SQUARE PRINCIPLES WITH TAIL-END AGREEMENT

WILLIAM CHEN AND ITAY NEEMAN

ABSTRACT. This paper investigates the principles $\Box_{\lambda,\delta}^{ta}$, weakenings of \Box_{λ} which allow δ many clubs at each level but require them to agree on a tail-end. First, we prove that $\Box_{\lambda,<\omega}^{ta}$ implies \Box_{λ} . Then, by forcing from a model with a measurable cardinal, we show that $\Box_{\lambda,2}$ does not imply $\Box_{\lambda,\delta}^{ta}$ for regular λ , and $\Box_{\delta+,\delta}^{ta}$ does not imply $\Box_{\delta+,<\delta}$. With a supercompact cardinal the former result can be extended to singular λ , and the latter can be improved to show that $\Box_{\lambda,\delta}^{ta}$ does not imply $\Box_{\lambda,<\delta}$ for $\delta < \lambda$.

1. INTRODUCTION

Recently, Neeman [5] introduced the principles $\Box_{\lambda,\delta}^{ta}$ and $\Box_{\lambda,<\delta}^{ta}$, versions of Schimmerling's principles $\Box_{\lambda,\delta}$ and $\Box_{\lambda,<\delta}$ (see [6]) that require the clubs at each level of the sequence to agree on a tail-end. More precisely, for cardinals δ and λ , define a $\Box_{\lambda,\delta}^{ta}$ sequence to be a sequence $\vec{\mathcal{C}} = \langle \mathcal{C}_{\alpha} : \alpha \in \operatorname{Lim}(\lambda^+) \rangle$ such that for every $\alpha \in \operatorname{Lim}(\lambda^+)$,

- (1) \mathcal{C}_{α} is a set of clubs of α , $1 \leq |\mathcal{C}_{\alpha}| \leq \delta$,
- (2) for every $C \in \mathcal{C}_{\alpha}$, $\operatorname{ot}(C) < \lambda$ if $\operatorname{cf}(\alpha) < \lambda$, and for every $\beta \in \operatorname{Lim}(C)$, $C \cap \beta \in \mathcal{C}_{\beta}$,
- (3) for every $C, D \in \mathcal{C}_{\alpha}$ there exists $\beta < \alpha$ such that $C \setminus \beta = D \setminus \beta$.

The principle $\Box_{\lambda,\delta}^{\text{ta}}$ asserts the existence of a $\Box_{\lambda,\delta}^{\text{ta}}$ sequence. We also define $\Box_{\lambda,<\delta}^{\text{ta}}$ asserting the existence of a sequence as above, except with $1 \leq |\mathcal{C}_{\alpha}| < \delta$. $\Box_{\lambda,\delta}$ and $\Box_{\lambda,<\delta}$ are defined in the same way, but without the tail-end agreement condition (3).

Neeman observed that $\Box_{\omega_1,\omega}^{\text{ta}}$ is strong enough to carry out a construction of Shelah–Stanley [7] of a ω_2 -Aronszajn tree which is not special (the construction originally used the principle \Box_{ω_1}). This is useful since $\Box_{\omega_1,\omega}^{\text{ta}}$ follows from certain higher analogues of the proper forcing axiom, but these analogues do not imply \Box_{ω_1} . \Box^{ta} is strong enough to give some other consequences of \Box . For example, it is not difficult to see that for any δ , $\Box_{\lambda,\delta}^{\text{ta}}$ implies that there is a nonreflecting stationary subset of λ^+ , even though the weak square $\Box_{\lambda,\lambda}$ does not.

Starting from a model with a Mahlo cardinal, Jensen [2] showed that $\Box_{\lambda,\delta}$ does not imply $\Box_{\lambda,\delta'}$, where $\delta' < \delta \leq \lambda$ and λ is regular, and Cummings–Foreman– Magidor [1] extended the result to singular λ using a supercompact. Krueger and Schimmerling [3] showed $\Box_{\lambda,\delta}$ does not imply $\Box_{\lambda,<\delta}$ for $\delta \leq \lambda$, and also achieved separation results involving partial square principles.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E35; Secondary 03E05.

Key words and phrases. Forcing, combinatorial principles, square principles.

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1101204.

It is natural to ask where the square principles with tail-end agreement fit into this picture. It is easy to see that $\Box_{\lambda,\delta}^{\text{ta}}$ implies $\Box_{\lambda,\delta}$, and \Box_{λ} implies $\Box_{\lambda,\delta}^{\text{ta}}$. In Section 2, we will show that $\Box_{\lambda,\leq\omega}^{\text{ta}}$ is actually equivalent to \Box_{λ} . Section 3 proves $\Box_{\lambda,\delta}^{\text{ta}}$ is not implied by $\Box_{\lambda,2}$, and Section 4 proves that $\Box_{\lambda,\delta}^{\text{ta}}$ does not imply $\Box_{\lambda,<\delta}$ for $\delta < \lambda$. In particular, the principle $\Box_{\omega_1,\omega}^{\text{ta}}$ considered in [5] is distinct from any of the square principles introduced in [6].

2.
$$\Box_{\lambda < \omega}^{\text{ta}}$$
 IMPLIES \Box_{λ}

Suppose λ is an uncountable cardinal.

Theorem 1. $\Box_{\lambda,<\omega}^{\text{ta}}$ implies \Box_{λ} .

Proof. Let $\vec{\mathcal{C}}$ be a $\Box_{\lambda,<\omega}^{\mathrm{ta}}$ sequence.

For each $\alpha \in \operatorname{Lim}(\lambda^+)$, set $\operatorname{type}(\alpha) = |\mathcal{C}_{\alpha}|$. Define $g: \operatorname{Lim}(\lambda^+) \to \lambda^+$ by $g(\alpha) =$ least β such that $\{C \setminus \beta : C \in \mathcal{C}_{\alpha}\}$ is a singleton (so $g(\alpha) = 0$ if $\operatorname{type}(\alpha) = 1$). Let $D_{\alpha} = C \setminus \beta$ for some (any) $C \in \mathcal{C}_{\alpha}$. Call $\alpha \in \lambda^+$ good if $g|\operatorname{Lim}(D_{\alpha})$ is bounded below α , and let $G \subseteq \lambda^+$ be the set of good points. Call $\alpha \in \lambda^+$ bad if there is $k < \omega$ with $g \upharpoonright \{\beta \in \operatorname{Lim}(D_{\alpha}) : \operatorname{type}(\beta) = k\}$ unbounded below α , and let $B \subseteq \lambda^+$ be the set of bad points. Finally, call $\alpha \in \lambda^+$ ugly if it is neither good nor bad, i.e., $g \upharpoonright \operatorname{Lim}(D_{\alpha})$ is unbounded in α but $g \upharpoonright \{\beta \in \operatorname{Lim}(D_{\alpha}) : \operatorname{type}(\beta) = k\}$ is bounded below α for all $k < \omega$. Let $U \subseteq \lambda^+$ be the set of ugly points.

The first claim says that there are no ugly points of uncountable cofinality, allowing us to focus on good and bad points.

Claim 2.1. If α is ugly, then $cf(\alpha) = \omega$.

Proof. For each $k < \omega$, let $\alpha_k = \sup\{g(\beta) : \beta \in \operatorname{Lim}(D_\alpha) \text{ and } \operatorname{type}(\beta) = k\}$. Then since α is ugly, $\alpha_k < \alpha$ for every $k < \omega$ and $\sup\{\alpha_k : k < \omega\} = \alpha$.

The next claim will be used frequently in the arguments that follow.

Claim 2.2. Suppose $\alpha, \beta \in \text{Lim}(\lambda^+)$ and $\beta \in \text{Lim}(D_\alpha)$. Then $\text{type}(\alpha) \leq \text{type}(\beta)$ and $g(\alpha) \leq g(\beta)$. If furthermore $\text{type}(\alpha) = \text{type}(\beta)$, then $g(\alpha) = g(\beta)$.

