SQUARE PRINCIPLES WITH TAIL-END AGREEMENT

WILLIAM CHEN AND ITAY NEEMAN

ABSTRACT. This paper investigates the principles Dg\‘"fé, weakenings of Oy
which allow d many clubs at each level but require them to agree on a tail-end.
First, we prove that Elt;f<w implies (0y. Then, by forcing from a model with
a measurable cardinal, we show that [y o does not imply Dg\% for regular A,
and Dgﬁ_’é does not imply D6+,<6~ With a supercompact cardinal the former
result can be extended to singular A, and the latter can be improved to show

that 0% does not imply Oy <5 for § < A.

1. INTRODUCTION

Recently, Neeman [5] introduced the principles El'jf’:a and Dg\a <5» versions of
Schimmerling’s principles Oy s and Oy «5 (see [6]) that require the clubs at each
level of the sequence to agree on a tail-end. More precisely, for cardinals § and A,
define a 05 sequence to be a sequence C = (Co : @ € Lim(AT)) such that for every
a € Lim(\™1),

(1) Cq is a set of clubs of o, 1 < |Cy| < 0,

(2) for every C € C,, ot(C) < M if cf(a) < A, and for every 8 € Lim(C),

CnpecCs,

(3) for every C, D € C, there exists f < a such that C'\ =D\ §.
The principle Ofs asserts the existence of a (s sequence. We also define O _;
asserting the existence of a sequence as above, except with 1 < |C,| < §. O s and
O ,<s are defined in the same way, but without the tail-end agreement condition
(3).

Neeman observed that Dﬁi)w is strong enough to carry out a construction of
Shelah—Stanley [7] of a ws-Aronszajn tree which is not special (the construction
originally used the principle O, ). This is useful since Elffhw follows from certain
higher analogues of the proper forcing axiom, but these analogues do not imply
O.,. % is strong enough to give some other consequences of [J. For example,
it is not difficult to see that for any d, Df\% implies that there is a nonreflecting
stationary subset of AT, even though the weak square [y » does not.

Starting from a model with a Mahlo cardinal, Jensen [2] showed that [0 5 does
not imply Oy 5, where 6’ < ¢ < X and A is regular, and Cummings-Foreman-—
Magidor [1] extended the result to singular A using a supercompact. Krueger and
Schimmerling [3] showed [y s does not imply Oy <5 for 6 < A, and also achieved
separation results involving partial square principles.
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It is natural to ask where the square principles with tail-end agreement fit into
this picture. It is easy to see that Of; implies [y s, and Oy implies 0. In
Section 2, we will show that Dg\a <w 18 actually equivalent to [y. Section 3 proves
O%5 is not implied by [y 2, and Section 4 proves that Of's does not imply Oy <5
for § < A. In particular, the principle O  considered in [5] is distinct from any
of the square principles introduced in [6].

t
2. O}, IMPLIES L)
Suppose A is an uncountable cardinal.

Theorem 1. OF_ = implies .

Proof. Let C be a 0%, sequence.

For each « € Lim(\™T), set type(a) = |Cy|. Define g : Lim(A*) — At by g(a) =
least 8 such that {C'\ §: C € C,} is a singleton (so g(a) = 0 if type(a) = 1). Let
D, = C\ B for some (any) C € C,. Call a € A" good if g[Lim(D,,) is bounded
below «, and let G C AT be the set of good points. Call a € A" bad if there is
k < w with g[{8 € Lim(D,) : type(3) = k} unbounded below «, and let B C AT
be the set of bad points. Finally, call a € A" ugly if it is neither good nor bad,
ie., glLim(D,) is unbounded in « but g[{8 € Lim(D,,) : type(8) = k} is bounded
below « for all k < w. Let U C AT be the set of ugly points.

The first claim says that there are no ugly points of uncountable cofinality,
allowing us to focus on good and bad points.

Claim 2.1. If « is ugly, then cf(a) = w.

Proof. For each k < w, let o, = sup{g(8) : 8 € Lim(D,,) and type(8) = k}. Then
since « is ugly, ay < « for every k < w and sup{ay : k < w} = . O

The next claim will be used frequently in the arguments that follow.

Claim 2.2. Suppose a, 3 € Lim(\T) and 8 € Lim(D,). Then type(a) < type(B)
and g(@) < 9(B). If furthermore type(a) = type(8), then g(0) = g(B).

Proof. Since 8 € Lim(D,), [{C NG : C € Cy}| = type(a). All of the clubs
in this set must appear in Cg, so type(a) < type(S) and g(a) < g(8). In case
type(a) = type(B), Cs ={C NG :C €y} O

Now we begin the analysis of good and bad points.

