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WILLIAM CHEN AND ITAY NEEMAN

Abstract. This paper investigates the principles �ta
λ,δ, weakenings of �λ

which allow δ many clubs at each level but require them to agree on a tail-end.
First, we prove that �ta

λ,<ω implies �λ. Then, by forcing from a model with

a measurable cardinal, we show that �λ,2 does not imply �ta
λ,δ for regular λ,

and �ta
δ+,δ

does not imply �δ+,<δ. With a supercompact cardinal the former

result can be extended to singular λ, and the latter can be improved to show

that �ta
λ,δ does not imply �λ,<δ for δ < λ.

1. Introduction

Recently, Neeman [5] introduced the principles �ta
λ,δ and �ta

λ,<δ, versions of

Schimmerling’s principles �λ,δ and �λ,<δ (see [6]) that require the clubs at each
level of the sequence to agree on a tail-end. More precisely, for cardinals δ and λ,

define a �ta
λ,δ sequence to be a sequence ~C = 〈Cα : α ∈ Lim(λ+)〉 such that for every

α ∈ Lim(λ+),

(1) Cα is a set of clubs of α, 1 ≤ |Cα| ≤ δ,
(2) for every C ∈ Cα, ot(C) < λ if cf(α) < λ, and for every β ∈ Lim(C),

C ∩ β ∈ Cβ ,
(3) for every C,D ∈ Cα there exists β < α such that C \ β = D \ β.

The principle �ta
λ,δ asserts the existence of a �ta

λ,δ sequence. We also define �ta
λ,<δ

asserting the existence of a sequence as above, except with 1 ≤ |Cα| < δ. �λ,δ and
�λ,<δ are defined in the same way, but without the tail-end agreement condition
(3).

Neeman observed that �ta
ω1,ω is strong enough to carry out a construction of

Shelah–Stanley [7] of a ω2-Aronszajn tree which is not special (the construction
originally used the principle �ω1). This is useful since �ta

ω1,ω follows from certain
higher analogues of the proper forcing axiom, but these analogues do not imply
�ω1

. �ta is strong enough to give some other consequences of �. For example,
it is not difficult to see that for any δ, �ta

λ,δ implies that there is a nonreflecting

stationary subset of λ+, even though the weak square �λ,λ does not.
Starting from a model with a Mahlo cardinal, Jensen [2] showed that �λ,δ does

not imply �λ,δ′ , where δ′ < δ ≤ λ and λ is regular, and Cummings–Foreman–
Magidor [1] extended the result to singular λ using a supercompact. Krueger and
Schimmerling [3] showed �λ,δ does not imply �λ,<δ for δ ≤ λ, and also achieved
separation results involving partial square principles.
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It is natural to ask where the square principles with tail-end agreement fit into
this picture. It is easy to see that �ta

λ,δ implies �λ,δ, and �λ implies �ta
λ,δ. In

Section 2, we will show that �ta
λ,<ω is actually equivalent to �λ. Section 3 proves

�ta
λ,δ is not implied by �λ,2, and Section 4 proves that �ta

λ,δ does not imply �λ,<δ
for δ < λ. In particular, the principle �ta

ω1,ω considered in [5] is distinct from any
of the square principles introduced in [6].

2. �ta
λ,<ω implies �λ

Suppose λ is an uncountable cardinal.

Theorem 1. �ta
λ,<ω implies �λ.

Proof. Let ~C be a �ta
λ,<ω sequence.

For each α ∈ Lim(λ+), set type(α) = |Cα|. Define g : Lim(λ+)→ λ+ by g(α) =
least β such that {C \ β : C ∈ Cα} is a singleton (so g(α) = 0 if type(α) = 1). Let
Dα = C \ β for some (any) C ∈ Cα. Call α ∈ λ+ good if g�Lim(Dα) is bounded
below α, and let G ⊆ λ+ be the set of good points. Call α ∈ λ+ bad if there is
k < ω with g�{β ∈ Lim(Dα) : type(β) = k} unbounded below α, and let B ⊆ λ+

be the set of bad points. Finally, call α ∈ λ+ ugly if it is neither good nor bad,
i.e., g�Lim(Dα) is unbounded in α but g�{β ∈ Lim(Dα) : type(β) = k} is bounded
below α for all k < ω. Let U ⊆ λ+ be the set of ugly points.

The first claim says that there are no ugly points of uncountable cofinality,
allowing us to focus on good and bad points.

Claim 2.1. If α is ugly, then cf(α) = ω.

Proof. For each k < ω, let αk = sup{g(β) : β ∈ Lim(Dα) and type(β) = k}. Then
since α is ugly, αk < α for every k < ω and sup{αk : k < ω} = α. �

The next claim will be used frequently in the arguments that follow.

Claim 2.2. Suppose α, β ∈ Lim(λ+) and β ∈ Lim(Dα). Then type(α) ≤ type(β)
and g(α) ≤ g(β). If furthermore type(α) = type(β), then g(α) = g(β).

Proof. Since β ∈ Lim(Dα), |{C ∩ β : C ∈ Cα}| = type(α). All of the clubs
in this set must appear in Cβ , so type(α) ≤ type(β) and g(α) ≤ g(β). In case
type(α) = type(β), Cβ = {C ∩ β : C ∈ Cα}. �

Now we begin the analysis of good and bad points.

Claim 2.3. If α is good, then all elements of Lim(Dα) above a bound for g�Lim(Dα)
are good. Furthermore, g is eventually constant on Lim(Dα).

