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Abstract. We prove new upper bound theorems on the con-
sistency strengths of SPFA(θ), SPFA(θ-linked) and SPFA(θ+-cc).
Our results are in terms of (θ,Γ)-subcompactness, which is a new
large cardinal notion that combines the ideas behind subcompact-
ness and Γ-indescribability. Our upper bound for SPFA(c-linked)
has a corresponding lower bound, which is due to Neeman and ap-
pears in his follow-up to this paper. As a corollary, SPFA(c-linked)
and PFA(c-linked) are each equiconsistent with the existence of a
Σ2

1-indescribable cardinal. Our upper bound for SPFA(c-c.c.) is
a Σ2

2-indescribable cardinal, which is consistent with V = L. Our
upper bound for SPFA(c+-linked) is a cardinal κ that is (κ+,Σ2

1)-
subcompact, which is strictly weaker than κ+-supercompact. The
axiom MM(c) is a consequence of SPFA(c+-linked) by a slight re-
finement of a theorem of Shelah. Our upper bound for SPFA(c++-
c.c.) is a cardinal κ that is (κ+,Σ2

2)-subcompact, which is also
strictly weaker than κ+-supercompact.

1. Getting started

To better understand the Semi-proper Forcing Axiom (SPFA) we
break up SPFA into SPFA(C) for various classes C, where SPFA(C) is
the statement that for all P ∈ C, if P is semi-proper poset and D is a
family of maximal antichains of P such that |D| = ℵ1, then there is a
D-generic filter on P. We treat notation regarding the Proper Forcing
Axiom (PFA) and Martin’s Maximum (MM) similarly.

Definition 1. A poset P = (P,<P) is θ-linked iff there is a function
ℓ : P → θ such that if ℓ(p) = ℓ(q), then p and q are compatible in P.

Observe that if P has cardinality θ, then P is θ-linked, and if P is
θ-linked, then P is θ+-cc. These three classes of posets are the most
relevant to this paper and we abbreviate the corresponding semi-proper
forcing axioms SPFA(θ+-cc), SPFA(θ-linked) and SPFA(θ).
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Definition 2. Let λ be a cardinal such that 2<λ = λ. Then λ is Σ2
1-

indescribable iff for all Q ⊆ Hλ and first order formulas ϕ(x), if there
exists B ⊆ Hλ+ such that

(Hλ+ , B) |= ϕ(Q),

then there are κ < λ and A ⊆ Hκ+ such that

(Hκ+ , A) |= ϕ(Q ∩Hκ).

Definition 3. Let I be a forcing iteration of length λ. Then I is a
semi-proper iteration iff I is a revised countable support iteration and


I↾κ Iκ is a semi-proper poset

for all κ < λ.

Definition 4. Let λ be a regular cardinal and I be a forcing iteration.
Then I is amenable to Hλ iff I has length ≤ λ and


I↾κ Iκ ∈ Hλ

for all κ < the length of I.

Theorem 5. Let λ be a Σ2
1-indescribable cardinal and assume that

2λ = λ+. Then there is a length λ semi-proper iteration I that is

amenable to Hλ such that

V I |= SPFA(c-linked).

Moreover,

V I |= λ = c = ℵ2.

That c = ℵ2 follows from PFA(c) by a theorem of Todorcevic and
Velickovic (See [2] and [15]). Theorem 5 is one half of an equiconsis-
tency, the other half of which is due to Neeman [8], who showed that
if PFA(c-linked) holds, then ωV

2 is a Σ2
1-indescribable cardinal in L.

Corollary 6. The following three theories are equiconsistent.

ZFC + SPFA(c-linked)

ZFC + PFA(c-linked)

ZFC + There is a Σ2
1-indescribable cardinal.

The consistency strengths of PFA(c) and SPFA(c) are somewhere
between a Π1

1 indescribable (weakly compact) cardinal and a Σ1
2 inde-

scribable cardinal. The upper bound follows from Corollary 6. The
lower bound combines results of Jensen, Todorcevic and Velickovic on
the cardinality of the continuum and the failure of �(ω2). It would
be interesting and seemingly within the reach of current techniques to
know the consistency strengths of PFA(c) and SPFA(c) exactly.
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Recall from Schimmerling-Zeman [10] that a cardinal λ is subcompact

iff for all Q ⊆ Hλ+ , there exists κ < λ, P ⊆ Hκ+ and an elementary
embedding π : (Hκ+ , P ) → (Hλ+ , Q) with crit(π) = κ. For comparison,
if λ is subcompact, then λ is weakly compact (but not necessarily
measurable) and the class of superstrong cardinals is stationary in λ.
By Burke [3], if λ is a subcompact cardinal, then �λ fails.

Definition 7. Let λ ≤ θ be cardinals. Then λ is (θ,Σ2
1)-subcompact iff

for all Q ⊆ Hθ and first order formulas ϕ(x), if there exists B ⊆ Hθ+

such that

(Hθ+ , B) |= ϕ(Q),

then there exist κ ≤ η < λ, P ⊆ Hη and A ⊆ Hη+ such that

(Hη+ , A) |= ϕ(P )

and there exists an elementary embedding

π : (Hη, P ) → (Hθ, Q)

with π ↾ κ = identity ↾ κ and π(κ) = λ. We also say that [λ, θ] is a
Σ2

1-indescribable interval of cardinals in this case.

Literally, to say that π(κ) = λ does not make sense if κ = η, which
would be the case iff λ = θ. In this case, we interpret the final clause
of Definition 7 as saying that the identity map from (Hκ, Q ∩ Hκ) to
(Hλ, Q) is an elementary embedding. In other words, that

(Hκ, Q ∩Hκ) ≺ (Hλ, Q).

Lemma 8. λ is (λ,Σ2
1)-subcompact iff λ is Σ2

1-indescribable.

Proof. The left to right direction is clear from the definitions. Assume
that λ is Σ2

1-indescribable. Let Q ⊆ Hλ and ϕ(x) be a first order
formula. Suppose that there exists B ⊆ Hλ+ such that (Hλ+ , B) |=
ϕ(Q). Let

T = {(pψq, c) ∈ ω ×Hλ | (Hλ, Q) |= ψ(c)}

and τ(Q, T ) be the first order sentence that says: if λ is the largest
cardinal, then T is the first order theory of (Hλ, Q). Then Hλ+ |=
τ(Q, T ). By Σ2

1-indescribability, there are κ < λ and A ⊆ Hκ+ such
that

(Hκ+ , A) |= ϕ(Q ∩Hκ) ∧ τ(Q ∩Hκ, T ∩Hκ).