Claim 2.3. If « is good, then all elements of Lim(D,,) above a bound for gILim(D,,)
are good. Furthermore, g is eventually constant on Lim(D,).

Proof. By coherence, if 8 € Lim(D,) is above a bound for ¢g[Lim(D,), then all
elements of Lim(Dg) above that bound are also in Lim(D, ), proving the first part
of the claim. By Claim 2.2 and coherence, if 8 < v both belong to Lim(D,), and
B > g(7), then g(B) > g(v). It follows that g is non-increasing on Lim(D,,) above
a bound for ¢g[Lim(D,,), therefore it must be eventually constant. ([

If « is bad, define k, < w to be the least k such that {g(8) : 8 € Lim(D,,) and
type(8) = k} is unbounded in a. Note ko > type(a) by Claim 2.2. Define an
increasing continuous sequence (o) C Lim(D,,) inductively. Set ag to be the least
v € Lim(D,) with type(y) = kq, and g1 = the least v € Lim(D,) with g(vy) > e
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and type(vy) = k. Note that g(ag) > g(«) by Claim 2.2. Let E, be the range of
this sequence.
The following claim can be thought of as a version of Claim 2.3 for bad points.

Claim 2.4. Suppose « is bad. Then E,, is closed unbounded in o, and every point
of Lim(E,) is bad and has type less than k.. Furthermore, g is eventually constant
on points of Lim(D,,) of type < kq.

Proof. That E|, is closed unbounded in « follows immediately from the choice of k,
and the construction of E,. For the rest of the claim, observe that for every limit
p < ot(E,), the sequence (g(ae) : £ < p) is unbounded in «,, and by coherence, a
tail of (ag : & < p) is contained in Lim(D,,). Therefore a, is bad. Furthermore,
the agyq are each by definition of type k. By Claim 2.2, type(a,) < ko, and
type(a,) # ko otherwise (g(ce) : £ < p) could not be unbounded in c,,.

The second part of the claim is proved similarly as Claim 2.3, working above
a bound for g restricted to points of Lim(D,,) of type < k, (which can be taken
below « by minimality of k). O

If « is bad, then every 8 € Lim(E,) is bad, so ks is defined. The next claim
shows that above a certain bound, kg = k., and gives a weak coherence property
between E,, and Eg which will be useful later in our construction.

Claim 2.5. Suppose « is bad, and let o' < a be such that g is constant on points
of Lim(D,,) of type < ko which are greater than o'. Then for all 8 € Lim(E,) \ o/
we have kg = ko and Eq N (g(B), 8) = Es.

Proof. Let f € Lim(E,) \ o/, say 8 = «, for a limit ordinal p. By Claim 2.4, 3
is bad. Moreover, kg > k, since Dg and D, N 5 are equal on a tail-end below f3,
and so {g(7) : v € Lim(Dg) and type(y) < ko } must be bounded below 8 by the
assumptions on /. The reverse inequality kg < ko is witnessed by {aey1 : € < p},
which are all of type ko by the construction.

By Claim 2.2, any v € Lim(Dg) has g(v) > g(8). By coherence, Dg = D, N
[9(8),B). It follows that Sy is the least v in E, above g(8) (where (5 is the least
member of Eg). Now E, and Ejg are defined in the same way above 5y by the

coherence of C. O

Extend the definition of E, to all of Lim(A") by setting E, = Lim(D,,) if « is
good and ot(D,,) is a limit of limit ordinals, and FE,, to be any sequence of order-type
w cofinal in « if « is ugly or ot(D,) = p + w for some ordinal p.

We will define a function & : Lim(AT) — AT, If a is good and ot(D,,) is a limit of
limits, set h(«) to be the least v € Lim(D,,) such that g is constant on Lim(D,)\ 7.
If o is bad, set h(a) to be the least v € Lim(D,,) such that g is constant on those
points of (Lim(D,) \ 7) with type < k,. Otherwise, set h(a) = g(c).

Finally, define F,, = E,, \ h(«) for each o € Lim(A"). We check that (F,) is a
Iy sequence.

Claim 2.6. For any a € Lim(A"), g(a) < h(a) < «, and for any B € Lim(E, \
h(a)), we have h(B) = h(«).

Proof. The value of h(a) is either a point of D, or just g(a), so g(«) < h(a). The

inequality h(a) < a follows from Claim 2.3 or Claim 2.4, depending on the case.
Now we prove the second part of the claim. Suppose « is good and ot(D,) is

a limit of limits. Then by definition of h(«) and the fact that g € Lim(E,) =
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Lim(Lim(D,)), B is also good and ot(Dg) is a limit of limits. Above h(«), g is
constant on Dg with the eventual constant value of g on D,. This value is also
equal to ¢g(/), and by Claim 2.2, g(«a) < g(5) so

(2.1) Da N (9(B), B) = Dp.