Proof. Since $\beta \in \text{Lim}(D_{\alpha})$, $|\{C \cap \beta : C \in C_{\alpha}\}| = \text{type}(\alpha)$. All of the clubs in this set must appear in C_{β} , so $\text{type}(\alpha) \leq \text{type}(\beta)$ and $g(\alpha) \leq g(\beta)$. In case $\text{type}(\alpha) = \text{type}(\beta), C_{\beta} = \{C \cap \beta : C \in C_{\alpha}\}.$

Now we begin the analysis of good and bad points.

Claim 2.3. If α is good, then all elements of $\text{Lim}(D_{\alpha})$ above a bound for $g|\text{Lim}(D_{\alpha})$ are good. Furthermore, g is eventually constant on $\text{Lim}(D_{\alpha})$.

Proof. By coherence, if $\beta \in \text{Lim}(D_{\alpha})$ is above a bound for $g|\text{Lim}(D_{\alpha})$, then all elements of $\text{Lim}(D_{\beta})$ above that bound are also in $\text{Lim}(D_{\alpha})$, proving the first part of the claim. By Claim 2.2 and coherence, if $\beta < \gamma$ both belong to $\text{Lim}(D_{\alpha})$, and $\beta > g(\gamma)$, then $g(\beta) \ge g(\gamma)$. It follows that g is non-increasing on $\text{Lim}(D_{\alpha})$ above a bound for $g|\text{Lim}(D_{\alpha})$, therefore it must be eventually constant.

If α is bad, define $k_{\alpha} < \omega$ to be the least k such that $\{g(\beta) : \beta \in \text{Lim}(D_{\alpha}) \text{ and} \text{type}(\beta) = k\}$ is unbounded in α . Note $k_{\alpha} > type(\alpha)$ by Claim 2.2. Define an increasing continuous sequence $\langle \alpha_{\xi} \rangle \subset \text{Lim}(D_{\alpha})$ inductively. Set α_0 to be the least $\gamma \in \text{Lim}(D_{\alpha})$ with $\text{type}(\gamma) = k_{\alpha}$, and $\alpha_{\xi+1} = \text{the least } \gamma \in \text{Lim}(D_{\alpha})$ with $g(\gamma) > \alpha_{\xi}$

and type(γ) = k_{α} . Note that $g(\alpha_0) \ge g(\alpha)$ by Claim 2.2. Let E_{α} be the range of this sequence.

The following claim can be thought of as a version of Claim 2.3 for bad points.

Claim 2.4. Suppose α is bad. Then E_{α} is closed unbounded in α , and every point of $\text{Lim}(E_{\alpha})$ is bad and has type less than k_{α} . Furthermore, g is eventually constant on points of $\text{Lim}(D_{\alpha})$ of type $< k_{\alpha}$.

Proof. That E_{α} is closed unbounded in α follows immediately from the choice of k_{α} and the construction of E_{α} . For the rest of the claim, observe that for every limit $\rho < \operatorname{ot}(E_{\alpha})$, the sequence $\langle g(\alpha_{\xi}) : \xi < \rho \rangle$ is unbounded in α_{ρ} , and by coherence, a tail of $\langle \alpha_{\xi} : \xi < \rho \rangle$ is contained in $\operatorname{Lim}(D_{\alpha_{\rho}})$. Therefore α_{ρ} is bad. Furthermore, the $\alpha_{\xi+1}$ are each by definition of type k_{α} . By Claim 2.2, type $(\alpha_{\rho}) \leq k_{\alpha}$, and type $(\alpha_{\rho}) \neq k_{\alpha}$ otherwise $\langle g(\alpha_{\xi}) : \xi < \rho \rangle$ could not be unbounded in α_{ρ} .

The second part of the claim is proved similarly as Claim 2.3, working above a bound for g restricted to points of $\text{Lim}(D_{\alpha})$ of type $\langle k_{\alpha}$ (which can be taken below α by minimality of k_{α}).

If α is bad, then every $\beta \in \text{Lim}(E_{\alpha})$ is bad, so k_{β} is defined. The next claim shows that above a certain bound, $k_{\beta} = k_{\alpha}$, and gives a weak coherence property between E_{α} and E_{β} which will be useful later in our construction.

Claim 2.5. Suppose α is bad, and let $\alpha' < \alpha$ be such that g is constant on points of $\text{Lim}(D_{\alpha})$ of type $\langle k_{\alpha}$ which are greater than α' . Then for all $\beta \in \text{Lim}(E_{\alpha}) \setminus \alpha'$ we have $k_{\beta} = k_{\alpha}$ and $E_{\alpha} \cap (g(\beta), \beta) = E_{\beta}$.

Proof. Let $\beta \in \text{Lim}(E_{\alpha}) \setminus \alpha'$, say $\beta = \alpha_{\rho}$ for a limit ordinal ρ . By Claim 2.4, β is bad. Moreover, $k_{\beta} \geq k_{\alpha}$ since D_{β} and $D_{\alpha} \cap \beta$ are equal on a tail-end below β , and so $\{g(\gamma) : \gamma \in \text{Lim}(D_{\beta}) \text{ and type}(\gamma) < k_{\alpha}\}$ must be bounded below β by the assumptions on α' . The reverse inequality $k_{\beta} \leq k_{\alpha}$ is witnessed by $\{\alpha_{\xi+1} : \xi < \rho\}$, which are all of type k_{α} by the construction.

By Claim 2.2, any $\gamma \in \text{Lim}(D_{\beta})$ has $g(\gamma) \geq g(\beta)$. By coherence, $D_{\beta} = D_{\alpha} \cap [g(\beta), \beta)$. It follows that β_0 is the least γ in E_{α} above $g(\beta)$ (where β_0 is the least member of E_{β}). Now E_{α} and E_{β} are defined in the same way above β_0 by the coherence of $\vec{\mathcal{C}}$.

Extend the definition of E_{α} to all of $\operatorname{Lim}(\lambda^+)$ by setting $E_{\alpha} = \operatorname{Lim}(D_{\alpha})$ if α is good and $\operatorname{ot}(D_{\alpha})$ is a limit of limit ordinals, and E_{α} to be any sequence of order-type ω cofinal in α if α is ugly or $\operatorname{ot}(D_{\alpha}) = \rho + \omega$ for some ordinal ρ .

We will define a function $h : \operatorname{Lim}(\lambda^+) \to \lambda^+$. If α is good and $\operatorname{ot}(D_{\alpha})$ is a limit of limits, set $h(\alpha)$ to be the least $\gamma \in \operatorname{Lim}(D_{\alpha})$ such that g is constant on $\operatorname{Lim}(D_{\alpha}) \setminus \gamma$. If α is bad, set $h(\alpha)$ to be the least $\gamma \in \operatorname{Lim}(D_{\alpha})$ such that g is constant on those points of $(\operatorname{Lim}(D_{\alpha}) \setminus \gamma)$ with type $< k_{\alpha}$. Otherwise, set $h(\alpha) = g(\alpha)$.

Finally, define $F_{\alpha} = E_{\alpha} \setminus h(\alpha)$ for each $\alpha \in \text{Lim}(\lambda^+)$. We check that $\langle F_{\alpha} \rangle$ is a \Box_{λ} sequence.

Claim 2.6. For any $\alpha \in \text{Lim}(\lambda^+)$, $g(\alpha) \leq h(\alpha) < \alpha$, and for any $\beta \in \text{Lim}(E_{\alpha} \setminus h(\alpha))$, we have $h(\beta) = h(\alpha)$.

Proof. The value of $h(\alpha)$ is either a point of D_{α} or just $g(\alpha)$, so $g(\alpha) \leq h(\alpha)$. The inequality $h(\alpha) < \alpha$ follows from Claim 2.3 or Claim 2.4, depending on the case.