Then (Hκ, Q∩Hκ) ≺ (Hλ, Q∩Hλ), which is what is needed to witness
(λ,Σ2

1)-subcompactness. �



4 ITAY NEEMAN AND ERNEST SCHIMMERLING

Here are some comparisons with subcompact and supercompact car-
dinals. Perhaps the most interesting of these is Lemma 10(1), which
implies that the least cardinal κ that is (κ+,Σ2

1)-subcompact is strictly
less than the least cardinal λ that is λ+-supercompact. In a nutshell,
this is because κ being (κ+,Σ2

1)-subcompact can be witnessed by a
family of superstrong extenders whereas λ being λ+-supercompact can
only be witnessed by an extender that is beyond superstrong, i.e., an
extender with ultrafilters that concentrate on ordinals > λ.

While subcompact cardinals are not necessarily measurable, if λ is
(λ+,Σ2

1)-subcompact, then λ is measurable assuming GCH as the next
lemma shows.

Lemma 9. Assume GCH. If λ is (λ+,Σ2
1)-subcompact, then λ is sub-

compact and for every ν < λ++, there is an extender E with crit(E) = λ

and

sup({ξ | ξ is a generator of E}) > ν.

Proof. The fact that λ is subcompact is obvious from the definitions
and does not use GCH. Let ϕ(λ) be the assertion that there exists
ν < λ++ such that for every extender E with critical point λ, the
generators of E are bounded by ν. Then ϕ(λ) is absolute for Hλ++ . For
contradiction, suppose that ϕ(λ) holds. Pick κ < λ and π : Hκ+ → Hλ+

such that crit(π) = κ and ϕ(κ) holds inHκ++ . Let E be the superstrong
extender derived from π. That is,

E = {(a,X) | a ∈ [λ]<ω, X ⊆ [κ]|a| and a ∈ π(X)}.

Then the generators of E are unbounded in λ. In particular, ϕ(κ) fails
in Hκ++ . �

Lemma 10. Assume GCH.

(1) If λ is λ+-supercompact, then the set of κ < λ such that κ is

(κ+,Σ2
1)-subcompact is stationary in λ.

(2) If λ is λ++-supercompact, then λ is (λ+,Σ2
1)-subcompact .

Proof. Let j : V → M be an elementary embedding with crit(j) = λ

and λ+
M ⊆ M . Observe that Hλ++ = HM

λ++ . Let π = j ↾ Hλ+ . Then
π ∈M by the closure of M under λ+-sequences. Consider an arbitrary
Q ⊆ Hλ+ . Then

π : (Hλ+ , Q) → (HM
j(λ+), j(Q))

is elementary. Consider an arbitrary B ⊆ Hλ++ such that

(Hλ++ , B) |= ϕ(Q).

Then
(HM

j(λ++), j(B)) |= ϕ(j(Q)).
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Assume that B ∈ M . Then, since j is elementary, there exist κ < λ,
P ⊆ Hκ+ , A ⊆ Hκ++ and an elementary embedding

π′ : (Hκ+ , P ) → (Hλ+ , Q)

such that

(Hκ++ , A) |= ϕ(P ).

Since π′ ∈ Hκ+ ⊂ M , this shows that λ is (λ+,Σ2
1)-subcompact in

M . Hence, in terms of the the normal measure derived from j, almost
every κ < λ is (κ+,Σ2

1)-subcompact. From this, (1) is immediate. For
(2), notice that if HM

λ+++ = Hλ+++ , then the fact that λ is (λ+,Σ2
1)-

subcompact in M is absolute to V . �

Lemma 11. Assume GCH.

(1) If λ is (λ++,Σ2
1)-subcompact, then the set of κ < λ such that κ

is κ+-supercompact is stationary in λ.

(2) If λ is (λ+++,Σ2
1)-subcompact, then λ is λ+-supercompact.

Proof. Let π : Hκ++ → Hλ++ be an elementary embedding such that
crit(π) = κ. One easily sees that the set of such κ is stationary in λ.
Then κ is κ+-supercompact as witnessed by

U = {X ⊆ Pκ(κ
+) | π[κ+] ∈ π(X)}.

Thus (1) holds. If, instead, π : Hκ+++ → Hλ+++ , then λ is λ+-
supercompact as witnessed by π(U). This gives (2). �

Here are two remarks about Lemmas 10 and 11. First, notice that the
hypotheses are stronger than what is used in the proofs. Second, the
lemmas generalize to θ-supercompactness and (θ,Σ2

1)-subcompactness.
These generalizations show that the two hierarchies are nested in a
particular way.

The following is the main result of the paper. Its proof is given in
Section 2.

Theorem 12. Let λ ≤ θ be cardinals such that θ<λ = θ and 2θ = θ+.

Suppose that λ is (θ,Σ2
1)-subcompact. Then there is a length λ semi-

proper iteration I that is amenable to Hλ such that

V I |= SPFA(θ-linked)

and

V I |= λ = c = ℵ2.

Theorem 5 is the θ = λ case of Theorem 12. The following corollary
is the θ = λ+ case.
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Corollary 13. Suppose that λ is a (λ+,Σ2
1)-subcompact cardinal and

2λ+
= λ++. Then there is a length λ semi-proper iteration I that is

amenable to Hλ such that

V I |= SPFA(c+-linked).

It is worth emphasizing that no degree of supercompactness is as-
sumed in Corollary 13. As a partial converse, Neeman [8] showed that
if V is an extender model and there is a proper poset I ⊂ Hλ such that

V I |= λ = ℵ2 = c and PFA(c+-linked) holds,

then λ is a (λ+,Σ2
1)-subcompact cardinal in V .

Conjecture 14. The theories

ZFC + PFA(c+-linked)

and

ZFC + There is a cardinal λ that is (λ+,Σ2
1)-subcompact

are equiconsistent.

Steel showed that if PFA(c+) holds, then there is an inner model with
infinitely many Woodin cardinals; Schimmerling [9] had shown earlier
that for all n < ω, there is an inner model with n Woodin cardinals.

Shelah [12] proved that SPFA implies MM. The following is a slight
refinement, the proof of which can be found in Section 2.

Theorem 15. Let η be a regular cardinal and P be a stationary pre-

serving poset. Suppose that P ⊆ Hη and P is η-cc. Let θ = |Hη|
ℵ0.

Assume SPFA(θ-linked). Then P is semi-proper.

Corollary 16. SPFA(c+-linked) implies MM(c).