The ordinal h(«) is defined to be an element of Lim(D,) with g(h(«a)) = g(8), so
in particular h(a) > g(8). Together with (2.1), this implies that h(f5) is computed
using the same values as h(«), since g(a) < g(8) < h(a) < 8. We conclude that
h(8) = h(a).

The case where « is bad is similar: by Claim 2.5, 5 is bad with kg = k,. Above
h(c), g is constant on points of Dg of type < k, with the eventual constant value of
g on points of type < k, in D,. This value is also equal to g(3) since type(8) < ke
by Claim 2.4. By Claim 2.2, D, N (9(5),8) = Dg, so h(5) is computed using the
same values as h(a), and h(8) = h(«a).

The claim is vacuously true for the remaining cases. (]

Suppose a € Lim(AT) and 8 € Lim(F,). If « is good, then 3 is also good and
using the fact that g(«), g(8) < h(8) we have

Fy = Lim(Dg) \ h(8) = (Lim(Da) N ) \ h(a) = Fa 11 5.
Similarly, if a is bad then /8 is bad and we have

Fg = Eg \ h(B) = (Ea N )\ h(a) = Fo N B.
Here we used Claim 2.5 for the middle equality. O

3. O),2 DOES NOT IMPLY %%

Now we turn to separating Df\% from the hierarchy of principles [y 5 for various
¢’. The methods we use, and the general structure of the proof, are similar to these
used by [1] and [4] to separate square principles, and trace back to work of Jensen
[2]. In this section we prove:

Theorem 2. Suppose X is an uncountable reqular cardinal. If there is a measurable
cardinal k > A, then there is a forcing extension preserving cardinals < X\ and > k
in which Oy 2 holds and OYs fails for all 6.

Proof. Let P the Levy collapse Col(\, < k). For this section, let Q be the poset in
VP forcing a [ A,2-sequence using initial segments. More precisely, Q is the poset
of all functions ¢ ordered by end-extension such that in VT,

(1) dom(q) = Lim(AT) N (a + 1) for some limit ordinal v < A™.

(2) For all g € dom(q), ¢(B) is a set of closed unbounded subsets of 5 of order

type < A, and 1 < |¢(B)| < 2.

(3) For all 8 € dom(q), if C € ¢(8) and v € Lim(C'), then C N~ € q(7).
In VP*Q let C be the O 2 sequence added by Q. Define R in VPQ to be the
poset of closed, bounded subsets ¢ C s with the property that ¢ N g € Cg for
any 8 € Lim(c), ordered by end-extension. R adds a thread of C, ie., a closed
unbounded set S C ()\'*‘)VP*@ = & such that SN g € Cs for all § € Lim(S).

Let j : V — M be an elementary embedding with crit(j) = k. We collect some

useful facts about the various posets and their interactions with the embedding;
proofs can be found in [4].
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Fact 3.1. Let G, H, I be generics for P, Q, R, respectively.

e In V[G], Q is k-distributive, and the set of flat conditions {(¢q,7) € Q
R : r € V[G] and max(dom(gq)) = max(r)} is dense and A-closed. The
condition (g,7) will be denoted as (g, r) for simplicity.

e j(P) = Col(\, < j(k)) and there is a complete embedding of P Q * R into
j(P) with A-closed quotient forcing,

e letting J be generic for j(P)/PxQ R, there is a K generic for j(Q) so that
J can be extended to an elementary embedding j : V|G * H| — M[G * H *
I+ J % K] in the extension by j(P % Q).

In particular, all of the models we consider have the same < A-sequences of
ordinals.

We will show that V[G % H| is a model satisfying the conclusion of the theorem.
Clearly [y 5 holds in V[G * H], so assume towards a contradiction that D = (D, :
o < k) is a OFs sequence in V[G x H] for some 6. Let T € §(D),, so T threads D
in V[G*H = I*Jx*K]. Since j(Q) is j(k)-distributive in M[G « H % I = J], T must
be a member of M|[G % H * I % J], and hence also V[G x H % I  J].

Lemma 3.2. Suppose V.C W are models of set theory, X is an uncountable cardinal
mV,andV E “Disa DB\% sequence’ for some 6. Then forcing with a countably

closed poset S over W cannot add a new thread to D (i.e., a thread not already in

W).

Proof. Assume towards a contradiction that E is an S-name for a thread through
D which is forced to not be in W. Under this assumption, (A*)" has uncountable
cofinality in W.

