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Forcing axioms

Developed in late 1960s early 1970s, initially to crystalize
center points for applications of iterated forcing.

Martin’s axiom (MA, for ω1 antichains): for any c.c.c.
poset P and any collection A of ω1 maximal antichains of
P, there is a filter on P which meets every antichain in A.

Obtained through an iteration of enough c.c.c. posets.
Can then be used axiomatically as a starting point for
consistency proofs that would otherwise require an
iteration of c.c.c. posets.

Key points in proving consistency of MA:
(a) Finite support iteration of c.c.c. posets does not

collapse ω1, and in fact the iteration poset is itself
c.c.c.

(b) Can “close off”, that is reach a point where enough
c.c.c. posets have been hit to ensure MA.
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Proper forcing
There are classes of posets other than c.c.c. which also
preserve ω1.

Definition
Let P be a poset. Let κ be large enough that P ∈ H(κ).
p ∈ P is a master condition for M ≺ H(κ) if

1. p forces that every maximal antichain A of P that
belongs to M is met by the generic filter inside M.

Equivalently any of:
2. p forces that Ġ ∩ M̌ is generic over M.

3. p forces that M[Ġ] ≺ H(κ)[Ġ] and M[Ġ] ∩ V = M.

Definition
P is proper if for all large enough κ and all countable
M ≺ H(κ), every condition in M extends to a master
condition for M.

Proper posets do not collapse ω1; immediate from (3).
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PFA

Proper forcing axiom (PFA): the parallel of MA for
proper posets. Again used axiomatically as a starting
point for consistency proofs.

Key points in consistency proof of PFA:
(a) Countable support iteration of proper posets does

not collapse ω1, and is indeed proper.
(b) Can close off, assuming a supercompact cardinal.

For (b), fix a supercompact cardinal θ. Iterate up to θ
hitting proper posets given by a Laver function. At stage
θ, using properties of the Laver function and
supercompactness, have covered enough posets to
ensure PFA holds.

Obtained in late 1970s, Baumgartner, Shelah.
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Consequences (some of many)

Compositions of Col(ω1, δ) and c.c.c. posets are proper.

Gives: Tree property at ω2; every tree of size and height
ω1 has at most ω1 cofinal branches; any two ω1 dense
subsets of R are order isomorphic; �κ fails for κ ≥ ω1.

Posets using finite sequences of countable models as
side conditions to enforce properness.

Gives: Failure of �κ for κ ≥ ω1; P-ideal dichotomy; Open
Coloring Axiom; rainbow Ramsey principle on ω1.

Mapping Reflection Principle (MRP).

Gives: Failure of �κ for κ ≥ ω1; SCH; wellordering of R of
ordertype ω2 definable over H(ω2) from parameter
contained in ω1.
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Higher analogues?

In the case of MA, the forcing axiom has higher
analogues, and in fact strengthenings.

For example it is consistent that for all c.c.c. posets, all
maximal antichain in families of size ω2 can be
simultaneously met by a filter.

Initial expectation was that similar analogues should exist
for PFA.

Naive attempt: demand existence of master conditions
also for models of size ω1.

Posets in the resulting class preserve ω1 and ω2 (certainly
a necessary property for a higher analogue).

But preservation under iteration fails.

Search for higher analogues largely dormant.
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Two-size nodes
For regular θ ≥ ω2 and f : H(θ)<ω → H(θ), let C(θ, f )
consist of M satisfying one of:

1. (Type ω1.) |M| = ω1, M ≺ H(θ), internal on a club,
closed under f .

2. (Countable type elementary.) |M| = ω, M ≺ H(θ),
closed under f .

3. (Countable type tower.) |M| ≤ ω, M 6= ∅, linearly
ordered by ∈, every N ∈ M satisfies (1),
(∀N ∈ M)(M ∩ N ∈ N).

Called nodes. Non-tower nodes are elementary.

Easy to check P proper iff (∃ large enough θ, f )
(∀ ∈-increasing set s of countable elementary nodes)
(∀Q ∈ s) every p ∈ P ∩Q which is a master condition for
all M ∈ s ∩Q extends to a master condition for all M ∈ s.

