemma with a strategy for II, which puts x in A. To do this we have to give II additional control. We let II “shift” the play board along an even branch of an iteration tree.

\[
M = M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow \ldots
\]
The game $\mathcal{A}^*[x]$ is played as follows:

<table>
<thead>
<tr>
<th>I</th>
<th>\ldots</th>
<th>l_n, x_n, p_n</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>$E_{2n}, E_{2n+1}, F_n, D_n$</td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

At the start of round n we have a model M_{2n}, an embedding $j_{0,2n}: M \rightarrow M_{2n}$, and a position P_n of n rounds in $j_{0,2n}(\mathcal{A})[x]$.

I plays l_n, x_n, p_n, a legal move in $j_{0,2n}(\mathcal{A})[x]$ following P_n.

II plays extenders E_{2n}, E_{2n+1} giving rise to models M_{2n+1}, M_{2n+2}, and to an embedding $j_{2n,2n+2}: M_{2n} \rightarrow M_{2n+2}$. (The T–predecessor of $2n + 1$ is $2l_n + 1$ if $l_n \neq \text{“new”}$ and $2n$ otherwise.)

We let $Q_n = j_{2n,2n+2}(P_n \leftarrow, l_n, x_n, p_n)$. (This is the “shifting” mentioned before.)

II plays F_n, D_n, a legal move in $j_{0,2n+2}(\mathcal{A})[x]$ following Q_n.

We let $P_{n+1} = Q_n \leftarrow, F_n, D_n$ and proceed to the next round.
Definition. A **pivot** for x is a pair \mathcal{T}, \vec{a} so that

1. \mathcal{T} is an iteration tree on M, with an even branch.
2. \vec{a} is a run of $j_{\text{even}}(A)[x]$.
3. For every odd branch b of \mathcal{T}, there exists some h so that

 (a) h is $\text{col}(\omega, j_b(\delta))$–generic$/M_b$; and
 (b) $x \in j_b(A)[h]$.

Any run of $A^*[x]$ produces \mathcal{T}, \vec{a} which satisfy conditions 1 and 2.

Lemma 2. There exists $\sigma_{\text{piv}}[x, g]$, a strategy for II in $A^*[x]$, so that every run according to $\sigma_{\text{piv}}[x, g]$ is a pivot.

The association $x, g \mapsto \sigma_{\text{piv}}[x, g]$ is continuous.

The proof of Lemma 2 draws heavily on the techniques of Martin–Steel’s “A proof of projective determinacy”. The assumption that δ is a Woodin cardinal is crucial.
To sum: Have continuous associations
\[x \mapsto A[x]; \quad x, g \mapsto \sigma_{\text{gen}}[x, g]; \quad x \mapsto A^*[x]; \quad \text{and} \]
\[x, g \mapsto \sigma_{\text{piv}}[x, g]. \]

\(\sigma_{\text{gen}}[x, g] \) is a strategy for I in \(A[x] \).

If \(\bar{a} \) is an infinite run of \(A[x] \) according to \(\sigma_{\text{gen}}[x, g] \), then \(x \notin \dot{A}[g] \).

\(\sigma_{\text{piv}}[x, g] \) is a strategy for II in \(A^*[x] \).

If \(\mathcal{T}, \bar{a} \) is an infinite run of \(A^*[x] \) according to \(\sigma_{\text{piv}}[x, g] \), then

for every odd branch \(b \) of \(\mathcal{T} \), there exists some \(h \) so that

- \(h \) is \(\text{col}(\omega, j_b(\delta)) \)-generic/\(M_b \); and
- \(x \in j_b(\dot{A})[h] \).
\(\Sigma^1_2\) determinacy:

Fix \(A \subset \mathbb{R} \), a \(\Sigma^1_2 \) set (say the set of reals which satisfy a given \(\Sigma^1_2 \) statement \(\phi \)).

Suppose there is an iterable class model \(M \) with a Woodin cardinal \(\delta \). Suppose that (in \(V \)) there is \(g \) which is \(\text{col}(\omega, \delta)\)–generic/\(M \).