Claim 3.3. For any a < (A\1)V, and so, s1 € S, there are 8 > a and s, < sg,8; <
s1 deciding “B € E” differently.

Suppose that sg, s1, and « witness that this fails. Let Jy x J; be generic for S x S
over W such that (s, s1) € Jo x Ji. Then E[Jy] and E[J;] have the same tail-end
above «, and since their proper initial segments belong to W it follows that both
belong to each of W[Jy] and W[.Jy], and hence also W. This proves the claim.

Using the claim, we will recursively construct sj— € S and ordinals a;», B < At
for i € {0,1} and j < w satisfying the following properties:

e s' <shand ) <aj < <af,

e s and s} decide 3; € E differently,

o sl kol €k
By countable closure of S, let s° be a lower bound for (s? :j < w), s' be a lower
bound for (sjl 1 j <w), and B* = sup{B; : j < w}. Note that g* < (A\*)V, since
(AT)Y has uncountable cofinality in . The values for E forced by s° and s! both
have 8* as a limit point, but for each j < w they disagree on whether 8; € E. Since
{Bj : j < w} is cofinal in B* and E is forced to be a thread, this contradicts the
tail-end agreement condition for D. |

By Lemma 3.2, T must be a member of V|G * H * I]. For the remainder of the
proof, work in V[G] and let T' be a Q * R-name for 7. Note that a [ 5 sequence
in V[G x H] cannot be threaded in V|G x H] since all initial segments of the thread
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are initial segments of some C,, and thus have order-type < A. Hence T' ¢ V|G % H]
and we get the following claim:

Claim 3.4. For any q € Q, ro,r1 € R, a < AT, there are B > a,q¢ < q,r) <
ro, 7y <11 such that (¢',r}) and (¢',7}) decide “B € T” differently.

Proof. Suppose that q, 79,71, and a witness that the claim fails. Modifying H if
necessary, we may assume ¢ € H. Working over V[G x H]|, the argument proceeds
as in the proof of Claim 3.3. O

Let (q,7) € QR force that T threads D. Using Claim 3.4 and the fact that 7" is
forced to be unbounded in A\*, recursively construct flat conditions (g;, 7’3) cQx*R

and ordinals aé, B; < AT fori € {0,1} and j < w satisfying the following properties:
(g5,75) < (a,7),
(qj+17r§+1) < (qj,rg), and a? <.a} < Bj < a?_H,
(g5,79) and (gj,7}) decide §; € T differently,
o (gjr1,7iy)IFad,, € T.
Now let v* = sup{maxdom(q;) : j < w} and a* = sup{f; : j < w}. Define

P = U{T; 1 j <w}pU{y*} for i € {0,1},

i=J{g, :j <w}u{(y {F Ny iyl

By the flatness we have maintained during the construction, we have for each
i € {0,1} that v* = sup{maxdom(r}) : j < w}, so each (¢,7") is a condition
in QxR.

We can find ¢* < ¢ which decides the value of D+, since no new subsets of V[G]
of size < X are added by Q. For each i € {0,1}, (¢*,7") I+ “a* is a limit point of 77
so (q*,7%) Ik T Na* € Dy-. But the values for T forced by (¢*,7°) and (¢*,#!)
disagree on whether §; € T, for each j < w. Since {f; : j < w} is cofinal in a*,
this contradicts the tail-end agreement condition for D. O

Starting with a supercompact cardinal instead of a measurable, we can get a
version of Theorem 2 that applies to singular A. This adapts the argument of
Theorem 2 using ideas from Section 7 of [1].

Theorem 3. Suppose X is an infinite cardinal, |1 is an uncountable reqular cardinal
< A, and Kk is a supercompact cardinal with p < k < A. Then there is a forcing
extension preserving cardinals in [0, p]U [k, AT] in which Oy 2 holds and O fails
for all §.

Proof. We provide a rough sketch of the proof. Let P = Col(u, < ). Let Q be the
poset defined in V¥ forcing a [y o sequence using initial segments, and let C be
the Oy 2 sequence added by Q. Let R be the poset adding a thread through c by
closed initial segments of order-type < pu.

If G is generic for P and H is generic for Q, we claim that V[G % H] is a model
satisfying the conclusion of the theorem. Suppose for a contradiction that Dis a
085 sequence in V|G * H] for some 6. With j : V' — M a 2*-supercompactness

embedding, it can be shown that there is some forcing extension of V|G x H] by
j(P*Q)/(G + H) in which j can be extended to V[G x H].
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IfDis a O%s sequence, then define D¢ by D¢ = Dy if a < & and D¢ =
{C\€¢:C eD,}if a> ¢ Ttis straightforward to check that D¢ is still a O%5
sequence.