Proof. By coherence, if β ∈ Lim(Dα) is above a bound for g�Lim(Dα), then all
elements of Lim(Dβ) above that bound are also in Lim(Dα), proving the first part
of the claim. By Claim 2.2 and coherence, if β < γ both belong to Lim(Dα), and
β > g(γ), then g(β) ≥ g(γ). It follows that g is non-increasing on Lim(Dα) above
a bound for g�Lim(Dα), therefore it must be eventually constant. �

If α is bad, define kα < ω to be the least k such that {g(β) : β ∈ Lim(Dα) and
type(β) = k} is unbounded in α. Note kα > type(α) by Claim 2.2. Define an
increasing continuous sequence 〈αξ〉 ⊂ Lim(Dα) inductively. Set α0 to be the least
γ ∈ Lim(Dα) with type(γ) = kα, and αξ+1 = the least γ ∈ Lim(Dα) with g(γ) > αξ
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and type(γ) = kα. Note that g(α0) ≥ g(α) by Claim 2.2. Let Eα be the range of
this sequence.

The following claim can be thought of as a version of Claim 2.3 for bad points.

Claim 2.4. Suppose α is bad. Then Eα is closed unbounded in α, and every point
of Lim(Eα) is bad and has type less than kα. Furthermore, g is eventually constant
on points of Lim(Dα) of type < kα.

Proof. That Eα is closed unbounded in α follows immediately from the choice of kα
and the construction of Eα. For the rest of the claim, observe that for every limit
ρ < ot(Eα), the sequence 〈g(αξ) : ξ < ρ〉 is unbounded in αρ, and by coherence, a
tail of 〈αξ : ξ < ρ〉 is contained in Lim(Dαρ

). Therefore αρ is bad. Furthermore,
the αξ+1 are each by definition of type kα. By Claim 2.2, type(αρ) ≤ kα, and
type(αρ) 6= kα otherwise 〈g(αξ) : ξ < ρ〉 could not be unbounded in αρ.

The second part of the claim is proved similarly as Claim 2.3, working above
a bound for g restricted to points of Lim(Dα) of type < kα (which can be taken
below α by minimality of kα). �

If α is bad, then every β ∈ Lim(Eα) is bad, so kβ is defined. The next claim
shows that above a certain bound, kβ = kα, and gives a weak coherence property
between Eα and Eβ which will be useful later in our construction.

Claim 2.5. Suppose α is bad, and let α′ < α be such that g is constant on points
of Lim(Dα) of type < kα which are greater than α′. Then for all β ∈ Lim(Eα) \ α′
we have kβ = kα and Eα ∩ (g(β), β) = Eβ .

Proof. Let β ∈ Lim(Eα) \ α′, say β = αρ for a limit ordinal ρ. By Claim 2.4, β
is bad. Moreover, kβ ≥ kα since Dβ and Dα ∩ β are equal on a tail-end below β,
and so {g(γ) : γ ∈ Lim(Dβ) and type(γ) < kα} must be bounded below β by the
assumptions on α′. The reverse inequality kβ ≤ kα is witnessed by {αξ+1 : ξ < ρ},
which are all of type kα by the construction.

By Claim 2.2, any γ ∈ Lim(Dβ) has g(γ) ≥ g(β). By coherence, Dβ = Dα ∩
[g(β), β). It follows that β0 is the least γ in Eα above g(β) (where β0 is the least
member of Eβ). Now Eα and Eβ are defined in the same way above β0 by the

coherence of ~C. �

Extend the definition of Eα to all of Lim(λ+) by setting Eα = Lim(Dα) if α is
good and ot(Dα) is a limit of limit ordinals, and Eα to be any sequence of order-type
ω cofinal in α if α is ugly or ot(Dα) = ρ+ ω for some ordinal ρ.

We will define a function h : Lim(λ+)→ λ+. If α is good and ot(Dα) is a limit of
limits, set h(α) to be the least γ ∈ Lim(Dα) such that g is constant on Lim(Dα)\γ.
If α is bad, set h(α) to be the least γ ∈ Lim(Dα) such that g is constant on those
points of (Lim(Dα) \ γ) with type < kα. Otherwise, set h(α) = g(α).

Finally, define Fα = Eα \ h(α) for each α ∈ Lim(λ+). We check that 〈Fα〉 is a
�λ sequence.

Claim 2.6. For any α ∈ Lim(λ+), g(α) ≤ h(α) < α, and for any β ∈ Lim(Eα \
h(α)), we have h(β) = h(α).

Proof. The value of h(α) is either a point of Dα or just g(α), so g(α) ≤ h(α). The
inequality h(α) < α follows from Claim 2.3 or Claim 2.4, depending on the case.

Now we prove the second part of the claim. Suppose α is good and ot(Dα) is
a limit of limits. Then by definition of h(α) and the fact that β ∈ Lim(Eα) =
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Lim(Lim(Dα)), β is also good and ot(Dβ) is a limit of limits. Above h(α), g is
constant on Dβ with the eventual constant value of g on Dα. This value is also
equal to g(β), and by Claim 2.2, g(α) ≤ g(β) so

(2.1) Dα ∩ (g(β), β) = Dβ .

The ordinal h(α) is defined to be an element of Lim(Dα) with g(h(α)) = g(β), so
in particular h(α) > g(β). Together with (2.1), this implies that h(β) is computed
using the same values as h(α), since g(α) ≤ g(β) < h(α) < β. We conclude that
h(β) = h(α).