Now we prove the second part of the claim. Suppose α is good and $\operatorname{ot}(D_{\alpha})$ is a limit of limits. Then by definition of $h(\alpha)$ and the fact that $\beta \in \operatorname{Lim}(E_{\alpha}) =$ Lim(Lim(D_{α})), β is also good and ot(D_{β}) is a limit of limits. Above $h(\alpha)$, g is constant on D_{β} with the eventual constant value of g on D_{α} . This value is also equal to $g(\beta)$, and by Claim 2.2, $g(\alpha) \leq g(\beta)$ so

(2.1)
$$D_{\alpha} \cap (g(\beta), \beta) = D_{\beta}.$$

The ordinal $h(\alpha)$ is defined to be an element of $\text{Lim}(D_{\alpha})$ with $g(h(\alpha)) = g(\beta)$, so in particular $h(\alpha) > g(\beta)$. Together with (2.1), this implies that $h(\beta)$ is computed using the same values as $h(\alpha)$, since $g(\alpha) \le g(\beta) < h(\alpha) < \beta$. We conclude that $h(\beta) = h(\alpha)$.

The case where α is bad is similar: by Claim 2.5, β is bad with $k_{\beta} = k_{\alpha}$. Above $h(\alpha)$, g is constant on points of D_{β} of type $< k_{\alpha}$ with the eventual constant value of g on points of type $< k_{\alpha}$ in D_{α} . This value is also equal to $g(\beta)$ since type $(\beta) < k_{\alpha}$ by Claim 2.4. By Claim 2.2, $D_{\alpha} \cap (g(\beta), \beta) = D_{\beta}$, so $h(\beta)$ is computed using the same values as $h(\alpha)$, and $h(\beta) = h(\alpha)$.

The claim is vacuously true for the remaining cases.

Suppose $\alpha \in \text{Lim}(\lambda^+)$ and $\beta \in \text{Lim}(F_\alpha)$. If α is good, then β is also good and using the fact that $g(\alpha), g(\beta) \leq h(\beta)$ we have

$$F_{\beta} = \operatorname{Lim}(D_{\beta}) \setminus h(\beta) = (\operatorname{Lim}(D_{\alpha}) \cap \beta) \setminus h(\alpha) = F_{\alpha} \cap \beta.$$

Similarly, if α is bad then β is bad and we have

$$F_{\beta} = E_{\beta} \setminus h(\beta) = (E_{\alpha} \cap \beta) \setminus h(\alpha) = F_{\alpha} \cap \beta.$$

Here we used Claim 2.5 for the middle equality.

3. $\Box_{\lambda,2}$ does not imply $\Box_{\lambda,\delta}^{\text{ta}}$

Now we turn to separating $\Box_{\lambda,\delta}^{ta}$ from the hierarchy of principles $\Box_{\lambda,\delta'}$ for various δ' . The methods we use, and the general structure of the proof, are similar to these used by [1] and [4] to separate square principles, and trace back to work of Jensen [2]. In this section we prove:

Theorem 2. Suppose λ is an uncountable regular cardinal. If there is a measurable cardinal $\kappa > \lambda$, then there is a forcing extension preserving cardinals $\leq \lambda$ and $\geq \kappa$ in which $\Box_{\lambda,2}$ holds and $\Box_{\lambda,\delta}^{\text{ta}}$ fails for all δ .

Proof. Let \mathbb{P} the Levy collapse $\operatorname{Col}(\lambda, < \kappa)$. For this section, let \mathbb{Q} be the poset in $V^{\mathbb{P}}$ forcing a $\Box_{\lambda,2}$ -sequence using initial segments. More precisely, \mathbb{Q} is the poset of all functions q ordered by end-extension such that in $V^{\mathbb{P}}$,

- (1) $\operatorname{dom}(q) = \operatorname{Lim}(\lambda^+) \cap (\alpha + 1)$ for some limit ordinal $\alpha < \lambda^+$.
- (2) For all $\beta \in \text{dom}(q)$, $q(\beta)$ is a set of closed unbounded subsets of β of order type $\leq \lambda$, and $1 \leq |q(\beta)| \leq 2$.
- (3) For all $\beta \in \text{dom}(q)$, if $C \in q(\beta)$ and $\gamma \in \text{Lim}(C)$, then $C \cap \gamma \in q(\gamma)$.

In $V^{\mathbb{P}*\mathbb{Q}}$ let $\vec{\mathcal{C}}$ be the $\Box_{\lambda,2}$ sequence added by \mathbb{Q} . Define \mathbb{R} in $V^{\mathbb{P}*\mathbb{Q}}$ to be the poset of closed, bounded subsets $c \subseteq \kappa$ with the property that $c \cap \beta \in \mathcal{C}_{\beta}$ for any $\beta \in \operatorname{Lim}(c)$, ordered by end-extension. \mathbb{R} adds a *thread* of $\vec{\mathcal{C}}$, i.e., a closed unbounded set $S \subseteq (\lambda^+)^{V^{\mathbb{P}*\mathbb{Q}}} = \kappa$ such that $S \cap \beta \in \mathcal{C}_{\beta}$ for all $\beta \in \operatorname{Lim}(S)$.

Let $j: V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$. We collect some useful facts about the various posets and their interactions with the embedding; proofs can be found in [4].

4

Fact 3.1. Let G, H, I be generics for $\mathbb{P}, \mathbb{Q}, \mathbb{R}$, respectively.

- In V[G], \mathbb{Q} is κ -distributive, and the set of flat conditions $\{(q, \check{r}) \in \mathbb{Q} \ast$ \mathbb{R} : $r \in V[G]$ and $\max(\operatorname{dom}(q)) = \max(r)$ is dense and λ -closed. The condition (q, \check{r}) will be denoted as (q, r) for simplicity.
- $j(\mathbb{P}) = \operatorname{Col}(\lambda, \langle j(\kappa) \rangle)$ and there is a complete embedding of $\mathbb{P} * \mathbb{Q} * \mathbb{R}$ into $j(\mathbb{P})$ with λ -closed quotient forcing,
- letting J be generic for $j(\mathbb{P})/\mathbb{P} * \mathbb{Q} * \mathbb{R}$, there is a K generic for $j(\mathbb{Q})$ so that j can be extended to an elementary embedding $j: V[G*H] \rightarrow M[G*H*$ I * J * K in the extension by $j(\mathbb{P} * \mathbb{Q})$.

In particular, all of the models we consider have the same $< \lambda$ -sequences of ordinals.

We will show that V[G * H] is a model satisfying the conclusion of the theorem. Clearly $\Box_{\lambda,2}$ holds in V[G * H], so assume towards a contradiction that $\vec{\mathcal{D}} = \langle \mathcal{D}_{\alpha} :$ $\alpha < \kappa$ is a $\Box_{\lambda \delta}^{\text{ta}}$ sequence in V[G * H] for some δ . Let $T \in j(\vec{\mathcal{D}})_{\kappa}$, so T threads $\vec{\mathcal{D}}$ in V[G * H * I * J * K]. Since $j(\mathbb{Q})$ is $j(\kappa)$ -distributive in M[G * H * I * J], T must be a member of M[G * H * I * J], and hence also V[G * H * I * J].

Lemma 3.2. Suppose $V \subseteq W$ are models of set theory, λ is an uncountable cardinal in V, and $V \vDash "\vec{\mathcal{D}}$ is a $\Box_{\lambda\delta}^{\mathrm{ta}}$ sequence" for some δ . Then forcing with a countably closed poset S over W cannot add a new thread to $\vec{\mathcal{D}}$ (i.e., a thread not already in W).

Proof. Assume towards a contradiction that \dot{E} is an S-name for a thread through $\vec{\mathcal{D}}$ which is forced to not be in W. Under this assumption, $(\lambda^+)^V$ has uncountable cofinality in W.