Claim 3.5. If v = supj“At and A € j(D),, then there exists ¢ < AT such that
T={aeA"\(€+1):j(a) € Lim(A)} generates a thread through D¢,

Since j is continuous at points of countable cofinality, j “A™ is an w-club subset
of v and hence Lim(A) N j“\T is stationary in y. The set S = {a € AT : j(a) €
Lim(A)} is unbounded in A since it is the pointwise j-preimage of Lim(A) Nj“AT.
If € S then ANj(a) € j(ﬁ)j(a) = j(D,). Let () be least so that there is
D,, € D, such that ANj(a)\{(a) = j(Dq)\((a); by tail-end agreement for j(D,),
((a) < j(a). By Fodor’s lemma, there is a stationary B C Lim(A) N j“AT and
Co < 7 so that ¢(a) < (o if j(a) € B. Let £ < AT be such that j(£) > (.

If f <aareinT =S5\ (£+1), then j(Da) Nj(5) \j(§) = ANG(B)\j(§) =
J(Dp)\j(§). By elementarity, 3 € Lim(D,) and Dg\& = Do NB\E, 50 Uyep Da\§
threads D—¢. This proves the claim.

By the claim, replacing D with D¢, we may assume that {ae Xt \(E+1):
j(a) € Lim(A)} generates a thread through D. The poset R collapses AT to p and
can be absorbed into j(P+Q)/(G+H). As in the proof of the previous theorem it can
be shown that the thread through D in the extension of V[GxH] by j(P*Q)/(GxH)
must be added by R, and that this leads to a contradiction. O

Considering large §, all of the principles Dg\‘fé with § > AT are equivalent. This
can be easily seen by taking a Dt)ff(; sequence 5, and for each o € Lim()\) fixing
a particular C,, € C,. Then define a Dgffﬁ sequence D by Dg={ConNpB:pe€
Lim(Cy)}. If A<* = A, then |D,| < A for a < AT of cofinality < A (and |Dy| = 1
for « of cofinality A), so Dgf’:/w and Df\"f)\ are also equivalent in this case.

This argument repeated with clubs not having to agree on a tail-end shows that

Uaa+ is just outright true; however, Theorem 2 shows that with a measurable
cardinal, even [y o does not imply %, , .

4. O%; DOES NOT IMPLY [y <5

We will now show that th,‘(; does not imply [y «s for certain 6 < A. Using a
measurable cardinal, we will show:

Theorem 4. If § is an infinite cardinal and there is a measurable cardinal k > 6,
then there is a forcing extension preserving cardinals < 6% and cardinals > K in
which 0% s holds and Og+ <5 fails.

Strengthening the large cardinal hypothesis to a supercompact cardinal, we can
obtain:

Theorem 5. Suppose § < A are infinite cardinals and there is a supercompact
cardinal k with § < k < X. Then there is a forcing extension preserving cardinals
in (0,0 U [k, AT] in which OF 5 holds and Oy <5 fails.

Theorem 5 does not apply when § = A. If X is regular and not inaccessible, then
Theorem 4 can be extended to this case.
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Theorem 6. Suppose A is an uncountable regular cardinal, X\ is not strongly inac-
cessible, and there is a measurable cardinal K > X\. Then there is a forcing extension
preserving cardinals < X and cardinals > k in which DB\%A holds and Oy < fails.

Proof of Theorem 4. Let A\ = 6. We will force to add a Dg\a,é sequence with a
certain extra property, and show that in the extension [y s fails. Let P = Col(\, <
k) be the Levy collapse as in the last section, and Q be the poset defined in VF of
all functions g ordered by end-extension such that

(i) dom(q) = Lim(AT) N (a+ 1) for some limit ordinal o < A*.

(ii) For all 8 € dom(g), q(B) is a set of closed unbounded subsets of 8 of order

type < A, and 1 < |¢(B)| < 0.

(iii) If C € ¢(B) and v € Lim(C), then C N~y € q(7).

(iv) For every C, D € q(83) there exists 8 < a such that C'\ 8= D\ 3.

(v) If cf(B) < 6, then for every C € ¢(8), v € Lim(C), and D € q(v),

DU (C\7) € q(B).

In VP*Q let C be the Df\% sequence added by Q. Define R to be the poset which

adds a thread through 5, i.e., the poset of closed bounded subsets ¢ C k with the
property that ¢ 3 € Cg for any 8 € Lim(c), ordered by end-extension.

Claim 4.1. Suppose q satisfies (i)—(iv) in the definition of Q with dom(q) =
Lim(AT) Na+ 1 for some a < At which is a limit of limit ordinals, cf(a) < 6.
Suppose further that for any limit ordinal f < «a, q[(f+ 1) € Q.