The case where α is bad is similar: by Claim 2.5, β is bad with kβ = kα. Above
h(α), g is constant on points of Dβ of type < kα with the eventual constant value of
g on points of type < kα in Dα. This value is also equal to g(β) since type(β) < kα
by Claim 2.4. By Claim 2.2, Dα ∩ (g(β), β) = Dβ , so h(β) is computed using the
same values as h(α), and h(β) = h(α).

The claim is vacuously true for the remaining cases. �

Suppose α ∈ Lim(λ+) and β ∈ Lim(Fα). If α is good, then β is also good and
using the fact that g(α), g(β) ≤ h(β) we have

Fβ = Lim(Dβ) \ h(β) = (Lim(Dα) ∩ β) \ h(α) = Fα ∩ β.

Similarly, if α is bad then β is bad and we have

Fβ = Eβ \ h(β) = (Eα ∩ β) \ h(α) = Fα ∩ β.

Here we used Claim 2.5 for the middle equality. �

3. �λ,2 does not imply �ta
λ,δ

Now we turn to separating �ta
λ,δ from the hierarchy of principles �λ,δ′ for various

δ′. The methods we use, and the general structure of the proof, are similar to these
used by [1] and [4] to separate square principles, and trace back to work of Jensen
[2]. In this section we prove:

Theorem 2. Suppose λ is an uncountable regular cardinal. If there is a measurable
cardinal κ > λ, then there is a forcing extension preserving cardinals ≤ λ and ≥ κ
in which �λ,2 holds and �ta

λ,δ fails for all δ.

Proof. Let P the Levy collapse Col(λ,< κ). For this section, let Q be the poset in
V P forcing a �λ,2-sequence using initial segments. More precisely, Q is the poset
of all functions q ordered by end-extension such that in V P,

(1) dom(q) = Lim(λ+) ∩ (α+ 1) for some limit ordinal α < λ+.
(2) For all β ∈ dom(q), q(β) is a set of closed unbounded subsets of β of order

type ≤ λ, and 1 ≤ |q(β)| ≤ 2.
(3) For all β ∈ dom(q), if C ∈ q(β) and γ ∈ Lim(C), then C ∩ γ ∈ q(γ).

In V P∗Q let ~C be the �λ,2 sequence added by Q. Define R in V P∗Q to be the
poset of closed, bounded subsets c ⊆ κ with the property that c ∩ β ∈ Cβ for

any β ∈ Lim(c), ordered by end-extension. R adds a thread of ~C, i.e., a closed

unbounded set S ⊆ (λ+)V
P∗Q

= κ such that S ∩ β ∈ Cβ for all β ∈ Lim(S).
Let j : V → M be an elementary embedding with crit(j) = κ. We collect some

useful facts about the various posets and their interactions with the embedding;
proofs can be found in [4].
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Fact 3.1. Let G,H, I be generics for P,Q,R, respectively.

• In V [G], Q is κ-distributive, and the set of flat conditions {(q, ř) ∈ Q ∗
R : r ∈ V [G] and max(dom(q)) = max(r)} is dense and λ-closed. The
condition (q, ř) will be denoted as (q, r) for simplicity.
• j(P) = Col(λ,< j(κ)) and there is a complete embedding of P ∗Q ∗ R into
j(P) with λ-closed quotient forcing,
• letting J be generic for j(P)/P∗Q∗R, there is a K generic for j(Q) so that
j can be extended to an elementary embedding j : V [G ∗H]→M [G ∗H ∗
I ∗ J ∗K] in the extension by j(P ∗Q).

In particular, all of the models we consider have the same < λ-sequences of
ordinals.

We will show that V [G ∗H] is a model satisfying the conclusion of the theorem.

Clearly �λ,2 holds in V [G ∗H], so assume towards a contradiction that ~D = 〈Dα :

α < κ〉 is a �ta
λ,δ sequence in V [G ∗H] for some δ. Let T ∈ j( ~D)κ, so T threads ~D

in V [G ∗H ∗ I ∗ J ∗K]. Since j(Q) is j(κ)-distributive in M [G ∗H ∗ I ∗ J ], T must
be a member of M [G ∗H ∗ I ∗ J ], and hence also V [G ∗H ∗ I ∗ J ].

Lemma 3.2. Suppose V ⊆W are models of set theory, λ is an uncountable cardinal

in V , and V � “ ~D is a �ta
λ,δ sequence” for some δ. Then forcing with a countably

closed poset S over W cannot add a new thread to ~D (i.e., a thread not already in
W ).

Proof. Assume towards a contradiction that Ė is an S-name for a thread through
~D which is forced to not be in W . Under this assumption, (λ+)V has uncountable
cofinality in W .

Claim 3.3. For any α < (λ+)V , and s0, s1 ∈ S, there are β > α and s′0 ≤ s0, s′1 ≤
s1 deciding “β ∈ Ė” differently.

Suppose that s0, s1, and α witness that this fails. Let J0×J1 be generic for S×S
over W such that (s0, s1) ∈ J0 × J1. Then Ė[J0] and Ė[J1] have the same tail-end
above α, and since their proper initial segments belong to W it follows that both
belong to each of W [J0] and W [J1], and hence also W . This proves the claim.

Using the claim, we will recursively construct sij ∈ S and ordinals αij , βj < λ+

for i ∈ {0, 1} and j < ω satisfying the following properties:

• sij+1 ≤ sij and α0
j < α1

j < βj < α0
j+1,

• s0j and s1j decide βj ∈ Ė differently,

• sij+1  αij+1 ∈ Ė.