Thus Corollary 13 also provides a new upper bound on the consis-
tency strength of MM(c): again it is a cardinal λ that is (λ+,Σ2

1)-
subcompact. Steel and Zoble showed that if MM(c) holds, then there
is an inner model with infinitely many Woodin cardinals. Woodin [16]
had shown earlier that for every n < ω, there is an inner model with n
Woodin cardinals. Woodin [16] also gave a different sort of consistency
proof of MM(c) starting from the theory

ZF + ADR + Θ is regular

where

Θ = sup({α ∈ ON | there is a surjection f : R → α})

and using his forcing notion Pmax.
The following corollary is the θ = λ++ case of Theorem 12.
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Corollary 17. Suppose that λ is a (λ++,Σ2
1)-subcompact cardinal and

2λ++
= λ+++. Then there is a length λ semi-proper iteration I that is

amenable to Hλ such that

V I |= SPFA(c++-linked).

As a lower bound, Jensen, Schimmerling, Schindler and Steel recently
showed that PFA(c++) implies that there is a transitive proper class
model with a proper class of strong cardinals and a proper class of
Woodin cardinals.

The following is a corollary to the proof of Theorem 12. The proof
can be found in Section 2.

Corollary 18. Suppose that there is a proper class of cardinals θ such

that θ<λ = θ, 2θ = θ+ and λ is a (θ,Σ2
1)-subcompact cardinal. Then

there is a length λ semi-proper iteration I that is amenable to Hλ such

that V I |= SPFA.

Using Corollary 18, one can recover Shelah’s theorem that SPFA is
consistent relative to the existence of a supercompact cardinal. (See
[11], [5] or [4].) Our method of proof is not unrelated or simpler than
Shelah’s; rather, it is a more elaborate proof of a similar sort.

If we remove “semi-” and “revised” from Definition 3 then we arrive
at the definition of a “proper iteration”. We remark that Theorem 12
and its consequences, Theorem 5 and Corollaries 13, 17 and 18, remain
true if we substitute “proper” for “semi-proper” and “PFA” for “SPFA”
in their statements. This fact is relevant to [8].

2. The linkage hierarchy

In this section, after we develop a bit of general theory, we prove
Theorem 12, Corollary 18 and Theorem 15. The following sort of fast
function will be used in the proof of Theorem 12 in the definition of
the semi-proper iteration I.

Definition 19. Let λ ≤ θ be cardinals and f : λ → λ be a cardinal
valued function. Then f is (θ,Σ2

1)-fast iff for all Q ⊆ Hθ and first order
formulas ϕ(x), if there exists B ⊆ Hθ+ such that

(Hθ+ , B) |= ϕ(Q),

then there exist κ ≤ η ≤ f(κ), P ⊆ Hη and A ⊆ Hη+ such that

(Hη+ , A) |= ϕ(P )

and there exists an elementary embedding

π : (Hη, P ) → (Hθ, Q)
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with π ↾ κ = identity ↾ κ and π(κ) = λ.

Clearly, if there is a (θ,Σ2
1)-fast function f : λ→ λ, then λ is (θ,Σ2

1)-
subcompact. The following lemma is the converse.

Lemma 20. Let λ ≤ θ be cardinals. Suppose that λ is (θ,Σ2
1)-subcompact.

Then there is a function f : λ→ λ such that f is (θ,Σ2
1)-fast.

Proof. By induction on θ. Assume that for all ζ < θ, there is a function
f : λ → λ such that f is (ζ,Σ2

1)-fast. For contradiction, suppose that
there is no function f : λ→ λ such that f is (θ,Σ2

1)-fast.
Notice that θ >> λ. For example, suppose that there are no inacces-

sible cardinals between λ and θ and λ is a (θ,Σ2
1)-subcompact cardinal.

Let f(κ) be the least inaccessible cardinal strictly greater than κ. Then
f : λ→ λ is a (θ,Σ2

1)-fast function. (The reader who is only interested
in special cases such as θ = λ+ and its relationship to SPFA(c+-linked)
has as much of Lemma 20 as he needs at this point.)

We digress to define a different kind of conjunction for Σ2
1 statements.

Consider an arbitrary cardinal η. Our first step towards defining Σ2
1-

conjunction is to consider a single Σ2
1 statement. Let ϕ be a first order

formula and P ⊆ Hη. Suppose that there exists A ⊆ Hη+ such that

(Hη+ , A) |= ϕ(P ).

This is equivalent to saying that there exist A, T ⊆ Hη+ such that

T = {(pψq, p1, . . . , pk) | (Hη+ , A) |= ψ(p1, . . . , pk)}

and

(pϕq, P ) ∈ T.

The first displayed formula says that T is the elementary diagram of
(Hη+ , A). Uniformly in A and T , this can be expressed as a first order
sentence over (Hη+ , A, T ). This sentence, which we call ∆, says that
for every Gödel number pψq of a first order formula ψ(x1, . . . , xk) and
all parameters p1, . . . , pk ∈ Hη+ ,

• if ψ is xi ∈ xj, then

T (pψq, p̄) ⇐⇒ pi ∈ pj,

• if ψ is A(xi), then

T (pA(xi)q, p̄) ⇐⇒ A(pi),

• if ψ is ¬χ, then

T (pψq, ~p) ⇐⇒ ¬T (pχq, p̄),
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• if ψ is χ ∧ χ′, then

T (pψq, p̄) ⇐⇒ T (pχq, p̄) ∧ T (pχ′q, p̄)

and
• if ψ is ∃xiχ, then

T (pψq, p1, . . . pi−1, pi+1, . . . , pk) ⇐⇒

there exists pi such that T (pχq, p̄).

Thus, the following Σ2
1 statements about Hη are equivalent.

(i) There exists A ⊆ Hη+ such that

(Hη+ , A) |= ϕ(P ).

(ii) There exist A, T ⊆ Hη+ such that

(Hη+ , A, T ) |= ∆ ∧ T (pϕq, P ).

Now we say what this has to do with conjunctions. Consider arbitrary
cardinals κ < η and, for each f : κ → κ, a first order formula ϕf

and a parameter Pf ⊆ Hη. By what we just explained, the following
statements are equivalent to each other.

(1) For every f : κ→ κ, there exists A ⊆ Hη+ such that

(Hη+ , A) |= ϕf (Pf ).

(2) For every f : κ→ κ, there exist A, T ⊆ Hη+ such that

(Hη+ , A, T ) |= ∆ ∧ T (pϕfq, Pf ).

Assume that η >> κ. Let

P = {(f, x) | x ∈ Pf}.