Claim 3.3. For any $\alpha < (\lambda^+)^V$, and $s_0, s_1 \in \mathbb{S}$, there are $\beta > \alpha$ and $s'_0 \leq s_0, s'_1 \leq s_0$ s_1 deciding " $\beta \in \dot{E}$ " differently.

Suppose that s_0, s_1 , and α witness that this fails. Let $J_0 \times J_1$ be generic for $\mathbb{S} \times \mathbb{S}$ over W such that $(s_0, s_1) \in J_0 \times J_1$. Then $E[J_0]$ and $E[J_1]$ have the same tail-end above α , and since their proper initial segments belong to W it follows that both belong to each of $W[J_0]$ and $W[J_1]$, and hence also W. This proves the claim.

Using the claim, we will recursively construct $s_i^i \in \mathbb{S}$ and ordinals $\alpha_i^i, \beta_j < \lambda^+$ for $i \in \{0, 1\}$ and $j < \omega$ satisfying the following properties:

- $s_{j+1}^i \leq s_j^i$ and $\alpha_j^0 < \alpha_j^1 < \beta_j < \alpha_{j+1}^0$, s_j^0 and s_j^1 decide $\beta_j \in E$ differently,

- $s_{j+1}^i \Vdash \alpha_{j+1}^i \in E.$

By countable closure of S, let s^0 be a lower bound for $\langle s_j^0 : j < \omega \rangle$, s^1 be a lower bound for $\langle s_j^1 : j < \omega \rangle$, and $\beta^* = \sup\{\beta_j : j < \omega\}$. Note that $\beta^* < (\lambda^+)^V$, since $(\lambda^+)^V$ has uncountable cofinality in W. The values for \dot{E} forced by s^0 and s^1 both have β^* as a limit point, but for each $j < \omega$ they disagree on whether $\beta_j \in \dot{E}$. Since $\{\beta_j : j < \omega\}$ is cofinal in β^* and E is forced to be a thread, this contradicts the tail-end agreement condition for $\vec{\mathcal{D}}$. \square

By Lemma 3.2, T must be a member of V[G * H * I]. For the remainder of the proof, work in V[G] and let \dot{T} be a $\mathbb{Q} * \mathbb{R}$ -name for T. Note that a $\Box_{\lambda,\delta}$ sequence in V[G * H] cannot be threaded in V[G * H] since all initial segments of the thread

are initial segments of some C_{α} and thus have order-type $\langle \lambda$. Hence $T \notin V[G * H]$ and we get the following claim:

Claim 3.4. For any $q \in \mathbb{Q}$, $r_0, r_1 \in \mathbb{R}$, $\alpha < \lambda^+$, there are $\beta > \alpha, q' \leq q, r'_0 \leq q'$ $r_0, r'_1 \leq r_1$ such that (q', r'_0) and (q', r'_1) decide " $\beta \in T$ " differently.

Proof. Suppose that q, r_0, r_1 , and α witness that the claim fails. Modifying H if necessary, we may assume $q \in H$. Working over V[G * H], the argument proceeds as in the proof of Claim 3.3. \square

Let $(q,r) \in \mathbb{Q} * \mathbb{R}$ force that \dot{T} threads \mathcal{D} . Using Claim 3.4 and the fact that \dot{T} is forced to be unbounded in λ^+ , recursively construct flat conditions $(q_j, r_j^i) \in \mathbb{Q} * \mathbb{R}$ and ordinals $\alpha_i^i, \beta_j < \lambda^+$ for $i \in \{0, 1\}$ and $j < \omega$ satisfying the following properties:

- $(q_j, r_j^i) \leq (q, r),$
- $(q_{j+1}, r_{j+1}^i) \leq (q_j, r_j^i)$, and $\alpha_j^0 < \alpha_j^1 < \beta_j < \alpha_{j+1}^0$, (q_j, r_j^0) and (q_j, r_j^1) decide $\beta_j \in \dot{T}$ differently,
- $(q_{j+1}, r_{j+1}^i) \Vdash \alpha_{j+1}^i \in \dot{T}.$

Now let $\gamma^* = \sup\{\max \operatorname{dom}(q_i) : j < \omega\}$ and $\alpha^* = \sup\{\beta_i : j < \omega\}$. Define

$$\begin{split} \hat{r}^{i} &= \bigcup \{ r_{j}^{i} : j < \omega \} \cup \{ \gamma^{*} \} \text{ for } i \in \{0, 1\}, \\ \hat{q} &= \bigcup \{ q_{j}^{i} : j < \omega \} \cup \{ (\gamma^{*}, \{ \hat{r}^{0} \cap \gamma^{*}, \hat{r}^{1} \cap \gamma^{*} \}) \}. \end{split}$$

By the flatness we have maintained during the construction, we have for each $i \in \{0,1\}$ that $\gamma^* = \sup\{\max \operatorname{dom}(r_i^i) : j < \omega\}$, so each (\hat{q}, \hat{r}^i) is a condition in $\mathbb{Q} * \mathbb{R}$.

We can find $q^* \leq \hat{q}$ which decides the value of \mathcal{D}_{α^*} , since no new subsets of V[G]of size $< \lambda$ are added by \mathbb{Q} . For each $i \in \{0, 1\}, (q^*, \hat{r}^i) \Vdash ``\alpha^*$ is a limit point of \dot{T} " so $(q^*, \hat{r}^i) \Vdash \dot{T} \cap \alpha^* \in \mathcal{D}_{\alpha^*}$. But the values for \dot{T} forced by (q^*, \hat{r}^0) and (q^*, \hat{r}^1) disagree on whether $\beta_j \in \dot{T}$, for each $j < \omega$. Since $\{\beta_j : j < \omega\}$ is cofinal in α^* , this contradicts the tail-end agreement condition for $\vec{\mathcal{D}}$. \square

Starting with a supercompact cardinal instead of a measurable, we can get a version of Theorem 2 that applies to singular λ . This adapts the argument of Theorem 2 using ideas from Section 7 of [1].

Theorem 3. Suppose λ is an infinite cardinal, μ is an uncountable regular cardinal $<\lambda$, and κ is a supercompact cardinal with $\mu < \kappa \leq \lambda$. Then there is a forcing extension preserving cardinals in $[0, \mu^+] \cup [\kappa, \lambda^+]$ in which $\Box_{\lambda,2}$ holds and $\Box_{\lambda,\delta}^{\text{ta}}$ fails for all δ .

Proof. We provide a rough sketch of the proof. Let $\mathbb{P} = \operatorname{Col}(\mu, < \kappa)$. Let \mathbb{Q} be the poset defined in $V^{\mathbb{P}}$ forcing a $\Box_{\lambda,2}$ sequence using initial segments, and let $\vec{\mathcal{C}}$ be the $\Box_{\lambda,2}$ sequence added by \mathbb{Q} . Let \mathbb{R} be the poset adding a thread through $\vec{\mathcal{C}}$ by closed initial segments of order-type $< \mu$.

If G is generic for \mathbb{P} and H is generic for \mathbb{Q} , we claim that V[G * H] is a model satisfying the conclusion of the theorem. Suppose for a contradiction that $\vec{\mathcal{D}}$ is a $\Box_{\lambda,\delta}^{\mathrm{ta}}$ sequence in V[G * H] for some δ . With $j: V \to M$ a 2^{λ} -supercompactness embedding, it can be shown that there is some forcing extension of V[G * H] by $j(\mathbb{P} * \mathbb{Q})/(G * H)$ in which j can be extended to V[G * H].

6

If $\vec{\mathcal{D}}$ is a $\Box_{\lambda,\delta}^{\mathrm{ta}}$ sequence, then define $\vec{\mathcal{D}}^{-\xi}$ by $\mathcal{D}_{\alpha}^{-\xi} = \mathcal{D}_{\alpha}$ if $\alpha \leq \xi$, and $\mathcal{D}_{\alpha}^{-\xi} = \{C \setminus \xi : C \in \mathcal{D}_{\alpha}\}$ if $\alpha > \xi$. It is straightforward to check that $\vec{\mathcal{D}}^{-\xi}$ is still a $\Box_{\lambda,\delta}^{\mathrm{ta}}$ sequence.