By countable closure of S, let s0 be a lower bound for 〈s0j : j < ω〉, s1 be a lower

bound for 〈s1j : j < ω〉, and β∗ = sup{βj : j < ω}. Note that β∗ < (λ+)V , since

(λ+)V has uncountable cofinality in W . The values for Ė forced by s0 and s1 both

have β∗ as a limit point, but for each j < ω they disagree on whether βj ∈ Ė. Since

{βj : j < ω} is cofinal in β∗ and Ė is forced to be a thread, this contradicts the

tail-end agreement condition for ~D. �

By Lemma 3.2, T must be a member of V [G ∗H ∗ I]. For the remainder of the

proof, work in V [G] and let Ṫ be a Q ∗ R-name for T . Note that a �λ,δ sequence
in V [G ∗H] cannot be threaded in V [G ∗H] since all initial segments of the thread
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are initial segments of some Cα and thus have order-type < λ. Hence T 6∈ V [G∗H]
and we get the following claim:

Claim 3.4. For any q ∈ Q, r0, r1 ∈ R, α < λ+, there are β > α, q′ ≤ q, r′0 ≤
r0, r

′
1 ≤ r1 such that (q′, r′0) and (q′, r′1) decide “β ∈ Ṫ” differently.

Proof. Suppose that q, r0, r1, and α witness that the claim fails. Modifying H if
necessary, we may assume q ∈ H. Working over V [G ∗H], the argument proceeds
as in the proof of Claim 3.3. �

Let (q, r) ∈ Q∗R force that Ṫ threads ~D. Using Claim 3.4 and the fact that Ṫ is
forced to be unbounded in λ+, recursively construct flat conditions (qj , r

i
j) ∈ Q ∗R

and ordinals αij , βj < λ+ for i ∈ {0, 1} and j < ω satisfying the following properties:

• (qj , r
i
j) ≤ (q, r),

• (qj+1, r
i
j+1) ≤ (qj , r

i
j), and α0

j < α1
j < βj < α0

j+1,

• (qj , r
0
j ) and (qj , r

1
j ) decide βj ∈ Ṫ differently,

• (qj+1, r
i
j+1)  αij+1 ∈ Ṫ .

Now let γ∗ = sup{max dom(qj) : j < ω} and α∗ = sup{βj : j < ω}. Define

r̂i =
⋃
{rij : j < ω} ∪ {γ∗} for i ∈ {0, 1},

q̂ =
⋃
{qij : j < ω} ∪ {(γ∗, {r̂0 ∩ γ∗, r̂1 ∩ γ∗})}.

By the flatness we have maintained during the construction, we have for each
i ∈ {0, 1} that γ∗ = sup{max dom(rij) : j < ω}, so each (q̂, r̂i) is a condition
in Q ∗ R.

We can find q∗ ≤ q̂ which decides the value of Dα∗ , since no new subsets of V [G]

of size < λ are added by Q. For each i ∈ {0, 1}, (q∗, r̂i)  “α∗ is a limit point of Ṫ”

so (q∗, r̂i)  Ṫ ∩ α∗ ∈ Dα∗ . But the values for Ṫ forced by (q∗, r̂0) and (q∗, r̂1)

disagree on whether βj ∈ Ṫ , for each j < ω. Since {βj : j < ω} is cofinal in α∗,

this contradicts the tail-end agreement condition for ~D. �

Starting with a supercompact cardinal instead of a measurable, we can get a
version of Theorem 2 that applies to singular λ. This adapts the argument of
Theorem 2 using ideas from Section 7 of [1].

Theorem 3. Suppose λ is an infinite cardinal, µ is an uncountable regular cardinal
< λ, and κ is a supercompact cardinal with µ < κ ≤ λ. Then there is a forcing
extension preserving cardinals in [0, µ+]∪ [κ, λ+] in which �λ,2 holds and �ta

λ,δ fails
for all δ.

Proof. We provide a rough sketch of the proof. Let P = Col(µ,< κ). Let Q be the

poset defined in V P forcing a �λ,2 sequence using initial segments, and let ~C be

the �λ,2 sequence added by Q. Let R be the poset adding a thread through ~C by
closed initial segments of order-type < µ.

If G is generic for P and H is generic for Q, we claim that V [G ∗H] is a model

satisfying the conclusion of the theorem. Suppose for a contradiction that ~D is a
�ta
λ,δ sequence in V [G ∗ H] for some δ. With j : V → M a 2λ-supercompactness

embedding, it can be shown that there is some forcing extension of V [G ∗ H] by
j(P ∗Q)/(G ∗H) in which j can be extended to V [G ∗H].
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If ~D is a �ta
λ,δ sequence, then define ~D−ξ by D−ξα = Dα if α ≤ ξ, and D−ξα =

{C \ ξ : C ∈ Dα} if α > ξ. It is straightforward to check that ~D−ξ is still a �ta
λ,δ

sequence.

Claim 3.5. If γ = sup j“λ+ and A ∈ j( ~D)γ , then there exists ξ < λ+ such that

T = {α ∈ λ+ \ (ξ + 1) : j(α) ∈ Lim(A)} generates a thread through ~D−ξ.

Since j is continuous at points of countable cofinality, j“λ+ is an ω-club subset
of γ and hence Lim(A) ∩ j“λ+ is stationary in γ. The set S = {α ∈ λ+ : j(α) ∈
Lim(A)} is unbounded in λ+ since it is the pointwise j-preimage of Lim(A)∩ j“λ+.