For each function f ∈ κ → κ, let ϕ∗
f be the result of replacing every

occurrence of A(x) in ϕf by A(f, x). Let ϕ(P ) be the first order sen-
tence

∆ ∧ ∀f ∈ κκ T (pϕ∗
fq, Pf ).

Then statements (1) and (2) above are equivalent to the following.

(3) There exist A, T ⊆ Hη+ such that

(Hη+ , A, T ) |= ϕ(P ).

Notice that (3) is a Σ2
1 statement about Hη. We call ϕ(P ) the Σ2

1-
conjunction of ϕf (Pf ) for f ∈ κκ.

Now we return to the main line of the proof of Lemma 20. For
each f : λ → λ, pick a witness ϕf (Qf ) that f is not (θ,Σ2

1)-fast.
Consequently, for every f : λ→ λ there exists B ⊆ Hθ+ such that

(Hθ+ , B) |= ϕf (Qf ).
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Let ϕ(Q) be the Σ2
1-conjunction of ϕf (Qf ) for f ∈ λλ.

Define a function z : λ → λ as follows. For each κ < λ, let z(κ)
be the least ζ < λ such that there is no (ζ,Σ2

1)-fast function at κ. If
there is no such ζ, then set z(κ) = κ. Define another partial function
g : λ→ λ by setting

g(κ) = |Hz(κ)+ |.

Now apply the fact that λ is (θ,Σ2
1)-subcompact to find

κ < η < λ,

P ⊆ Hη

and an elementary embedding

π : (Hη, P ) → (Hθ, Q)

with crit(π) = κ and π(κ) = λ such that, for some A, T ⊆ Hη+ ,

(Hη+ , A, T ) |= ϕ(P ).

By the definition that we gave of g, it is clear that g ∈ ran(π). Hence
g = π(g ↾ κ). It follows that

π : (Hη, Pg↾κ) → (Hθ, Qg)

is an elementary embedding and there exists A ⊆ Hη+ such that

(Hη+ , A) |= ϕg(Pg↾κ).

To finish the proof of Lemma 20 with a contradiction, it is enough to
show that η ≤ g(κ). This involves two claims.

First we claim that there is no e : κ → κ such that e is (η,Σ2
1)-fast.

For suppose otherwise. Let f = π(e). It follows that

π : (Hη, Pe) → (Hθ, Qf )

is an elementary embedding and there exists A ⊆ Hη+ such that

(Hη+ , A) |= ϕf (Pe).

Apply the (η,Σ2
1)-fastness of e : κ→ κ to find

κ̄ < η̄ ≤ e(κ̄) < κ,

P̄ ⊆ Hη̄

and an elementary embedding

π̄ : (Hη̄, P̄ ) → (Hη, Pe)

with crit(π̄) = κ̄ and π(κ̄) = κ such that, for some Ā ⊆ Hη̄+ ,

(Hη̄+ , Ā) |= ϕf (P̄ ).

But
π ◦ π̄ : (Hη̄, P̄ ) → (Hθ, Qf )
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is an elementary embedding and f ↾ κ = e hence η̄ ≤ f(κ̄). Taken
together, these facts directly contradict our choice of ϕf (Qf ). This
proves our first claim.

The first claim tells us that z(κ) ≤ η and that z(κ) is the least ζ < λ

such that there is no (ζ,Σ2
1)-fast function at κ.

Second we claim that if P(Hζ+) ⊆ Hη, then z(κ) > ζ. This is clear
from the fact that π : Hη → Hθ is an elementary embedding and our
induction hypothesis that for all ζ < θ, there is a function f : λ → λ

such that f is (ζ,Σ2
1)-fast.

By the two claims,

2|Hz(κ)+ |
> |Hη|.

Hence,

|Hz(κ)+ | ≥ |Hη|.

Thus, g(κ) ≥ η as desired. �

The following result will be used in the proof of Theorem 12.

Lemma 21. Let θ be a cardinal and

C = {P | |P | = 2θ and P is θ-linked}.

Then SPFA(C) implies SPFA(θ-linked).

Proof. Consider an arbitrary poset Q that is semi-proper and θ-linked.
We may assume that Q = (ρ,<Q) where ρ > 2θ. Let ℓ : ρ→ θ witness
that Q is θ-linked. Suppose that D is a family of maximal antichains
of Q with |D| = ℵ1. Then |

⋃
D| ≤ θ. Let σ < τ be regular cardinals

much greater than ρ. Because Q is semi-proper, there exists a function

F : H<ω
σ −→ Hσ

such that if M ⊆ Hσ is nonempty and closed under F , then

(1) M 4 Hσ and Q ∈M ,
(2) if M is countable, then for all r ∈ µ ∩M , there exists s <Q r

such that s is (M,Q)-semi-generic.

Let X 4 Hτ with F ∈ X, |X| = 2θ,
⋃

D ⊆ X and θX ⊆ X. Let
P = Q ↾ X. That is, P = (P,<P) where P = ρ ∩X and

r <P s ⇐⇒ r <Q s

for all r, s ∈ P . Observe that P is θ-linked as witnessed by ℓ ↾ P .
If A is an antichain of P, then A is an antichain of Q and A ∈ X

because θX ⊆ X. Moreover, if A is an antichain of P, then

A is maximal in P ⇐⇒ A is maximal in Q.
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This is because if A is not maximal in Q, then there exists r ∈ ρ − A

such that A∪{r} is an antichain in Q, but since X 4 Hσ and A,Q ∈ X,
there exists

s ∈ X ∩ (ρ− A) = P − A

such that A ∪ {s} is an antichain in Q, which implies that A ∪ {s} is
an antichain in P.

We claim that P is semi-proper. Let N 4 Hτ be countable with
F,X ∈ N . Suppose that r ∈ P ∩ N . Let M = N ∩ Hσ ∩ X. Then
M 4 X 4 Hσ and M is non-empty, countable and closed under F .
Since r ∈ M , there exists s <Q r such that s is (M,Q)-semi-generic.
Because X 4 Hτ and r,M,Q ∈ X, there exists t <P r such that
t ∈ X and t is (M,Q)-semi-generic. A name for a countable ordinal
is essentially a partition of a maximal antichain into ω1 many pieces.
Suppose that c : A → ω1 is a partition of a maximal antichain of P.
Then c ∈ X and c is a partition of a maximal antichain of Q. Suppose
that further that c ∈ N . Then c ∈M . By semi-genericity,

t 
Q ∃α ∈M
(
G ∩ c−1 [{α}] ∩M 6= ∅

)
.