Define g* as the function on dom(q) with ¢* | max(dom(q)) = q and

q* (@) = q(a) U{DU(C\ B) : C € g(), 8 € Lim(C) and D € q(B)}.
Then q¢* € Q.

Proof. There are at most § many C € ¢(«) and § many S in each such C, so
l¢*(a)] < §. (It is important here that A = 6T, for otherwise there could be more
than 0 many elements of C.) The only nontrivial requirements to check in the
definition of Q are (iii) and (v) at «.

To show (iii) at «, suppose E € ¢*(«) and v € Lim(E). We check that E N
v € q(v). The less immediate case has E = D U (C \ 8) for some C € g(a),
B € Lim(C), and D € ¢(B). If v < B, then EN~vy = DN~ € q(y). If v > B, then
Eny=DU(((Cn~v)\p). By (iii) applied at v, C N~ € ¢q(v), so by (v) applied at
v ENy=DU(CNny)\p) € qly)

To show (v), suppose that E € ¢*(a), v € Lim(E), and F € ¢(vy). We check
that F U (E\ v) € ¢*(«). Again, the less immediate case has E = D U (C \ )
for some C € ¢(a), B € Lim(C), and D € ¢(B8). If v > 8, then FU (E\ v) =
FU(C\7) € ¢*(a). If v < B, then v € Lim(D), so by (v) applied at level 3, we
have F' := FU (D \ ) € q(8). Therefore, FU(E\v)=F U(C\~v) €q¢*(8). O

In the situation of the claim, we call ¢* the completion of q.

We have a version of Fact 3.1 for the new Q and R. We will prove Q is k-
distributive by showing that it is A + 1-strategically closed (similarly to [1]). Recall
that in our situation, x has been collapsed to be \T.

Lemma 4.2. The poset Q is A + 1-strategically closed, therefore k-distributive.
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Proof. Players I and II play elements of Q, with II playing at even stages, i.e., limit
stages and even successor stages. We describe a winning strategy for player II. Let
ge be the condition played at stage £ and 3¢ be max dom(qe). At stage n+2, II plays
In+2 < qp+1 with Byi2 = By41 +w and Qn+2(6n+2) = {{Bn+1 +n:l<n<w}th
If ¢ is limit, define A¢ = {8, : n < § and n even}. II plays g¢ = U, ¢y U
{(Bes {Ag})}, with B¢ = sup, ¢ B,. This is closed and unbounded in § by our
construction so far. Furthermore, the construction ensures that for every v €
Lim(Ag¢), ge(7) is the singleton {A¢ N}, so that coherence holds and condition (v)
in the definition of Q is satisfied trivially at . O

The other parts of Fact 3.1 carry over to this situation as well.

Fact 4.3. Let j : V — M be an elementary embedding with crit(j) = x, and
G, H, I be generics for P, Q, R, respectively.

e Working in V¥, the set of flat conditions
{(¢,7) € Q*R:r € V[G] and max(dom(q)) = max(r)}

is dense and A-closed.

e There is a complete embedding of P+ Q=R into j(P) with A-closed quotient
forcing.

e Letting J be generic for j(P)/P * Q * R, there is a K generic for j(Q)
so that j can be extended to an elementary embedding j : V|G * H| —
M[G * H % I x J % K] in the extension by j(P * Q).

Proof. We just prove the set of flat conditions is A-closed, as this requires us to
take a completion. Suppose ((ge,7¢) @ & < 1) is a decreasing sequence of flat
conditions of Q * R, where n < A. Letting o = sup{maxdom(qe) : £ < n}, r =
Ug me U{a}, and ¢ be the completion of |, ge U {(a,7 N )}, we see that (¢,7) is a
flat condition strengthening all the conditions from the sequence. The other parts
of the claim are also proved just like the analogous facts in [4], taking completions
where necessary. |

As before, we will show that V[G x H] is a model satisfying the conclusion of
the theorem: [{*; holds in V|G % H], so assume towards a contradiction that
D= (D, : o < k) is a Oy s sequence in V[G x H]. Let T € j(D),, so T threads D
in VG H x I xJx*K].

The version of Lemma 3.2 we need here is essentially the same as Lemma 4.5 in
[4], whose proof easily adapts to our statement.

Lemma 4.4. Suppose V.C W are models of set theory, A is an uncountable regular
cardinal in W, and D is a [y < sequence in V. Then forcing with a A-closed poset
over W cannot add a new thread to D.