If α ∈ S then A ∩ j(α) ∈ j( ~D)j(α) = j(Dα). Let ζ(α) be least so that there is
Dα ∈ Dα such that A∩j(α)\ζ(α) = j(Dα)\ζ(α); by tail-end agreement for j(Dα),
ζ(α) < j(α). By Fodor’s lemma, there is a stationary B ⊆ Lim(A) ∩ j“λ+ and
ζ0 < γ so that ζ(α) < ζ0 if j(α) ∈ B. Let ξ < λ+ be such that j(ξ) > ζ0.

If β < α are in T = S \ (ξ + 1), then j(Dα) ∩ j(β) \ j(ξ) = A ∩ j(β) \ j(ξ) =
j(Dβ)\j(ξ). By elementarity, β ∈ Lim(Dα) and Dβ \ξ = Dα∩β \ξ, so

⋃
α∈T Dα\ξ

threads ~D−ξ. This proves the claim.

By the claim, replacing ~D with ~D−ξ, we may assume that {α ∈ λ+ \ (ξ + 1) :

j(α) ∈ Lim(A)} generates a thread through ~D. The poset R collapses λ+ to µ and
can be absorbed into j(P∗Q)/(G∗H). As in the proof of the previous theorem it can

be shown that the thread through ~D in the extension of V [G∗H] by j(P∗Q)/(G∗H)
must be added by R, and that this leads to a contradiction. �

Considering large δ, all of the principles �ta
λ,δ with δ ≥ λ+ are equivalent. This

can be easily seen by taking a �ta
λ,δ sequence ~C, and for each α ∈ Lim(λ) fixing

a particular Cα ∈ Cα. Then define a �ta
λ,λ+ sequence ~D by Dβ = {Cα ∩ β : β ∈

Lim(Cα)}. If λ<λ = λ, then |Dα| ≤ λ for α < λ+ of cofinality < λ (and |Dα| = 1
for α of cofinality λ), so �ta

λ,λ+ and �ta
λ,λ are also equivalent in this case.

This argument repeated with clubs not having to agree on a tail-end shows that
�λ,λ+ is just outright true; however, Theorem 2 shows that with a measurable
cardinal, even �λ,2 does not imply �ta

λ,λ+ .

4. �ta
λ,δ does not imply �λ,<δ

We will now show that �ta
λ,δ does not imply �λ,<δ for certain δ < λ. Using a

measurable cardinal, we will show:

Theorem 4. If δ is an infinite cardinal and there is a measurable cardinal κ > δ,
then there is a forcing extension preserving cardinals ≤ δ+ and cardinals ≥ κ in
which �ta

δ+,δ holds and �δ+,<δ fails.

Strengthening the large cardinal hypothesis to a supercompact cardinal, we can
obtain:

Theorem 5. Suppose δ < λ are infinite cardinals and there is a supercompact
cardinal κ with δ < κ ≤ λ. Then there is a forcing extension preserving cardinals
in [0, δ+] ∪ [κ, λ+] in which �ta

λ,δ holds and �λ,<δ fails.

Theorem 5 does not apply when δ = λ. If λ is regular and not inaccessible, then
Theorem 4 can be extended to this case.



8 WILLIAM CHEN AND ITAY NEEMAN

Theorem 6. Suppose λ is an uncountable regular cardinal, λ is not strongly inac-
cessible, and there is a measurable cardinal κ > λ. Then there is a forcing extension
preserving cardinals ≤ λ and cardinals ≥ κ in which �ta

λ,λ holds and �λ,<λ fails.

Proof of Theorem 4. Let λ = δ+. We will force to add a �ta
λ,δ sequence with a

certain extra property, and show that in the extension �λ,<δ fails. Let P = Col(λ,<
κ) be the Levy collapse as in the last section, and Q be the poset defined in V P of
all functions q ordered by end-extension such that

(i) dom(q) = Lim(λ+) ∩ (α+ 1) for some limit ordinal α < λ+.
(ii) For all β ∈ dom(q), q(β) is a set of closed unbounded subsets of β of order

type ≤ λ, and 1 ≤ |q(β)| ≤ δ.
(iii) If C ∈ q(β) and γ ∈ Lim(C), then C ∩ γ ∈ q(γ).
(iv) For every C,D ∈ q(β) there exists β < α such that C \ β = D \ β.
(v) If cf(β) ≤ δ, then for every C ∈ q(β), γ ∈ Lim(C), and D ∈ q(γ),

D ∪ (C \ γ) ∈ q(β).

In V P∗Q let ~C be the �ta
λ,δ sequence added by Q. Define R to be the poset which

adds a thread through ~C, i.e., the poset of closed bounded subsets c ⊆ κ with the
property that c ∩ β ∈ Cβ for any β ∈ Lim(c), ordered by end-extension.

Claim 4.1. Suppose q satisfies (i)–(iv) in the definition of Q with dom(q) =
Lim(λ+) ∩ α + 1 for some α < λ+ which is a limit of limit ordinals, cf(α) ≤ δ.
Suppose further that for any limit ordinal β < α, q�(β + 1) ∈ Q.

Define q∗ as the function on dom(q) with q∗�max(dom(q)) = q and

q∗(α) = q(α) ∪ {D ∪ (C \ β) : C ∈ q(α), β ∈ Lim(C) and D ∈ q(β)}.

Then q∗ ∈ Q.

Proof. There are at most δ many C ∈ q(α) and δ many β in each such C, so
|q∗(α)| ≤ δ. (It is important here that λ = δ+, for otherwise there could be more
than δ many elements of C.) The only nontrivial requirements to check in the
definition of Q are (iii) and (v) at α.