Using again that X 4 Hσ and t,Q, c,M ∈ X, it is straightforward to
verify that

t 
P ∃α ∈M
(
G ∩ c−1 [{α}] ∩M 6= ∅

)
.

In particular,

t 
P ∃α ∈ N
(
G ∩ c−1 [{α}] ∩N 6= ∅

)
.

This shows that t is (N,P)-semi-generic and proves the claim.
To finish the proof of the lemma, note that if A ∈ D, then A ⊆ P

and A is a maximal antichain of P. So we may apply the hypothesis
of the lemma to P to find a filter G on P such that G ∩ A 6= ∅ for all
A ∈ D. Then

H = {s ∈ µ | r ≤Q s for some r ∈ G}

is a filter on Q and H ∩ A 6= ∅ for all A ∈ D. �

Definition 22. A function F : H<ω
θ+ → Hθ+ is a witness that Q is semi-

proper iff Q ⊆ Hθ+ is a θ+-cc poset and for every non-empty countable
M ⊆ Hθ+ , if F [M<ω] ⊆ M , then for all p ∈ M , there exists q <Q p

such that q is (M,Q)-semi-generic.

Lemma 23. Let Q ⊆ Hθ+ be a θ+-cc poset. Then Q is semi-proper iff

there is a witness F : H<ω
θ+ → Hθ+ that Q is semi-proper.

Proof. If A is a maximal antichain of Q and c : A→ ω1, then c ∈ Hθ+ .
The rest follows from the definitions. �
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The proofs of Theorem 12 does not use a Laver function. In fact, we
do not see how to construct a suitable Laver function without strength-
ening the large cardinal hypothesis. Instead we use the following es-
tablished technique.

Definition 24. U = (U,<U) is the proper class partial ordering

U = {(p,P) | P is semi-proper and p ∈ P}

and

(p,P) <U (q,Q) ⇐⇒ (P = Q and p <P q)

In other words, U is the direct sum of all semi-proper partial order-
ings. This is called the lottery sum in Hamkins [7] where the same idea
is used for related purposes.

Lemma 25. For every cardinal η, U ∩Hη is a semi-proper poset.

Proof. Let θ be a regular cardinal that is large enough so that for every
semi-proper P ∈ Hη, there is a witness FP that P is semi-proper such
that FP ∈ Hθ. Consider a countable M ≺ Hθ with

〈FP | P ∈ Hη and P is semi-proper〉 ∈M.

Let (p,P) ∈ U ∩ Hη ∩ M . Then FP ∈ M so M is closed under FP.
So, there is q <P p such that q is (M,P)-semi-generic. Hence (q,P) <U

(p,P) and (q,P) is (M,U ∩Hη)-semi-generic. �

Definition 26. Let λ be an inaccessible cardinal and h : λ → λ be a
cardinal valued function. The universal semi-proper iteration associ-

ated to h is the revised countable support iteration I of length λ such
that


I↾κ Iκ = U ∩Hh(κ)

for all κ < λ.

Lemma 27. Let λ be an inaccessible cardinal, h : λ→ λ be an increas-

ing cardinal valued function and I be the universal iteration associated

to h. Then I is a semi-proper iteration that is amenable to Hλ and

λ-cc. Moreover, if

S = {κ < λ | κ is inaccessible and h[κ] ⊆ κ},

then

I ∩Hκ = I ↾ κ

for all κ ∈ S, hence

I =
⋃

{I ↾ κ | κ ∈ S}.
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The proof of Lemma 27 is immediate from Lemma 25, Definition 26
and well-known theorems of Shelah on revised countable support iter-
ation of semi-proper forcing. See [11] or [4].

If P = (P,<P) and D is a sequence of subsets of P , then we write
(P, D) for the structure (P,<P, Di)i∈dom(D). The following relation is
used in the proof of Theorem 12.

Definition 28. We write τ : (P, D) ⊑ (Q, E) iff P and Q are posets, D
is a sequence of maximal antichains of P, E is a sequence of maximal
antichains of Q of the same length as D,

τ : (P, D) → (Q, E)

is an elementary embedding and
⋃
E ⊆ τ [P ].

Lemma 29. Suppose that τ : (P, D) ⊑ (Q, E). Let G be a D-generic

filter on P and

H = {q ∈ Q | there exists p ∈ G such that τ(p) ≤Q q}.

Then H is an E-generic filter on Q.

The proof of Lemma 29 is clear.

Lemma 30. Suppose that τ : (P, D) ⊑ (Q, E). Assume that for all

u, v ∈
⋃
E, there exists α < dom(E) such that

Eα ⊆ {w ∈ Q | (w ≤Q u, v) or (w ⊥Q u) or (w ⊥Q v)} .

Let H be an E-generic filter on Q and G = τ−1[H]. Then G is a

D-generic filter on P.

Proof. The added assumption is used to show that if p, q ∈ G, then
there exists r ∈ G such that r ≤P p, q. Equivalently, if τ(p), τ(q) ∈ H,
then there is r ∈ P such that τ(r) ∈ H and τ(r) ≤Q τ(p), τ(q). Let
α < dom(E) be such that

Eα ⊆ {w ∈ Q | (w ≤Q τ(p), τ(q)) or (w ⊥Q τ(p)) or (r ⊥Q τ(q))} .

Since H is E-generic, there is w ∈ H ∩Eα. Since
⋃
E ⊆ τ [P ], there is

r ∈ P such that τ(r) = w. Since H is a filter, τ(p), τ(q) and τ(r) are
pairwise compatible. Hence τ(r) ≤Q τ(p), τ(q). The rest is clear. �

Given an infinite cardinal length sequence E = 〈Eα | α < |E|〉 of
maximal antichains of Q, there is a cardinal length sequence

E = 〈Eα | α < |E|〉

of maximal antichains of Q such that

{Eα | α < |E|} ⊆ {Eα | α < |E|}
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and E satisfies the assumption of Lemma 30. A natural operation
produces the family of maximal antichains {Eα | α < |E|} from E

in ω-many steps and then we re-index so that dom(E) = |E|. This
operation is defined relative to the poset and a wellordering, both of
which we suppress in the notation. Let us write

τ : (P, D,D) ⊑ (Q, E,E)

iff τ : (P, D) ⊑ (Q, E) and τ : (P, D) ⊑ (Q, E). We write

(P, D,D) ⊑ (Q, E,E)

to mean that there there exists τ such that τ : (P, D,D) ⊑ (Q, E,E).
We remark that Lemma 30 holds without the assumption on E if Q

is closed under meets, that is, if for all u, v ∈ Q, there exists w ∈ Q

such that w = u∧Q v. Observe that if Q is an infinite poset, then there
is a poset Q′ that is closed under meets such that Q is dense in Q′ and
|Q| = |Q′|. In fact, we could make Q′ a Boolean algebra if we wanted.
If, in addition, Q is semi-proper, then so is Q′. The reader who is only
interested in forcing axioms for posets that are closed under meets
can strip away discussion of the operation E 7→ E in what follows.
Just after getting started with the proof of Theorem 12, in the second
paragraph, we give an outline of what is to come.