Right-to-left direction immediate. Left-to-right by iterated
applications of condition defining properness.
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Two-size side conditions
A two-size side condition is a finite set of nodes,
∈-increasing (each node belongs to its successor), and
closed under intersections in the sense:
I If N ∈ M of type ω1 and countable elementary both in

s, then M ∩ N in s.
I If N ∈ M of type ω1 and tower both in s, and

M ∩ N 6= ∅, then there is tower M̄ ⊇ M ∩ N occurring
in s before N.

Ordered in the natural way, reverse inclusion as sets.

For elementary Q ∈ s, the residue of s in Q is s ∩Q.
Denoted resQ(s). Is itself a two-size side condition.

Lemma
If Q ∈ s elementary and t ∈ Q extends resQ(s), then s
and t are compatible.

Gives strong properness for poset of two-size side
conditions. Poset preserves ω1, ω2, collapses H(θ) to ω2.
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Two-size properness
Recall P proper iff (∃ large enough θ, and f )
(∀ ∈-increasing set s of countable elementary nodes)
(∀Q ∈ s) every p ∈ P ∩Q which is a m.c. for all M ∈ s ∩Q
extends to a m.c. for all M ∈ s.

Two-size properness (1st approx.): (∃ large enough θ, f )
(∀ two-size side condition s) (∀Q ∈ s elementary) every
p ∈ P ∩Q which is a m.c. for all M ∈ resQ(s) extends to a
m.c. for all M ∈ s.

(By m.c. for tower M means m.c. for all N ∈ M.)

For added generality, replace “m.c. for M” with “∈ mc(M)”,
where M 7→ mc(M) abstracts essential properties of the
function M 7→ {master conditions for M}.

Some essential properties: every q ∈ mc(M) is a m.c. for
M; mc(M ∩ N) ⊇ mc(M) ∩mc(N); mc(M) open in P;
mc(M) ⊆ mc(M ′) for M ′ ⊆ M both tower.

Posets satisfying this (for some mc) are two-size proper.
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Two-size proper forcing axiom

Two-size proper posets admit master conditions for
countable models and models of size ω1. (But definition
requires more.) Preserve ω1 and ω2.

Two-size proper forcing axiom: For every two-size proper
P, every collection A of ω2 maximal antichains of of P,
there is a filter on P which meets every antichain in A.

Theorem (N.) (2012 as stated, 2010 finer tower nodes)
Suppose θ is supercompact. Then there is a forcing
extension satisfying the two-size proper forcing axiom.

Covers posets of two-size side conditions, in particular
posets which collapse arbitrary δ ≥ ω2 to ω2.

Covers c.c.c. posets.

Class is closed under compositions.

Similar to classes for initial uses of PFA.
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Relaxing
Recall two-size properness: (∃ large enough θ, f )
(∀ two-size side condition s) (∀Q ∈ s elementary) every
p ∈ Q ∩

⋂
M∈resQ(s) mc(M) extends to q ∈

⋂
M∈s mc(M).

Relax the extension condition by placing restrictions on
the configuration of s and Q.

Only require condition to hold in following instances:
I resQ(s) = ∅.
I Q countable, p ∈ mc(U) ∩Q for some tower U ∈ Q

which subsumes resQ(s).
By U subsumes r mean every M ∈ r is either contained in
U or belongs to U. For tower U, in particular implies r has
only tower and type ω1 nodes.

Resulting class is relaxed two-size proper.

Theorem (N.)(2013)
Suppose θ is supercompact. There is a forcing extension
satisfying the relaxed two-size proper forcing axiom.



Higher analogues
of properness

I.Neeman

Forcing axioms

Side conditions

Higher analogues

Applications

Some words on the proof
Lifts new method for PFA consistency using finite support.

Method relies on two-type side conditions (ctbl elem.;
transitive) to preserve properness. N., building on
Mitchell-Friedman posets for adding clubs in ω2 with finite
conditions.

To generalize need three-type side conditions, preserve
ω1, ω2, supercompact θ (which becomes ω3).

Requires introduction of non-elementary nodes, which
give rise to tower node in two-size properness.

Initial version with fine, very technical, notion of
non-elementary nodes 2010.