To show (iii) at α, suppose E ∈ q∗(α) and γ ∈ Lim(E). We check that E ∩
γ ∈ q(γ). The less immediate case has E = D ∪ (C \ β) for some C ∈ q(α),
β ∈ Lim(C), and D ∈ q(β). If γ ≤ β, then E ∩ γ = D ∩ γ ∈ q(γ). If γ > β, then
E ∩ γ = D ∪ ((C ∩ γ) \ β). By (iii) applied at γ, C ∩ γ ∈ q(γ), so by (v) applied at
γ, E ∩ γ = D ∪ ((C ∩ γ) \ β) ∈ q(γ).

To show (v), suppose that E ∈ q∗(α), γ ∈ Lim(E), and F ∈ q(γ). We check
that F ∪ (E \ γ) ∈ q∗(α). Again, the less immediate case has E = D ∪ (C \ β)
for some C ∈ q(α), β ∈ Lim(C), and D ∈ q(β). If γ ≥ β, then F ∪ (E \ γ) =
F ∪ (C \ γ) ∈ q∗(α). If γ < β, then γ ∈ Lim(D), so by (v) applied at level β, we
have F ′ := F ∪ (D \ γ) ∈ q(β). Therefore, F ∪ (E \ γ) = F ′ ∪ (C \ γ) ∈ q∗(β). �

In the situation of the claim, we call q∗ the completion of q.
We have a version of Fact 3.1 for the new Q and R. We will prove Q is κ-

distributive by showing that it is λ+ 1-strategically closed (similarly to [1]). Recall
that in our situation, κ has been collapsed to be λ+.

Lemma 4.2. The poset Q is λ+ 1-strategically closed, therefore κ-distributive.
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Proof. Players I and II play elements of Q, with II playing at even stages, i.e., limit
stages and even successor stages. We describe a winning strategy for player II. Let
qξ be the condition played at stage ξ and βξ be max dom(qξ). At stage η+2, II plays
qη+2 ≤ qη+1 with βη+2 = βη+1 + ω and qη+2(βη+2) = {{βη+1 + n : 1 ≤ n < ω}}.

If ξ is limit, define Aξ = {βη : η < ξ and η even}. II plays qξ =
⋃
η<ξ qη ∪

{(βξ, {Aξ})}, with βξ = supη<ξ βη. This is closed and unbounded in ξ by our
construction so far. Furthermore, the construction ensures that for every γ ∈
Lim(Aξ), qξ(γ) is the singleton {Aξ ∩γ}, so that coherence holds and condition (v)
in the definition of Q is satisfied trivially at βξ. �

The other parts of Fact 3.1 carry over to this situation as well.

Fact 4.3. Let j : V → M be an elementary embedding with crit(j) = κ, and
G,H, I be generics for P,Q,R, respectively.

• Working in V P, the set of flat conditions

{(q, ř) ∈ Q ∗ R : r ∈ V [G] and max(dom(q)) = max(r)}
is dense and λ-closed.
• There is a complete embedding of P∗Q∗R into j(P) with λ-closed quotient

forcing.
• Letting J be generic for j(P)/P ∗ Q ∗ R, there is a K generic for j(Q)

so that j can be extended to an elementary embedding j : V [G ∗ H] →
M [G ∗H ∗ I ∗ J ∗K] in the extension by j(P ∗Q).

Proof. We just prove the set of flat conditions is λ-closed, as this requires us to
take a completion. Suppose 〈(qξ, rξ) : ξ < η〉 is a decreasing sequence of flat
conditions of Q ∗ R, where η < λ. Letting α = sup{max dom(qξ) : ξ < η}, r =⋃
ξ rξ ∪ {α}, and q be the completion of

⋃
ξ qξ ∪ {(α, r ∩ α)}, we see that (q, r) is a

flat condition strengthening all the conditions from the sequence. The other parts
of the claim are also proved just like the analogous facts in [4], taking completions
where necessary. �

As before, we will show that V [G ∗ H] is a model satisfying the conclusion of
the theorem: �ta

λ,δ holds in V [G ∗ H], so assume towards a contradiction that
~D = 〈Dα : α < κ〉 is a �λ,<δ sequence in V [G ∗H]. Let T ∈ j( ~D)κ, so T threads ~D
in V [G ∗H ∗ I ∗ J ∗K].

The version of Lemma 3.2 we need here is essentially the same as Lemma 4.5 in
[4], whose proof easily adapts to our statement.

Lemma 4.4. Suppose V ⊆W are models of set theory, λ is an uncountable regular

cardinal in W , and ~D is a �λ,<λ sequence in V . Then forcing with a λ-closed poset

over W cannot add a new thread to ~D.

By j(κ)-distributivity of j(Q) and Lemma 4.4, T must be a member of V [G ∗
H ∗ I]. Work in V [G] and let Ṫ be a Q∗R-name for T . Since ~D is a �λ,<δ sequence
in V [G ∗H], it follows that T /∈ V [G ∗H], and therefore:

Claim 4.5. For any q ∈ Q, r ∈ R, there are α < λ+, q′ ≤ q, r′0, r
′
1 ≤ r such that

(q′, r′0) and (q′, r′1) decide “α ∈ Ṫ” differently.

Fix f : δ → δ such that f(k) ≤ k for each k < δ, and for each j < δ there are
unboundedly many k < δ with f(k) = j. We will recursively construct 〈qj : j ≤ δ〉,
〈rij : i < j ≤ δ〉, and 〈αj : j < δ〉 such that for all j ≤ δ:
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(1) (q1, r
0
1) forces that Ṫ is a thread of ~C.