Proof of Theorem 12

Assume that θ<λ = θ and 2θ = θ+. Let f : λ → λ be a (θ,Σ2
1)-fast

function. We may assume that f is cardinal valued. Define h : λ → λ

by h(κ) = f(κ)++ for κ < λ. Let I be the universal iteration associated
to h. For contradiction, suppose that there is a generic extension of
V by I in which there are Q and E such that Q is a semi-proper and
θ-linked poset and E is an ω1-sequence of maximal antichains of Q but
there is no E-generic filter on Q. Work in such a generic extension.
Let ℓ : Q → θ witness that Q is θ-linked. By Lemma 21, we may
assume that Q ⊆ Hθ+ . Then, there is a function F : H<ω

θ+ → Hθ+ that
witnesses that Q is semi-proper. Apply the operation described above
to form E. We may assume that dom(E) = θ. Let X 4 (Q, E) with⋃
E ⊆ X and |X| = θ. Let τ : θ → X be a bijection. Use τ to define

a poset P = (θ,<P), an ω1-sequence D of maximal antichains of P and
a θ-sequence D of maximal antichains of P such that

τ : (P, D,D) ≃ (Q ↾ X,E,E)

and D is the closure of D relative to P. Then τ : (P, D,D) ⊑ (Q, E,E).
By Lemma 29, there is no D-generic filter on P.
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Before continuing, let us give a general description of the proof to
come. The existence of Q, E, ℓ and F as above is a Σ2

1 assertion about
P and D over Hθ in V I. Claim 31 below gives a version of this Σ2

1 over
Hθ assertion that holds in V . Using the assumption that f : λ → λ is
a (θ,Σ2

1)-fast function, we find κ ≤ η ≤ f(κ) < λ and an elementary
embedding

π : (Hη, I ↾ κ,P∗, D∗) → (Hθ, I,P, D)

with π ↾ κ = identity ↾ κ and π(κ) = λ. Moreover, the same Σ2
1

assertion holds about P∗ and D∗ over Hη in V I↾κ. For the precise
formulation, see Claim 32. This provides I ↾ κ-names for a semi-proper
η-linked poset Q∗ and an ω1-sequence E∗ of maximal antichains of Q∗

such that (P∗, D∗, D∗) ⊑ (Q∗, E∗, E∗). The fact that I is a universal
iteration plus a density argument reduces us to the case in which a
V I↾κ-generic filter over Q∗ is added at stage κ of the iteration. See
Claim 33 below. From Lemma 30, it follows that a D∗-generic filter g∗

over P∗ is added at stage κ of the iteration. At the end of the argument,
we use π to lift g∗ to a D-generic filter g on P. This contradicts the
last sentence of the previous paragraph! Our outline is complete; now
we return to the proof.

Work in V and treat the sets discussed in the first paragraph of the
proof as I-names. Let u ∈ I force all the facts we listed in the previous
paragraph; we will be specific about what we mean by this. We may
assume that, as I-names,

Q, ℓ, F ⊆ Hθ+ ,

E,P, D ∈ Hθ+

and

P, D ⊆ Hθ.

To justify the assumptions about E, P and D, we use that θ<λ = θ

and I is λ-cc. By E we mean the natural I-name for the closure of E
relative to Q. Naturalness implies that if E ∈ Hθ+ , then E ∈ Hθ+ and
vice-versa. Similarly, if D ⊆ Hθ, then D ⊆ Hθ and vice-versa for the
closure relative to P.

Let ψ(P, D,Q, E, ℓ, F ) be the conjunction of the following sentences
in the forcing language of I.

(1) ℓ : Q→ θ witnesses that Q is θ-linked.
(2) F : H<ω

θ+ → Hθ+ witnesses that Q is semi-proper.
(3) E is an ω1-sequence of maximal antichains of Q.
(4) (P, D,D) ⊑ (Q, E,E)
(5) There is no D-generic filter on P.
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We have fixed u ∈ I precisely so that

u 
I ψ(P, D,Q, E, ℓ, F ).

Let ϕ(ξ, λ, h, I, u, θ,P, D) be the statement that there the exists N ⊆
Hθ+ such that N is a wellfounded model of ZFC - P and, if M is the
Mostowski collapse of N , then θM ⊆M and

M |= there are Q∗, E∗, ℓ∗, and F ∗ such that
χ(ξ, λ, h, I, u, θ,P, D,Q∗, E∗, ℓ∗, F ∗)

where χ(· · · ) is the following first order sentence:

• θ+ exists and is the largest cardinal,
• ξ < λ ≤ θ,
• <λθ = θ,
• h : λ→ λ is cardinal valued,
• I is the universal iteration associated to h,
• u ∈ I,
• P, D ⊆ Hθ,
• Q∗, ℓ∗, F ∗ ⊆ Hθ+ ,
• E∗,P, D ∈ Hθ+ and
• u 
I ψ(P, D,Q∗, E∗, ℓ∗, F ∗).

Claim 31. For every ξ < λ, ϕ(ξ, λ, h, I, u, θ,P, D) is a true Σ2
1 property

of Hθ.

Proof. Notice that the leading quantifier of ϕ(· · · ) is ∃N ⊆ Hθ+ and
that what follows this quantifier is first order over the structure (Hθ+ , N).
Notice also that the every parameter of ϕ(· · · ) is a subset of Hθ. This
is what we mean by a Σ2

1 statement about Hθ. To verify that ϕ(· · · ) is
true, let M be a transitive θ-closed Skolem hull of {Q, f, F} taken in
Hθ++ and obtain N from M . �

We cannot replace θ-linked with θ+-cc in the proof of Claim 31 be-
cause the definition of θ+-cc involves an additional universal quantifier
over antichains of Q, which are named by subsets of Hθ+ . Compare
this with Theorem 38.