Around the same time, independently, Aspero-Mota used
finite side condition with ctbl models to show weakenings
of PFA for ω2-c.c. posets consistent with large continuum.

Aspero-Mota class subsumed in ω2-c.c. relaxed two-size
proper.
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Square at ω1

Lemma (independently Krueger, N.)
There is a finite conditions poset, strongly proper for
countable and size ω1 nodes, forcing �ω1 .

Earlier work on forcing �ω1 with finite conditions by
Dolinar-Dzamonja, but clubs for the square sequence
added with ctbl fragments. Not strongly proper.

Poset in lemma not relaxed two-size proper; extension
condition fails. Variant (N.) for �ω1,fin is.

Corollary
The relaxed two-size proper forcing axiom implies �ω1,fin.

Not necessarily a good thing; may create too much
structure on ω2. (Non-relaxed) two-size proper forcing
axiom does not imply �ω1,fin. Suggests some applications
may require restricting forcing class—seems to weaken
axiom, but may give extra preservation on ω2.
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Analogue of MRP
Fix X . Σ ⊆ P(X ) is open if for every A ∈ Σ there is finite
a ⊆ A so that a ⊆ B ⊆ A→ B ∈ Σ.

Σ ⊆ P(X ) is N-stationary on size κ if ∀f : X<ω ∪ κ→ X in
N, there is A ∈ N ∩ Σ closed under f and containing f ′′κ.

Map Σ into P(X ) is open, κ-stationary if for every
N ∈ dom(Σ), Σ(N) open, N-stationary on size κ.

Work with sequences 〈Mξ | ξ < κ+〉, ∈-linear, continuous,
Mξ of size κ, κ ⊆ Mξ.

α < κ+ is a Σ reflection point if (∀ large enough ξ < α of
cofinality κ) Mξ ∩ X ∈ Σ(Mα).

Mapping Reflection Principle (Moore): for ω-stationary
open map Σ on club of ctbl N ≺ H(θ), exists 〈Mξ | ξ < ω1〉
with club of Σ reflection points.

Follows from PFA. Foundationally important
consequences: ¬�λ for λ ≥ ω1; wo of R of ordertype ω2,
definable over H(ω2) from parameter ⊆ ω1; SCH.
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Analogue of MRP (cont.)
For ctbl P, fatten(P) = P ∪

⋃
{Z ∈ P | |Z | = ω1}.

Σ ⊆ P(X ) is N-amenable, for N of size ω1 internal on
club, if for club of ctbl P ⊆ N, Σ(N) ∩ fatten(P) ∈ N.

Map Σ is amenable of if ∀N ∈ dom(Σ), Σ is N-amenable.

Let Pic-ω1(H) = {N ⊆ H | |N| = ω1, N internal on club}.

Lemma (N.)
Let Σ be amenable ω1-stationary open map, with dom(Σ)
containing a club relative to Pic-ω1(H(θ)). Then there is a
relaxed two-size forcing adding 〈Mξ | ξ < ω2〉 with
stationary set of Σ reflection points.

Corollary
Consistent that for every amenable ω1-stationary open
map Σ with domain containing a club relative to
Pic-ω1(H(θ)), exists 〈Mξ | ξ < ω2〉 with stationary set of Σ
reflection points.
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Analogue of MRP (cont.)

Enough to imply failure of �λ at λ ≥ ω2, through analogue
of MRP antithreading argument. (Antithreading can also
be done directly, and suggests the MRP analogue.)

Not enough for analogue of coding of reals, in MRP
argument for wellordering of R.

In MRP argument, given real coded by sup(Ord ∩
⋃

Mξ).
Here there is also a dependence on a stationary S ⊆ ω2.

If 〈Mξ | ξ < ω2〉 actually generic (not pseudo generic),
outside S behavior is generic and does not code any real.
So x uniquely determined from sup(Ord ∩

⋃
Mξ).

Possible that by restricting forcing class, can preserve
“non-coding” through an iteration.

Would allow strengthening thm to add this property to S.

Would then get wellordering of R of ordertype ω3
definable over H(ω3) from parameter ⊆ ω2.
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