(2) For all i < j, (qj , r
i
j) ∈ Q ∗ R is flat and the order-type of rij is ρ + 1 for

some limit ordinal ρ. We will use the notation βj for max(dom(qj)).
(3) 〈αk : k < δ〉 is a strictly increasing sequence of ordinals less than λ+, and

for each i the sequence 〈(qk, rik) : i < k < δ〉 is decreasing in the Q ∗ R
ordering,

(4) (qj+1, r
f(j)
j+1 )  αj ∈ Ṫ .

(5) If i, i′ < j are distinct, then (qj , r
i
j) and (qj , r

i′

j ) force distinct values for Ṫ
below αj .

(6) If i, i′ < j, then rij+1 \ βj = ri
′

j+1 \ βj .
(7) If j is limit, then βj = sup{βk : k < j}, rij =

⋃
i<k<j r

i
k ∪ {βj} for each

i < j, and qj is the completion of
⋃
k<j qk ∪ {(βj , {rij ∩ βj : i < j})}.

Assume that we are at stage j+1 of the construction, so that (qj , r
i
j) and αi have

been defined for all i < j. Using Claim 4.5, find q′j+1 ≤ qj , rj+1,0, rj+1,1 ≤ r0j , and

γ < λ+ such that (q′j+1, rj+1,0) and (q′j+1, rj+1,1) decide “γ ∈ Ṫ” differently. By
extending further, we can take (q′j+1, rj+1,0) and (q′j+1, rj+1,1) to satisfy (2) above.
Let β′j+1 = max dom(q′j+1).

We construct so that (4) holds. Since rj+1,0 ∈ q′j+1(β′j+1), and βj ∈ Lim(rj+1,0)

by (2), we can extend (qj , r
f(j)
j ) to (q′j+1, r

f(j)
j ∪ (rj+1,0 \ βj)) using (v) of the

definition of Q. Extend this to a condition which forces αj ∈ Ṫ for some αj < λ+

with αj > γ, αj > αi for every i < j. Extend further to (qj+1, r
f(j)
j+1 ) satisfying (2).

Set r0j+1 = rj+1,0∪(r
f(j)
j+1 \β′j+1) and rjj+1 = rj+1,1∪(r

f(j)
j+1 \β′j+1). For 0 < i < j,

set rij+1 = rij ∪ (r
f(j)
j+1 \ βj). By condition (v) from the definition of Q, it follows

that (qj+1, r
i
j+1) ∈ Q ∗ R for all i < j + 1.

Now suppose j ≤ δ is limit. The construction is completely determined by (7).

For any i′ < i < j we have rij \ βi+1 = ri
′

j \ βi+1, otherwise there is some i < k < j

where they disagree in [βk, βk+1), contradicting (6). Therefore all of the rij agree
on a tail-end and so qj defined by (7) is really a member of Q. It is straightforward
to check inductively throughout that (1)–(7) above hold, so we have finished the
construction.

Let α∗ = sup{αj : j < δ}. Find q∗ ≤ qδ which decides the value of Dα∗ . For all
i < δ,

(q∗, riδ)  α∗ is a limit point of Ṫ

since {αj : f(j) = i} is unbounded in α∗ and (q∗, riδ) forces such αj into Ṫ . This

means (q∗, riδ)  Ṫ ∩ α∗ ∈ Dα∗ . If i 6= j, then (q∗, riδ) and (q∗, rjδ) force different

values for Ṫ∩α∗ by (5). This gives δ many distinct elements of Dα∗ , a contradiction,
concluding the proof of Theorem 4. �

This proof can be modified slightly to give Theorem 6.

Proof of Theorem 6. Let µ be the least cardinal such that 2µ ≥ λ. Since λ is not
strongly inaccessible, µ < λ. Run the main construction in the proof of Theorem
4 for µ + 1 many steps, but with i ranging over 2j rather than j at stage j. This
involves modifying the successor step to extend each rij , not just r0j , in two incom-

patible ways. At each limit stage j < µ, there are fewer than λ many rij , so the
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construction can be continued. At stage µ, take a subset of the riµ of size λ to form
qµ. Then the argument is completed as in the proof of Theorem 4. �

The proof of Theorem 4 does not generalize immediately to the situation of
Theorem 5, since closure of the set of flat conditions of Q ∗ R requires taking
completions at limit levels, and therefore Q∗R (and hence also the quotient forcing
j(P)/P ∗ Q ∗ R) is only δ+-closed. In the case where δ+ < λ, this is insufficient to
show that T was not added by j(P)/P ∗ Q ∗ R. To overcome this, we will use a
technique similar to the argument in Section 7 of [1] separating different �λ,δ for
singular λ.

Proof of Theorem 5. Let P = Col(δ+, < κ). Let Q be the poset defined in V P as in

the proof of Theorem 4, and let ~C be the �ta
λ,δ sequence added by Q. Let R be the

poset adding a thread through ~C by closed initial segments of order-type < δ+. It
can be shown that the generic thread added by R has order-type δ+.

Again, we will build elements of Q by taking completions. The statement of
Claim 4.1 holds in the new situation, but we must be more careful in the proof to
avoid taking too many elements of q∗(α).

Claim 4.6. Suppose q satisfies (i)–(iv) in the definition of Q with dom(q) =
Lim(λ+) ∩ α + 1 for some α < λ+ which is a limit of limit ordinals, cf(α) ≤ δ.
Suppose further that for any limit ordinal β < α, q�(β + 1) ∈ Q.