Claim 3.5. If $\gamma = \sup j \, {}^{*} \lambda^{+}$ and $A \in j(\vec{\mathcal{D}})_{\gamma}$, then there exists $\xi < \lambda^{+}$ such that $T = \{\alpha \in \lambda^{+} \setminus (\xi + 1) : j(\alpha) \in \operatorname{Lim}(A)\}$ generates a thread through $\vec{\mathcal{D}}^{-\xi}$.

Since j is continuous at points of countable cofinality, $j^{*}\lambda^{+}$ is an ω -club subset of γ and hence $\operatorname{Lim}(A) \cap j^{*}\lambda^{+}$ is stationary in γ . The set $S = \{\alpha \in \lambda^{+} : j(\alpha) \in \operatorname{Lim}(A)\}$ is unbounded in λ^{+} since it is the pointwise j-preimage of $\operatorname{Lim}(A) \cap j^{*}\lambda^{+}$. If $\alpha \in S$ then $A \cap j(\alpha) \in j(\vec{\mathcal{D}})_{j(\alpha)} = j(\mathcal{D}_{\alpha})$. Let $\zeta(\alpha)$ be least so that there is $D_{\alpha} \in \mathcal{D}_{\alpha}$ such that $A \cap j(\alpha) \setminus \zeta(\alpha) = j(D_{\alpha}) \setminus \zeta(\alpha)$; by tail-end agreement for $j(\mathcal{D}_{\alpha})$, $\zeta(\alpha) < j(\alpha)$. By Fodor's lemma, there is a stationary $B \subseteq \operatorname{Lim}(A) \cap j^{*}\lambda^{+}$ and $\zeta_{0} < \gamma$ so that $\zeta(\alpha) < \zeta_{0}$ if $j(\alpha) \in B$. Let $\xi < \lambda^{+}$ be such that $j(\xi) > \zeta_{0}$.

If $\beta < \alpha$ are in $T = S \setminus (\xi + 1)$, then $j(D_{\alpha}) \cap j(\beta) \setminus j(\xi) = A \cap j(\beta) \setminus j(\xi) = j(D_{\beta}) \setminus j(\xi)$. By elementarity, $\beta \in \text{Lim}(D_{\alpha})$ and $D_{\beta} \setminus \xi = D_{\alpha} \cap \beta \setminus \xi$, so $\bigcup_{\alpha \in T} D_{\alpha} \setminus \xi$ threads $\vec{\mathcal{D}}^{-\xi}$. This proves the claim.

By the claim, replacing $\vec{\mathcal{D}}$ with $\vec{\mathcal{D}}^{-\xi}$, we may assume that $\{\alpha \in \lambda^+ \setminus (\xi + 1) : j(\alpha) \in \text{Lim}(A)\}$ generates a thread through $\vec{\mathcal{D}}$. The poset \mathbb{R} collapses λ^+ to μ and can be absorbed into $j(\mathbb{P}*\mathbb{Q})/(G*H)$. As in the proof of the previous theorem it can be shown that the thread through $\vec{\mathcal{D}}$ in the extension of V[G*H] by $j(\mathbb{P}*\mathbb{Q})/(G*H)$ must be added by \mathbb{R} , and that this leads to a contradiction.

Considering large δ , all of the principles $\Box_{\lambda,\delta}^{ta}$ with $\delta \geq \lambda^+$ are equivalent. This can be easily seen by taking a $\Box_{\lambda,\delta}^{ta}$ sequence \vec{C} , and for each $\alpha \in \text{Lim}(\lambda)$ fixing a particular $C_{\alpha} \in C_{\alpha}$. Then define a $\Box_{\lambda,\lambda^+}^{ta}$ sequence \vec{D} by $\mathcal{D}_{\beta} = \{C_{\alpha} \cap \beta : \beta \in$ $\text{Lim}(C_{\alpha})\}$. If $\lambda^{<\lambda} = \lambda$, then $|\mathcal{D}_{\alpha}| \leq \lambda$ for $\alpha < \lambda^+$ of cofinality $< \lambda$ (and $|\mathcal{D}_{\alpha}| = 1$ for α of cofinality λ), so $\Box_{\lambda,\lambda^+}^{ta}$ and $\Box_{\lambda,\lambda}^{ta}$ are also equivalent in this case.

This argument repeated with clubs not having to agree on a tail-end shows that \Box_{λ,λ^+} is just outright true; however, Theorem 2 shows that with a measurable cardinal, even $\Box_{\lambda,2}$ does not imply $\Box_{\lambda,\lambda^+}^{\text{ta}}$.

4. $\Box_{\lambda,\delta}^{\text{ta}}$ does not imply $\Box_{\lambda,<\delta}$

We will now show that $\Box_{\lambda,\delta}^{\text{ta}}$ does not imply $\Box_{\lambda,<\delta}$ for certain $\delta < \lambda$. Using a measurable cardinal, we will show:

Theorem 4. If δ is an infinite cardinal and there is a measurable cardinal $\kappa > \delta$, then there is a forcing extension preserving cardinals $\leq \delta^+$ and cardinals $\geq \kappa$ in which $\Box_{\delta^+,\delta}^{\text{ta}}$ holds and $\Box_{\delta^+,<\delta}$ fails.

Strengthening the large cardinal hypothesis to a supercompact cardinal, we can obtain:

Theorem 5. Suppose $\delta < \lambda$ are infinite cardinals and there is a supercompact cardinal κ with $\delta < \kappa \leq \lambda$. Then there is a forcing extension preserving cardinals in $[0, \delta^+] \cup [\kappa, \lambda^+]$ in which $\Box_{\lambda, \delta}^{\text{ta}}$ holds and $\Box_{\lambda, < \delta}$ fails.

Theorem 5 does not apply when $\delta = \lambda$. If λ is regular and not inaccessible, then Theorem 4 can be extended to this case. **Theorem 6.** Suppose λ is an uncountable regular cardinal, λ is not strongly inaccessible, and there is a measurable cardinal $\kappa > \lambda$. Then there is a forcing extension preserving cardinals $\leq \lambda$ and cardinals $\geq \kappa$ in which $\Box_{\lambda,\lambda}^{ta}$ holds and $\Box_{\lambda,<\lambda}$ fails.

Proof of Theorem 4. Let $\lambda = \delta^+$. We will force to add a $\Box_{\lambda,\delta}^{\text{ta}}$ sequence with a certain extra property, and show that in the extension $\Box_{\lambda,<\delta}$ fails. Let $\mathbb{P} = \text{Col}(\lambda,<\kappa)$ be the Levy collapse as in the last section, and \mathbb{Q} be the poset defined in $V^{\mathbb{P}}$ of all functions q ordered by end-extension such that

- (i) $\operatorname{dom}(q) = \operatorname{Lim}(\lambda^+) \cap (\alpha + 1)$ for some limit ordinal $\alpha < \lambda^+$.
- (ii) For all $\beta \in \text{dom}(q)$, $q(\beta)$ is a set of closed unbounded subsets of β of order type $\leq \lambda$, and $1 \leq |q(\beta)| \leq \delta$.
- (iii) If $C \in q(\beta)$ and $\gamma \in \text{Lim}(C)$, then $C \cap \gamma \in q(\gamma)$.
- (iv) For every $C, D \in q(\beta)$ there exists $\beta < \alpha$ such that $C \setminus \beta = D \setminus \beta$.
- (v) If $cf(\beta) \leq \delta$, then for every $C \in q(\beta)$, $\gamma \in Lim(C)$, and $D \in q(\gamma)$,

 $D \cup (C \setminus \gamma) \in q(\beta).$

In $V^{\mathbb{P}*\mathbb{Q}}$ let $\vec{\mathcal{C}}$ be the $\Box_{\lambda,\delta}^{\text{ta}}$ sequence added by \mathbb{Q} . Define \mathbb{R} to be the poset which adds a thread through $\vec{\mathcal{C}}$, i.e., the poset of closed bounded subsets $c \subseteq \kappa$ with the property that $c \cap \beta \in \mathcal{C}_{\beta}$ for any $\beta \in \text{Lim}(c)$, ordered by end-extension.