By j(x)-distributivity of j(Q) and Lemma 4.4, T must be a member of V|G
H +I]. Work in V[G] and let 7" be a Q * R-name for T'. Since D is a [y 5 sequence
in V|G = H], it follows that T' ¢ V|G = H], and therefore:

Claim 4.5. For any ¢ € Q, r € R, there are a < AT g < q,ry,my <1 such that
(¢',r}) and (¢',7]) decide “a € T” differently.

Fix f : 6 — ¢ such that f(k) < k for each k < §, and for each j < 0 there are
unboundedly many k < § with f(k) = j. We will recursively construct (g; : j < 9),

(ri i< j <), and (a; : j <9) such that for all j <4
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(1) (q1,7?) forces that T is a thread of C.

(2) For all i < j, (qj,ré) € Q = R is flat and the order-type of r§ is p+1 for
some limit ordinal p. We will use the notation g; for max(dom(g;)).

(3) {(ag : k < §) is a strictly increasing sequence of ordinals less than AT, and
for each i the sequence {((gx,r%) : i < k < 0) is decreasing in the Q x R
ordering,

(4) (g+1.7737) b oy €T

(5) If 4,4’ < j are distinct, then (g;,75) and (qj,r;-/) force distinct values for T
below a;.

(6) Ifi,i' < j, then vl \ B; =71l \ B;. | _

(7) If j is limit, then B; = sup{By : k < j}, rj; = U;cp<; 71 U {B;} for each
i < j, and g; is the completion of Uy ; ax U {(8;, {ring;i<j}h}.

Assume that we are at stage j+1 of the construction, so that (g;, r;) and «; have
been defined for all ¢ < j. Using Claim 4.5, find q;-H <@, Tj41,05Tj41,1 < 7'?, and
v < A" such that (¢, 1,7j11,0) and (¢j1,7j11,1) decide “y € T differently. By
extending further, we can take (¢}, ;,7j11,0) and (g} ,7j+1,1) to satisfy (2) above.
Let 87, , = maxdom(qj).

We construct so that (4) holds. Since 7110 € ¢j41(8j41), and §; € Lim(r;11,0)
by (2), we can extend (qj,r;(j)) to (qgﬂ,rf(j) U (rj+1,0 \ B;)) using (v) of the
definition of Q. Extend this to a condition which forces «; € T for some aj < AT
with a; > v, oj > ay for every ¢ < j. Extend further to (qj+17rﬁjl)) satisfying (2).

Set r ;= er,OU(rﬁ_jl) \Biq) and 77 = 75411 U(rﬁjl) \B}11). For 0 <i<j,
set 1l = r; u (r{j_jl) \ B;). By condition (v) from the definition of Q, it follows
that (gj+1,7541) € Q* R forall i <j+1.

Now suppose j < 0 is limit. The construction is completely determined by (7).
For any i’ < i < j we have 7“;- \ Biy1 = r;:/ \ Bi+1, otherwise there is some ¢ < k < j
where they disagree in [Bk, Bk+1), contradicting (6). Therefore all of the ré agree
on a tail-end and so ¢; defined by (7) is really a member of Q. It is straightforward
to check inductively throughout that (1)—(7) above hold, so we have finished the
construction.

Let o = sup{a; : j < §}. Find ¢* < g5 which decides the value of D,-. For all
1 <6,

(¢*,7%) IF a* is a limit point of 7'
since {a; : f(j) = i} is unbounded in o* and (¢*,r%) forces such «; into T. This
means (¢*, %) Ik TN a* € Dy-. If i # j, then (¢*,7%) and (¢*, 7)) force different
values for TNa* by (5). This gives § many distinct elements of D+, a contradiction,
concluding the proof of Theorem 4. ([l

This proof can be modified slightly to give Theorem 6.

Proof of Theorem 6. Let u be the least cardinal such that 2 > X. Since A is not
strongly inaccessible, ¢ < A\. Run the main construction in the proof of Theorem
4 for p + 1 many steps, but with i ranging over 27 rather than j at stage j. This
involves modifying the successor step to extend each ré, not just r?, in two incom-
patible ways. At each limit stage j < u, there are fewer than A many r;i, so the
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construction can be continued. At stage p, take a subset of the rft of size A to form
q,,- Then the argument is completed as in the proof of Theorem 4. ([

The proof of Theorem 4 does not generalize immediately to the situation of
Theorem 5, since closure of the set of flat conditions of Q % R requires taking
completions at limit levels, and therefore QR (and hence also the quotient forcing
J(P)/PxQ «R) is only dt-closed. In the case where §* < A, this is insufficient to
show that T' was not added by j(P)/P x Q * R. To overcome this, we will use a
technique similar to the argument in Section 7 of [1] separating different [y 5 for
singular \.