Define q∗ as the function on dom(q) with q∗�max(dom(q)) = q and

q∗(α) = q(α) ∪ {D ∪ (C \ β) : C ∈ q(α), β ∈ Lim(C) and D ∈ q(β)}.

Then q∗ ∈ Q.

Proof. Fix a particular C0 ∈ q(α). Assume that Lim(C0) is unbounded in α (the
other case is similar, and easier). Let X be a subset of Lim(C0) cofinal in α of order-
type cf(α). Define q̃∗(α) = q(α)∪{D∪(C \β) : C ∈ q(α), β ∈ Lim(C)∩X and D ∈
q(β)}. This has at most δ many elements.

We claim q∗(α) ⊆ q̃∗(α). Suppose C ∈ q(α), β ∈ Lim(C) and D ∈ q(β). Then
there is some γ > β in Lim(C) ∩ X since X is unbounded in α and C and C0

agree on a tail-end. By condition (v) of the definition of Q and since C ∩ γ ∈ q(γ),
D′ = D ∪ ((C ∩ γ) \ β) ∈ q(γ). Now D ∪ (C \ β) = D′ ∪ (C \ γ) ∈ q̃∗(α). �

We get the basic facts about P,Q,R as before. In our new situation, let j : V →
M be a 2λ-supercompactness embedding.

Fact 4.7. Let G,H, I be generics for P,Q,R, respectively.

• In V P, the poset Q is λ+ 1-strategically closed, therefore κ-distributive.
• The set of flat conditions {(q, ř) ∈ Q ∗ R : r ∈ V [G] and max(dom(q)) =

max(r)} is dense and δ+-closed.
• There is a complete embedding of P∗Q∗R into j(P) with δ+-closed quotient

forcing.
• Letting J be generic for j(P)/P ∗ Q ∗ R, there is a K generic for j(Q)

so that j can be extended to an elementary embedding j : V [G ∗ H] →
M [G ∗H ∗ I ∗ J ∗K] in the extension by j(P ∗Q).

The first item is a parallel of Lemma 4.2. The second, which uses completions in
an essential way and is therefore limited to δ+-closure, is a parallel of the first item
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of Fact 4.3. The remaining items are similar to facts found in [1], and the proofs
there can be adapted to our situation in a straightforward way.

Assume towards a contradiction that ~D is a �λ,<δ sequence in V [G ∗ H]. Let

γ = sup j“λ+ and fix some A ∈ j( ~D)γ . Since j(Q) is j(κ)-distributive, A ∈ V [G ∗
H ∗ I ∗ J ].

In this situation, we have an analogue of Claim 3.5 which gives a thread through
~D in V [G ∗ H ∗ I ∗ J ]. The fact that δ < κ allows us to avoid the use of tail-end

agreement for ~D needed in the proof of Claim 3.5.

Claim 4.8. If γ = sup j“λ+ and A ∈ j( ~D)γ , then S = {α ∈ λ+ : j(α) ∈ Lim(A)}
generates a thread T through ~D.

Since j is continuous at points of countable cofinality, j“λ+ is an ω-club subset
of γ and hence Lim(A) ∩ j“λ+ is unbounded in γ. Therefore, its pointwise j-
preimage S = {α < λ+ : j(α) ∈ Lim(A)} is unbounded in λ+. If α ∈ S then

A ∩ j(α) ∈ j( ~D)j(α) = j(Dα). Since δ < κ, j(Dα) = j“Dα, so there is Dα ∈ Dα
such that A∩j(α) = j(Dα). If β < α are in S, then j(Dα)∩j(β) = A∩j(β) = j(Dβ).

By elementarity, β ∈ Lim(Dα) and Dβ = Dα∩β, so T =
⋃
α∈S Dα threads ~D. This

proves the claim.
We require a version of Lemma 4.4 which assumes less closure, and also applies

to singular cardinals. The following is implicit in [1]:

Lemma 4.9. Let δ < λ be infinite cardinals. Suppose V ⊆ W are models of set

theory with the same cardinals ≤ δ+, W � cf((λ+)V ) ≥ δ+, and ~D is a �λ,<δ
sequence in V . Then forcing with a δ+-closed poset over W cannot add a new

thread to ~D.

Since the thread added by R has order-type δ+, V [G ∗H ∗ I] � cf((λ+)V ) = δ+.
By Lemma 4.9, T ∈ V [G ∗ H ∗ I]. The rest of the proof proceeds in exactly the
same way as the proof of Theorem 4. �

References

[1] Cummings, J., Foreman, M., & Magidor, M.: Squares, scales and stationary reflection. Journal
of Mathematical Logic, 1(01), 35–98 (2001).

[2] Jensen, R. Some remarks on � below zero-pistol. Circulated notes.

[3] Krueger, J. & Schimmerling, E.: Separating weak partial square principles. Annals of Pure
and Applied Logic, 165(2), 609–619 (2014).

[4] Magidor, M., & Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. Ap-

palachian Set Theory: 2006-2012, 406, 301 (2012).
[5] Neeman, I. Two applications of finite side conditions at ω2.

[6] Schimmerling, E.: Combinatorial principles in the core model for one Woodin cardinal. Annals

of Pure and Applied Logic, 74(2), 153–201 (1995).
[7] Shelah, S., & Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proceed-

ings of the American Mathematical Society, 104(3), 887–897 (1988).

Department of Mathematics, UCLA
E-mail address: chenwb@math.ucla.edu

Department of Mathematics, UCLA
E-mail address: ineeman@math.ucla.edu