Claim 4.1. Suppose q satisfies (i)-(iv) in the definition of \mathbb{Q} with $dom(q) = \text{Lim}(\lambda^+) \cap \alpha + 1$ for some $\alpha < \lambda^+$ which is a limit of limit ordinals, $cf(\alpha) \leq \delta$. Suppose further that for any limit ordinal $\beta < \alpha$, $q \upharpoonright (\beta + 1) \in \mathbb{Q}$.

Define q^* as the function on dom(q) with $q^* \upharpoonright max(dom(q)) = q$ and

$$q^*(\alpha) = q(\alpha) \cup \{D \cup (C \setminus \beta) : C \in q(\alpha), \beta \in \operatorname{Lim}(C) \text{ and } D \in q(\beta)\}.$$

Then $q^* \in \mathbb{Q}$.

Proof. There are at most δ many $C \in q(\alpha)$ and δ many β in each such C, so $|q^*(\alpha)| \leq \delta$. (It is important here that $\lambda = \delta^+$, for otherwise there could be more than δ many elements of C.) The only nontrivial requirements to check in the definition of \mathbb{Q} are (iii) and (v) at α .

To show (iii) at α , suppose $E \in q^*(\alpha)$ and $\gamma \in \text{Lim}(E)$. We check that $E \cap \gamma \in q(\gamma)$. The less immediate case has $E = D \cup (C \setminus \beta)$ for some $C \in q(\alpha)$, $\beta \in \text{Lim}(C)$, and $D \in q(\beta)$. If $\gamma \leq \beta$, then $E \cap \gamma = D \cap \gamma \in q(\gamma)$. If $\gamma > \beta$, then $E \cap \gamma = D \cup ((C \cap \gamma) \setminus \beta)$. By (iii) applied at $\gamma, C \cap \gamma \in q(\gamma)$, so by (v) applied at $\gamma, E \cap \gamma = D \cup ((C \cap \gamma) \setminus \beta) \in q(\gamma)$.

To show (v), suppose that $E \in q^*(\alpha)$, $\gamma \in \text{Lim}(E)$, and $F \in q(\gamma)$. We check that $F \cup (E \setminus \gamma) \in q^*(\alpha)$. Again, the less immediate case has $E = D \cup (C \setminus \beta)$ for some $C \in q(\alpha)$, $\beta \in \text{Lim}(C)$, and $D \in q(\beta)$. If $\gamma \geq \beta$, then $F \cup (E \setminus \gamma) =$ $F \cup (C \setminus \gamma) \in q^*(\alpha)$. If $\gamma < \beta$, then $\gamma \in \text{Lim}(D)$, so by (v) applied at level β , we have $F' := F \cup (D \setminus \gamma) \in q(\beta)$. Therefore, $F \cup (E \setminus \gamma) = F' \cup (C \setminus \gamma) \in q^*(\beta)$. \Box

In the situation of the claim, we call q^* the *completion* of q.

We have a version of Fact 3.1 for the new \mathbb{Q} and \mathbb{R} . We will prove \mathbb{Q} is κ distributive by showing that it is $\lambda + 1$ -strategically closed (similarly to [1]). Recall that in our situation, κ has been collapsed to be λ^+ .

Lemma 4.2. The poset \mathbb{Q} is $\lambda + 1$ -strategically closed, therefore κ -distributive.

Proof. Players I and II play elements of \mathbb{Q} , with II playing at even stages, i.e., limit stages and even successor stages. We describe a winning strategy for player II. Let q_{ξ} be the condition played at stage ξ and β_{ξ} be max dom (q_{ξ}) . At stage $\eta+2$, II plays $q_{\eta+2} \leq q_{\eta+1}$ with $\beta_{\eta+2} = \beta_{\eta+1} + \omega$ and $q_{\eta+2}(\beta_{\eta+2}) = \{\{\beta_{\eta+1} + n : 1 \leq n < \omega\}\}$.

If ξ is limit, define $A_{\xi} = \{\beta_{\eta} : \eta < \xi \text{ and } \eta \text{ even}\}$. II plays $q_{\xi} = \bigcup_{\eta < \xi} q_{\eta} \cup \{(\beta_{\xi}, \{A_{\xi}\})\}$, with $\beta_{\xi} = \sup_{\eta < \xi} \beta_{\eta}$. This is closed and unbounded in ξ by our construction so far. Furthermore, the construction ensures that for every $\gamma \in \operatorname{Lim}(A_{\xi}), q_{\xi}(\gamma)$ is the singleton $\{A_{\xi} \cap \gamma\}$, so that coherence holds and condition (v) in the definition of \mathbb{Q} is satisfied trivially at β_{ξ} .

The other parts of Fact 3.1 carry over to this situation as well.

Fact 4.3. Let $j : V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$, and G, H, I be generics for $\mathbb{P}, \mathbb{Q}, \mathbb{R}$, respectively.

• Working in $V^{\mathbb{P}}$, the set of flat conditions

 $\{(q, \check{r}) \in \mathbb{Q} * \mathbb{R} : r \in V[G] \text{ and } \max(\operatorname{dom}(q)) = \max(r)\}$

is dense and λ -closed.

- There is a complete embedding of P*Q*R into j(P) with λ-closed quotient forcing.
- Letting J be generic for $j(\mathbb{P})/\mathbb{P} * \mathbb{Q} * \mathbb{R}$, there is a K generic for $j(\mathbb{Q})$ so that j can be extended to an elementary embedding $j : V[G * H] \to M[G * H * I * J * K]$ in the extension by $j(\mathbb{P} * \mathbb{Q})$.

Proof. We just prove the set of flat conditions is λ -closed, as this requires us to take a completion. Suppose $\langle (q_{\xi}, r_{\xi}) : \xi < \eta \rangle$ is a decreasing sequence of flat conditions of $\mathbb{Q} * \mathbb{R}$, where $\eta < \lambda$. Letting $\alpha = \sup\{\max \operatorname{dom}(q_{\xi}) : \xi < \eta\}$, $r = \bigcup_{\xi} r_{\xi} \cup \{\alpha\}$, and q be the completion of $\bigcup_{\xi} q_{\xi} \cup \{(\alpha, r \cap \alpha)\}$, we see that (q, r) is a flat condition strengthening all the conditions from the sequence. The other parts of the claim are also proved just like the analogous facts in [4], taking completions where necessary.

As before, we will show that V[G * H] is a model satisfying the conclusion of the theorem: $\Box_{\lambda,\delta}^{\text{ta}}$ holds in V[G * H], so assume towards a contradiction that $\vec{\mathcal{D}} = \langle \mathcal{D}_{\alpha} : \alpha < \kappa \rangle$ is a $\Box_{\lambda,<\delta}$ sequence in V[G * H]. Let $T \in j(\vec{\mathcal{D}})_{\kappa}$, so T threads $\vec{\mathcal{D}}$ in V[G * H * I * J * K].

The version of Lemma 3.2 we need here is essentially the same as Lemma 4.5 in [4], whose proof easily adapts to our statement.

Lemma 4.4. Suppose $V \subseteq W$ are models of set theory, λ is an uncountable regular cardinal in W, and $\vec{\mathcal{D}}$ is a $\Box_{\lambda,<\lambda}$ sequence in V. Then forcing with a λ -closed poset over W cannot add a new thread to $\vec{\mathcal{D}}$.