Claim 32. For every ξ < λ such that u ∈ Hξ, there are κ, η, P∗, D∗,

π, Q∗, E∗, ℓ∗ and F ∗ such that

ξ < κ ≤ η ≤ f(κ) < λ,

π : (Hη, I ↾ κ,P∗, D∗, D∗) → (Hθ, I,P, D,D)
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is an elementary embedding with π ↾ κ = identity ↾ κ and π(κ) = λ,

and

u 
I↾κ Q∗ ⊆ Hη+ ,

ℓ∗ : Q∗ → η+ witnesses that Q∗ is θ-linked,

F ∗ : H<ω
η+ → Hη+ witnesses that Q∗ is semi-proper,

(P∗, D∗, D∗) ⊑ (Q∗, E∗, E∗).

Proof. Immediate from the fact that f : λ→ λ is a (θ,Σ2
1)-fast function,

Lemma 27, Claim 31 and the absoluteness of

χ(ξ, κ, h ↾ κ, I ↾ κ, u, η,P∗, D∗,Q∗, E∗, ℓ∗, F ∗)

from M∗ to V if M∗ is a transitive model of ZFC - P such that ηM∗ ⊆
M∗. �

For each ξ < λ such that u ∈ Hξ, pick corresponding κ∗, η∗, P∗, D∗,
π∗, Q∗ and E∗ as in Claim 32 and call them κξ, ηξ, Pξ, Dξ, πξ, Qξ and
Eξ. The next claim is immediate from Claim 32.

Claim 33. Let X be the set of v ≤I u for which there exist ξ < λ and

q ∈ Hη+
ξ

such that u ∈ Hξ,

u 
I↾κξ
q ∈ Qξ

and

v = (v ↾ κξ) ∪ {(κξ, (q,Qξ))}.

Then X is dense below u.

It follows from Claims 32 and 33 that

u 
I there exists ξ < λ such that {q ∈ Qξ | (q,Qξ) ∈ Iκξ
}

is a V [G ↾ κξ]-generic filter on Qξ

Let G be a V -generic filter on I with u ∈ G. Work in V [G]. Fix a
corresponding ξ < λ but let us revert to the notation of Claim 32.
Thus we have κ < λ such that V [G ↾ κ + 1] is generic extension of
V [G ↾ κ] by Q∗

G↾κ. In particular, there is an E∗
G↾κ-generic filter on

Q∗
G↾κ. By Lemma 30, since

(
P∗

G↾κ, D
∗
G↾κ

)
⊑

(
Q∗

G↾κ, E
∗
G↾κ

)
,

there is a D∗
G↾κ-generic filter g∗ on P∗

G↾κ. For us, it only matters that
g∗ is D∗

G↾κ-generic. We have the elementary embedding

π : (HV
η , I ↾ κ,P∗, D∗) → (HV

θ , I,P, D)

with π ↾ κ = identity ↾ κ and π(κ) = λ. Because

π[G ↾ κ] = G ↾ κ ⊂ G,
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π lifts to an elementary embedding

π̃ : (HV
η [G ↾ κ],P∗

G↾κ, D
∗
G↾κ) → (HV

θ [G],PG, DG).

Let

g = {p ∈ PG | there is p∗ ∈ g∗ such that π̃(p∗) ≤PG
p}.

Then g is a π̃[D∗
G↾κ]-generic filter on PG. But π̃[D∗

G↾κ] = DG since
D∗

G↾κ and DG are ω1-sequences and ω1 < κ. There is no such filter
because u ∈ G and by clause (5) in our choice of u. This contradiction
completes the proof of Theorem 12.

Proof of Corollary 18

Assume that there is a proper class of cardinals θ such that θ<λ = θ,
2θ = θ+ and λ is (θ,Σ2

1)-subcompact. By Lemma 20, for each such θ,
we may pick a function fθ : λ→ λ that is (θ,Σ2

1)-fast. Since λλ is a set,
there is a single function f and a proper class of θ such that fθ = f .
Use f to define a semi-proper iteration I as in the proof of Theorem 12.
Clearly this works.

Proof of Theorem 15

Theorem 15 is a slight refinement of Shelah’s theorem that SPFA
implies MM. We follow the line of reasoning, due to Todorcevic (see
[2]) that SPFA implies SRP, SRP implies WRP, and WRP implies that
stationary preserving partial orderings are semi-proper. But when it
comes time to apply SPFA, we use a slightly more complicated poset
that is θ-linked. What follows is a self-contained account for the con-
venience of the reader. We stress that, except for one modest aspect,
the argument is known and not due to the authors.

Let η be a regular cardinal and P be a stationary preserving poset.
Suppose that P ⊆ Hη and P is η-cc. Let θ = |Hη|

ℵ0 . Assume that
SPFA(θ-linked) holds. We must show that P is semi-proper.

Towards a contradiction, suppose that P is not semi-proper. Let

S0 = {N ∈ [Hη]
ℵ0 | ∃ p ∈ N∩P ∀ q <P p q is not (N,P)-semi-generic}.

Then S0 is stationary in [Hη]
ℵ0 . Apply Fodor’s lemma to find p ∈ P so

that if we let

S = {N ∈ [Hη]
ℵ0 | p ∈ N and ∀ q <P p q is not (N,P)-semi-generic},

then S is stationary in [Hη]
ℵ0 . The following lemma says that if WRP

holds for S, then we have the contradiction we seek.
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Lemma 34. There is no X ⊆ Hη such that

ω1 ⊆ X,

|X| = ℵ1

and

S ∩ [X]ℵ0 is stationary in [X]ℵ0 .

Proof. Suppose otherwise. Let G be a V -generic filter on P with p ∈ G.
Since P preserves stationary subsets of ω1,

(S ∩ [X]ℵ0 is stationary in [X]ℵ0)V [G].

In V [G], define a partial function f : X → ω1 by f(τ) = τG when-
ever τ is a P-name in X for a countable ordinal. Pick N ∈ S such
that N is closed under f . Let q ∈ G be such that q <P p and
q 
 N is closed under f . Then q is (N,P)-semi-generic. Contradic-
tion! �

We define a poset Q = (Q,<Q) that is designed to add a set X as in
Lemma 34. Here is where the complication arises in the proof because
we need Q to be θ-linked.

The elements of Q are sequences of the form 〈(Mα, Fα) | α ≤ δ〉 with
the following properties.

• δ < ω1.
• Each Mα is a countable elementary substructure of Hη with

Mα ∩ ω1 ≥ α.

• 〈Mα | α ≤ δ〉 is an ∈-increasing (hence ⊆-increasing) and con-
tinuous.