We intend to prove that (in \(V \)) \(G_\omega(A) \) is determined.

Let \(\dot{A} \in M \) name \(A \). More precisely, \(\dot{A} \) names the set of reals of \(M^{\text{col}(\omega, \delta)} \) which satisfy \(\phi \) in \(M^{\text{col}(\omega, \delta)} \).

We have \(x \mapsto A[x], x, g \mapsto \sigma_{\text{gen}}[x, g] \), etc. as before.
Let G be the following game, defined and played inside M:

<table>
<thead>
<tr>
<th>I</th>
<th>x_0</th>
<th>a_{0-I}</th>
<th>a_{1-I}</th>
<th>x_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td>a_{0-II}</td>
<td>x_1</td>
<td>a_{1-II}</td>
<td></td>
</tr>
</tbody>
</table>

I and II alternate playing natural numbers, producing together $x = \langle x_0, x_1, \ldots \rangle \in \mathbb{R}$. In addition they play moves $a_{0-I}, a_{0-II}, \ldots$ in $\mathcal{A}[x]$.

II is the closed player; she wins if she can last all ω moves. Otherwise I wins.

G is a closed game, hence determined. A winning strategy exists in M.

Case 1: I wins G. Fix $\Sigma \in M$ a winning strategy for I (the open player).

We wish to show that I wins $G_\omega(A)$ in V. Let us play $G_\omega(A)$ against an imaginary opponent. We describe how to play, and win.
We construct a run \(x \in \mathbb{R} \) of \(G_\omega(A) \). At the same time we construct \(T, \bar{a} \), a run of \(A^*[x] \).

The participants in our construction are:

- The imaginary opponent: playing \(x_n \) for odd \(n \).
- The strategy \(\sigma_{\text{piv}}[g,x] \): playing for II in \(A^*[x] \).
- The strategy \(\Sigma \) and its shifts along the even branch of \(T \): playing \(x_n \) for even \(n \) and playing for I in \(A^*[x] \) (i.e. playing for I in shifts of \(A[x] \)).

We obtain \(x \in \mathbb{R} \) and \(T, \bar{a} \) a run of \(A^*[x] \) according to \(\sigma_{\text{piv}}[x,g] \).

We must check that \(x \) belongs to \(A \).
\[M = M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow \cdots \]

\[\Sigma \xrightarrow{x_0} \]

\[\Sigma \xrightarrow{l_0} X_0 \xrightarrow{p_0} \]

\[\sigma_{\text{piv}} \quad \begin{array}{c} F_0 \\ D_0 \end{array} \]

\[\text{Oppnt} \xrightarrow{x_1} \]

\[j_{0,2}(\Sigma) \xrightarrow{l_1} X_1 \xrightarrow{p_1} \]

\[\sigma_{\text{piv}} \quad \begin{array}{c} F_1 \\ D_1 \end{array} \]

\[j_{0,4}(\Sigma) \xrightarrow{x_2} \]

\[j_{0,4}(\Sigma) \xrightarrow{l_2} X_2 \xrightarrow{p_2} \]

21
Note that x, \bar{a} is an infinite run of $j_{\text{even}}(G)$ according to $j_{\text{even}}(\Sigma)$.

Now Σ is a strategy for the open player in G. So there are no infinite runs according to Σ. But there is an infinite run according to $j_{\text{even}}(\Sigma)$. Thus M_{even} is illfounded.

M is iterable. So there exists some branch b of T so that M_b is wellfounded. b must be an odd branch.

By Lemma 2, T, \bar{a} is a pivot for x. Thus there is h so that

- h is $\text{col}(\omega, j_b(\delta))$--generic/$M_b$ and
- $x \in j_b(\dot{A})[h]$.

This means that in $M_b[h]$, x satisfies the Σ^1_2 statement ϕ.

By absoluteness, x satisfies ϕ in V. (This uses the wellfoundedness of M_b.)

So $x \in A$ as required. \square(Case 1.)