By $j(\kappa)$ -distributivity of $j(\mathbb{Q})$ and Lemma 4.4, T must be a member of V[G * H * I]. Work in V[G] and let \dot{T} be a $\mathbb{Q} * \mathbb{R}$ -name for T. Since $\vec{\mathcal{D}}$ is a $\Box_{\lambda,<\delta}$ sequence in V[G * H], it follows that $T \notin V[G * H]$, and therefore:

Claim 4.5. For any $q \in \mathbb{Q}$, $r \in \mathbb{R}$, there are $\alpha < \lambda^+, q' \leq q, r'_0, r'_1 \leq r$ such that (q', r'_0) and (q', r'_1) decide " $\alpha \in \dot{T}$ " differently.

Fix $f: \delta \to \delta$ such that $f(k) \leq k$ for each $k < \delta$, and for each $j < \delta$ there are unboundedly many $k < \delta$ with f(k) = j. We will recursively construct $\langle q_j : j \leq \delta \rangle$, $\langle r_j^i : i < j \leq \delta \rangle$, and $\langle \alpha_j : j < \delta \rangle$ such that for all $j \leq \delta$:

WILLIAM CHEN AND ITAY NEEMAN

- (1) (q_1, r_1^0) forces that \dot{T} is a thread of $\vec{\mathcal{C}}$.
- (2) For all i < j, $(q_j, r_j^i) \in \mathbb{Q} * \mathbb{R}$ is flat and the order-type of r_j^i is $\rho + 1$ for some limit ordinal ρ . We will use the notation β_j for max $(dom(q_j))$.
- (3) $\langle \alpha_k : k < \delta \rangle$ is a strictly increasing sequence of ordinals less than λ^+ , and for each *i* the sequence $\langle (q_k, r_k^i) : i < k < \delta \rangle$ is decreasing in the $\mathbb{Q} * \mathbb{R}$ ordering, (4) $(q_{j+1}, r_{j+1}^{f(j)}) \Vdash \alpha_j \in \dot{T}.$
- (5) If i, i' < j are distinct, then (q_j, r_j^i) and $(q_j, r_j^{i'})$ force distinct values for \dot{T} below α_j .
- (6) If i, i' < j, then $r_{j+1}^i \setminus \beta_j = r_{j+1}^{i'} \setminus \beta_j$.
- (7) If j is limit, then $\beta_j = \sup\{\beta_k : k < j\}, r_j^i = \bigcup_{i < k < j} r_k^i \cup \{\beta_j\}$ for each i < j, and q_j is the completion of $\bigcup_{k < j} q_k \cup \{(\beta_j, \{r_j^i \cap \beta_j : i < j\})\}$.

Assume that we are at stage j+1 of the construction, so that (q_j, r_i^i) and α_i have been defined for all i < j. Using Claim 4.5, find $q'_{j+1} \leq q_j$, $r_{j+1,0}$, $r_{j+1,1} \leq r_j^0$, and $\gamma < \lambda^+$ such that $(q'_{j+1}, r_{j+1,0})$ and $(q'_{j+1}, r_{j+1,1})$ decide " $\gamma \in T$ " differently. By extending further, we can take $(q'_{j+1}, r_{j+1,0})$ and $(q'_{j+1}, r_{j+1,1})$ to satisfy (2) above. Let $\beta'_{j+1} = \max \operatorname{dom}(q'_{j+1})$.

We construct so that (4) holds. Since $r_{j+1,0} \in q'_{j+1}(\beta'_{j+1})$, and $\beta_j \in \text{Lim}(r_{j+1,0})$ by (2), we can extend $(q_j, r_j^{f(j)})$ to $(q'_{j+1}, r_j^{f(j)} \cup (r_{j+1,0} \setminus \beta_j))$ using (v) of the definition of \mathbb{Q} . Extend this to a condition which forces $\alpha_j \in \dot{T}$ for some $\alpha_j < \lambda^+$ with $\alpha_j > \gamma$, $\alpha_j > \alpha_i$ for every i < j. Extend further to $(q_{j+1}, r_{j+1}^{f(j)})$ satisfying (2).

Set $r_{j+1}^0 = r_{j+1,0} \cup (r_{j+1}^{f(j)} \setminus \beta'_{j+1})$ and $r_{j+1}^j = r_{j+1,1} \cup (r_{j+1}^{f(j)} \setminus \beta'_{j+1})$. For 0 < i < j, set $r_{j+1}^i = r_j^i \cup (r_{j+1}^{f(j)} \setminus \beta_j)$. By condition (v) from the definition of \mathbb{Q} , it follows that $(q_{j+1}, r_{j+1}^i) \in \mathbb{Q} * \mathbb{R}$ for all i < j+1.

Now suppose $j \leq \delta$ is limit. The construction is completely determined by (7). For any i' < i < j we have $r_i^i \setminus \beta_{i+1} = r_i^{i'} \setminus \beta_{i+1}$, otherwise there is some i < k < jwhere they disagree in $[\beta_k, \beta_{k+1})$, contradicting (6). Therefore all of the r_j^i agree on a tail-end and so q_j defined by (7) is really a member of \mathbb{Q} . It is straightforward to check inductively throughout that (1)-(7) above hold, so we have finished the construction.

Let $\alpha^* = \sup\{\alpha_j : j < \delta\}$. Find $q^* \leq q_\delta$ which decides the value of \mathcal{D}_{α^*} . For all $i < \delta$,

 $(q^*, r^i_{\delta}) \Vdash \alpha^*$ is a limit point of \dot{T}

since $\{\alpha_j : f(j) = i\}$ is unbounded in α^* and (q^*, r^i_{δ}) forces such α_j into \dot{T} . This means $(q^*, r^i_{\delta}) \Vdash \dot{T} \cap \alpha^* \in \mathcal{D}_{\alpha^*}$. If $i \neq j$, then (q^*, r^i_{δ}) and (q^*, r^j_{δ}) force different values for $T \cap \alpha^*$ by (5). This gives δ many distinct elements of \mathcal{D}_{α^*} , a contradiction, concluding the proof of Theorem 4.

This proof can be modified slightly to give Theorem 6.

Proof of Theorem 6. Let μ be the least cardinal such that $2^{\mu} \geq \lambda$. Since λ is not strongly inaccessible, $\mu < \lambda$. Run the main construction in the proof of Theorem 4 for $\mu + 1$ many steps, but with *i* ranging over 2^j rather than *j* at stage *j*. This involves modifying the successor step to extend each r_j^i , not just r_j^0 , in two incompatible ways. At each limit stage $j < \mu$, there are fewer than λ many r_i^i , so the

10

construction can be continued. At stage μ , take a subset of the r^i_{μ} of size λ to form q_{μ} . Then the argument is completed as in the proof of Theorem 4.

The proof of Theorem 4 does not generalize immediately to the situation of Theorem 5, since closure of the set of flat conditions of $\mathbb{Q} * \mathbb{R}$ requires taking completions at limit levels, and therefore $\mathbb{Q} * \mathbb{R}$ (and hence also the quotient forcing $j(\mathbb{P})/\mathbb{P} * \mathbb{Q} * \mathbb{R}$) is only δ^+ -closed. In the case where $\delta^+ < \lambda$, this is insufficient to show that T was not added by $j(\mathbb{P})/\mathbb{P} * \mathbb{Q} * \mathbb{R}$. To overcome this, we will use a technique similar to the argument in Section 7 of [1] separating different $\Box_{\lambda,\delta}$ for singular λ .

Proof of Theorem 5. Let $\mathbb{P} = \operatorname{Col}(\delta^+, < \kappa)$. Let \mathbb{Q} be the poset defined in $V^{\mathbb{P}}$ as in the proof of Theorem 4, and let $\vec{\mathcal{C}}$ be the $\Box_{\lambda,\delta}^{\operatorname{ta}}$ sequence added by \mathbb{Q} . Let \mathbb{R} be the poset adding a thread through $\vec{\mathcal{C}}$ by closed initial segments of order-type $< \delta^+$. It can be shown that the generic thread added by \mathbb{R} has order-type δ^+ .