Proof of Theorem 5. Let P = Col(d+, < k). Let Q be the poset defined in V¥ as in
the proof of Theorem 4, and let C be the Dgfé sequence added by Q. Let R be the

poset adding a thread through c by closed initial segments of order-type < d*. It
can be shown that the generic thread added by R has order-type 6.

Again, we will build elements of Q by taking completions. The statement of
Claim 4.1 holds in the new situation, but we must be more careful in the proof to
avoid taking too many elements of ¢*(a).

Claim 4.6. Suppose q satisfies (i)—(iv) in the definition of Q with dom(q) =
Lim(AY) Na + 1 for some a < AT which is a limit of limit ordinals, cf(a) < 4.
Suppose further that for any limit ordinal § < o, ¢[(B+ 1) € Q.

Define g* as the function on dom(q) with ¢* | max(dom(q)) = q and

¢"(a) = q() U{D U (C\ B): C € q(a), B € Lim(C) and D € q(B)}.
Then q* € Q.

Proof. Fix a particular Cy € g(a). Assume that Lim(Cp) is unbounded in « (the
other case is similar, and easier). Let X be a subset of Lim(Cj) cofinal in o of order-
type cf(a). Define §*(a) = q(a)U{DU(C\ ) : C € ¢(a), 8 € Lim(C)NX and D €
q(B)}. This has at most 6 many elements.

We claim ¢*(a) C ¢*(a). Suppose C € g(a), € Lim(C) and D € ¢(f). Then
there is some v > 4 in Lim(C') N X since X is unbounded in a and C and Cy
agree on a tail-end. By condition (v) of the definition of Q and since C' N~ € ¢(7),
D' =DU((CNy)\B) € glr). Now DU(C\B) = D' U(C\7) €q(a). O

We get the basic facts about P, Q, R as before. In our new situation, let j : V —
M be a 2*-supercompactness embedding.

Fact 4.7. Let G, H, I be generics for P, Q, R, respectively.

e In VP, the poset Q is A + 1-strategically closed, therefore s-distributive.

e The set of flat conditions {(¢,7) € Q* R : r € V[G] and max(dom(q)) =
max(r)} is dense and 6T -closed.

e There is a complete embedding of P+Qx*R into j(P) with §T-closed quotient
forcing.

e Letting J be generic for j(P)/P * Q x R, there is a K generic for j(Q)
so that j can be extended to an elementary embedding j : V[G * H] —
M|G x H % I x J x K] in the extension by j(P x Q).

The first item is a parallel of Lemma 4.2. The second, which uses completions in
an essential way and is therefore limited to dT-closure, is a parallel of the first item
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of Fact 4.3. The remaining items are similar to facts found in [1], and the proofs
there can be adapted to our situation in a straightforward way.

Assume towards a contradiction that D is a O a,<s sequence in V|G = H|. Let
v =supj“AT and fix some A € j(ﬁ)v. Since j(Q) is j(k)-distributive, A € V[G
Hx1IxJ].

In this situation, we have an analogue of Claim 3.5 which gives a thread through
D in V|G« H I * J]. The fact that § < « allows us to avoid the use of tail-end
agreement for D needed in the proof of Claim 3.5.

Claim 4.8. Ify =supj“\* and A € j(D),, then S = {a € AT : ji(a) € Lim(A)}
generates a thread T through D.

Since j is continuous at points of countable cofinality, j“A™ is an w-club subset
of v and hence Lim(A4) N j“AT is unbounded in . Therefore, its pointwise j-
preimage S = {a < AT : j(a) € Lim(A)} is unbounded in A*. If @ € S then
ANj(a) € j(ﬁ)j(a) = j(Dy). Since § < K, j(Dq) = j“Da, so there is Dy € D,
such that ANj(a) = j(Dy). If B < avarein S, then j(Dy)Nj(5) = ANg(B) = j(Dg).
By elementarity, 8 € Lim(D,) and Dg = DoNB,so T = J D,, threads D. This
proves the claim.

We require a version of Lemma 4.4 which assumes less closure, and also applies
to singular cardinals. The following is implicit in [1]:

a€eS

Lemma 4.9. Let § < A be infinite cardinals. Suppose V. C W are models of set
theory with the same cardinals < 6, W £ cf(AT)Y) > 6%, and D is a Oy s
sequence in V. Then forcing with a §T-closed poset over W cannot add a new
thread to D.

Since the thread added by R has order-type d+, V[G * H % I] £ cf((A\T)V) = 6.
By Lemma 4.9, T € V[G x H % I]. The rest of the proof proceeds in exactly the
same way as the proof of Theorem 4. ([
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