Again, we will build elements of \mathbb{Q} by taking completions. The statement of Claim 4.1 holds in the new situation, but we must be more careful in the proof to avoid taking too many elements of $q^*(\alpha)$.

Claim 4.6. Suppose q satisfies (i)-(iv) in the definition of \mathbb{Q} with $dom(q) = \text{Lim}(\lambda^+) \cap \alpha + 1$ for some $\alpha < \lambda^+$ which is a limit of limit ordinals, $cf(\alpha) \leq \delta$. Suppose further that for any limit ordinal $\beta < \alpha$, $q \upharpoonright (\beta + 1) \in \mathbb{Q}$.

Define q^* as the function on dom(q) with $q^* \upharpoonright \max(dom(q)) = q$ and

 $q^*(\alpha) = q(\alpha) \cup \{ D \cup (C \setminus \beta) : C \in q(\alpha), \beta \in \operatorname{Lim}(C) \text{ and } D \in q(\beta) \}.$

Then $q^* \in \mathbb{Q}$.

Proof. Fix a particular $C_0 \in q(\alpha)$. Assume that $\text{Lim}(C_0)$ is unbounded in α (the other case is similar, and easier). Let X be a subset of $\text{Lim}(C_0)$ cofinal in α of order-type $cf(\alpha)$. Define $\tilde{q}^*(\alpha) = q(\alpha) \cup \{D \cup (C \setminus \beta) : C \in q(\alpha), \beta \in \text{Lim}(C) \cap X \text{ and } D \in q(\beta)\}$. This has at most δ many elements.

We claim $q^*(\alpha) \subseteq \tilde{q}^*(\alpha)$. Suppose $C \in q(\alpha), \beta \in \text{Lim}(C)$ and $D \in q(\beta)$. Then there is some $\gamma > \beta$ in $\text{Lim}(C) \cap X$ since X is unbounded in α and C and C_0 agree on a tail-end. By condition (v) of the definition of \mathbb{Q} and since $C \cap \gamma \in q(\gamma)$, $D' = D \cup ((C \cap \gamma) \setminus \beta) \in q(\gamma)$. Now $D \cup (C \setminus \beta) = D' \cup (C \setminus \gamma) \in \tilde{q}^*(\alpha)$. \Box

We get the basic facts about $\mathbb{P}, \mathbb{Q}, \mathbb{R}$ as before. In our new situation, let $j: V \to M$ be a 2^{λ} -supercompactness embedding.

Fact 4.7. Let G, H, I be generics for $\mathbb{P}, \mathbb{Q}, \mathbb{R}$, respectively.

- In $V^{\mathbb{P}}$, the poset \mathbb{Q} is $\lambda + 1$ -strategically closed, therefore κ -distributive.
- The set of flat conditions $\{(q, \check{r}) \in \mathbb{Q} * \mathbb{R} : r \in V[G] \text{ and } \max(\operatorname{dom}(q)) = \max(r)\}$ is dense and δ^+ -closed.
- There is a complete embedding of P*Q*R into j(P) with δ⁺-closed quotient forcing.
- Letting J be generic for $j(\mathbb{P})/\mathbb{P} * \mathbb{Q} * \mathbb{R}$, there is a K generic for $j(\mathbb{Q})$ so that j can be extended to an elementary embedding $j : V[G * H] \to M[G * H * I * J * K]$ in the extension by $j(\mathbb{P} * \mathbb{Q})$.

The first item is a parallel of Lemma 4.2. The second, which uses completions in an essential way and is therefore limited to δ^+ -closure, is a parallel of the first item

of Fact 4.3. The remaining items are similar to facts found in [1], and the proofs there can be adapted to our situation in a straightforward way.

Assume towards a contradiction that $\vec{\mathcal{D}}$ is a $\Box_{\lambda,<\delta}$ sequence in V[G * H]. Let $\gamma = \sup j^* \lambda^+$ and fix some $A \in j(\vec{\mathcal{D}})_{\gamma}$. Since $j(\mathbb{Q})$ is $j(\kappa)$ -distributive, $A \in V[G * H * I * J]$.

In this situation, we have an analogue of Claim 3.5 which gives a thread through $\vec{\mathcal{D}}$ in V[G * H * I * J]. The fact that $\delta < \kappa$ allows us to avoid the use of tail-end agreement for $\vec{\mathcal{D}}$ needed in the proof of Claim 3.5.

Claim 4.8. If $\gamma = \sup j^{*}\lambda^{+}$ and $A \in j(\vec{\mathcal{D}})_{\gamma}$, then $S = \{\alpha \in \lambda^{+} : j(\alpha) \in \operatorname{Lim}(A)\}$ generates a thread T through $\vec{\mathcal{D}}$.

Since j is continuous at points of countable cofinality, $j^*\lambda^+$ is an ω -club subset of γ and hence $\operatorname{Lim}(A) \cap j^*\lambda^+$ is unbounded in γ . Therefore, its pointwise jpreimage $S = \{\alpha < \lambda^+ : j(\alpha) \in \operatorname{Lim}(A)\}$ is unbounded in λ^+ . If $\alpha \in S$ then $A \cap j(\alpha) \in j(\vec{\mathcal{D}})_{j(\alpha)} = j(\mathcal{D}_{\alpha})$. Since $\delta < \kappa$, $j(\mathcal{D}_{\alpha}) = j^*\mathcal{D}_{\alpha}$, so there is $D_{\alpha} \in \mathcal{D}_{\alpha}$ such that $A \cap j(\alpha) = j(D_{\alpha})$. If $\beta < \alpha$ are in S, then $j(D_{\alpha}) \cap j(\beta) = A \cap j(\beta) = j(D_{\beta})$. By elementarity, $\beta \in \operatorname{Lim}(D_{\alpha})$ and $D_{\beta} = D_{\alpha} \cap \beta$, so $T = \bigcup_{\alpha \in S} D_{\alpha}$ threads $\vec{\mathcal{D}}$. This proves the claim.

We require a version of Lemma 4.4 which assumes less closure, and also applies to singular cardinals. The following is implicit in [1]:

Lemma 4.9. Let $\delta < \lambda$ be infinite cardinals. Suppose $V \subseteq W$ are models of set theory with the same cardinals $\leq \delta^+$, $W \models cf((\lambda^+)^V) \geq \delta^+$, and $\vec{\mathcal{D}}$ is a $\Box_{\lambda,<\delta}$ sequence in V. Then forcing with a δ^+ -closed poset over W cannot add a new thread to $\vec{\mathcal{D}}$.

Since the thread added by \mathbb{R} has order-type δ^+ , $V[G * H * I] \models cf((\lambda^+)^V) = \delta^+$. By Lemma 4.9, $T \in V[G * H * I]$. The rest of the proof proceeds in exactly the same way as the proof of Theorem 4.

References

- Cummings, J., Foreman, M., & Magidor, M.: Squares, scales and stationary reflection. Journal of Mathematical Logic, 1(01), 35–98 (2001).
- [2] Jensen, R. Some remarks on \square below zero-pistol. Circulated notes.
- [3] Krueger, J. & Schimmerling, E.: Separating weak partial square principles. Annals of Pure and Applied Logic, 165(2), 609–619 (2014).
- [4] Magidor, M., & Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. Appalachian Set Theory: 2006-2012, 406, 301 (2012).
- [5] Neeman, I. Two applications of finite side conditions at ω_2 .
- [6] Schimmerling, E.: Combinatorial principles in the core model for one Woodin cardinal. Annals of Pure and Applied Logic, 74(2), 153–201 (1995).
- [7] Shelah, S., & Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proceedings of the American Mathematical Society, 104(3), 887–897 (1988).

DEPARTMENT OF MATHEMATICS, UCLA *E-mail address*: chenwb@math.ucla.edu

DEPARTMENT OF MATHEMATICS, UCLA *E-mail address*: ineeman@math.ucla.edu