• Each Fα is a countable family of functions from Hη to Hη.
• 〈Fα | α ≤ δ〉 is a ⊆-increasing and continuous.
• Each Mα is closed under the functions in Fα.
• For each α ≤ δ, if there exists N so that

– Mα ⊆ N ,
– Mα ∩ ω1 = N ∩ ω1,
– N is closed under the functions in Fα and
– N ∈ S,

then Mα ∈ S.

We define the ordering ≤Q by

〈(M ′
α, F

′
α) | α ≤ δ′〉 ≤Q 〈(Mα, Fα) | α ≤ δ〉

iff δ′ ≥ δ and, for every α < δ, M ′
α = Mα and F ′

α ⊇ Fα.
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Define the stem of a condition 〈(Mα, Fα) | α ≤ δ〉 to be the sequence
〈Mα | α ≤ δ〉. Any two conditions with the same stem are compati-
ble. The number of stems is at most θ, so Q is θ-linked. We will see
that Q is semi-proper but first let us show that this gives the desired
contradiction. The next lemma is essentially the fact that SRP implies
WRP.

Lemma 35. For each δ < ω1, let Dδ be the set of conditions of length

δ + 1. Then there is no filter G on Q such that G ∩ Dδ 6= ∅ for all

δ < ω1.

Proof. Assume otherwise. Let 〈(Mα, Fα) | α ≤ ω1〉 be the union of G
and

X =
⋃

{Mα | α < ω1}.

By Lemma 34, it is enough to see that S ∩ [X]ℵ0 is stationary in [X]ℵ0 .
Assume otherwise. As always, we endow Hη with predicates for mem-
bership and a fixed wellordering of Hη. Note that

〈(Mα, Fα) | α < ω1〉 ⊆ Hη.

Let A be the expansion of Hη by this additional predicate. Since S is
stationary in [Hη]

ℵ0 but not in [X]ℵ0 , there is a countable N ≺ A such
that N ∈ S but N ∩X 6∈ S. Let δ = N ∩ ω1. Then

• Mδ = N ∩X ⊆ N ,
• Mδ ∩ ω1 = δ = N ∩ ω1,
• N is closed under the functions in Fδ =

⋃
{Fα | α < δ} and

• N ∈ S.

Hence Mδ ∈ S by the definition of Q. This contradicts the fact that
Mδ = N ∩X 6∈ S. �

Of course, for each δ < ω1, Dδ is dense in Q. The next lemma is
the last step in the proof of Theorem 15. It is essentially the fact that
SPFA implies SRP.

Lemma 36. Q is semi-proper.

Proof. Let κ >> θ be a regular cardinal. Consider a countable N ≺ Hκ

with everything relevant in N . Let q ∈ N ∩ Q. We seek a condition
r∗ <Q q such that r∗ is (N,Q)-semi-generic.

Let δ = N∩ω1 and G be an N -generic filter on Q with q ∈ G. Define

• 〈(Mα, Fα) | α < δ〉 =
⋃
G,

• M = N ∩Hη,
• F =

⋃
{Fα | α < δ} and

• r = 〈(Mα, Fα) | α < δ〉 ∪ {(δ, (M,F ))}.
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Observe the following.

• F consists of all functions from Hη to itself that are elements
of N . This is by N -genericity.

• If r ∈ Q, then r <Q q and r is (N,Q)-generic.
• If M ∈ S, then r ∈ Q.

By the definition of Q, the only way that r could fail to be a condition
is if M 6∈ S but there exists M∗ ≺ Hη such that

• M ⊆M∗,
• M ∩ ω1 = δ = M∗ ∩ ω1,
• M∗ is closed under the functions in F and
• M∗ ∈ S.

Assume that this is the case. Let N∗ be the Skolem hull of N ∪M∗ in
Hκ. We claim that

N∗ ∩Hη = M∗.

For suppose that a ∈ N∗ ∩ Hη. Then there is a Skolem term τ and
there are b ∈ N and c ∈M∗ such that

a = τHκ [b, c].

Let f be the partial function from Hη to itself given by

f : z 7→ τHκ [b, z].

Then f ∈ N . Hence a = f(c) ∈M∗, which proves the claim.
We have found N∗ ≺ Hκ such that

• N ⊆ N∗,
• N ∩ ω1 = δ = N∗ ∩ ω1,
• M∗ = N∗ ∩Hη ∈ S.

Let G∗ be an N∗-generic filter on Q with q ∈ G∗. Define

• 〈(M∗
α, F

∗
α) | α < δ〉 =

⋃
G∗,

• F ∗ =
⋃
{F ∗

α | α < δ} and
• r∗ = 〈(M∗

α, F
∗
α) | α < δ〉 ∪ {(δ, (M∗, F ∗))}.

Then r∗ ∈ Q. Hence r∗ <Q q and r∗ is (N∗,Q)-generic. Finally, observe
that r∗ is (N,Q)-semi-generic because of the agreement between N and
N∗. �

3. The chain condition hierarchy

We conclude the paper with an upper bound on the large cardinal
consistency strength of SPFA(θ+-cc). This involves a strengthening the
hypothesis of Theorem 12.
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Definition 37. Let λ ≤ θ be cardinals. Then λ is (θ,Σ2
2)-subcompact

iff for all Q ⊆ Hθ and first order formulas ϕ(x), if there exists B ⊆ Hθ+

such that for all B′ ⊆ Hθ+

(Hθ+ , B,B′) |= ϕ(Q),

then there exist κ ≤ η < λ, P ⊆ Hη and A ⊆ Hη+ such that for all
A′ ⊆ Hη+ ,

(Hη+ , A,A′) |= ϕ(P )

and there exists an elementary embedding

π : (Hη, P ) → (Hθ, Q)

with π ↾ κ = identity ↾ κ and π(κ) = λ. We also say that [λ, θ] is a
Σ2

2-indescribable interval of cardinals in this case.

We remark that, by now, it should be clear to the reader how to
define (θ,Γ)-subcompact cardinals and what it means for [λ, θ] to be a
Γ-indescribable interval of cardinals whenever Γ is a level of the typed
Levy hierarchy over Hθ.

Theorem 38. Let λ ≤ θ be cardinals such that θ<λ = θ and 2θ = θ+.

Suppose that λ is (θ,Σ2
2)-subcompact. Then there is a length λ semi-

proper iteration I that is amenable to Hλ such that

V I |= SPFA(θ+-cc).

Moreover,

V I |= λ = c = ℵ2.

The main difference between the proofs of Theorems 38 and 12 is
that if P ⊆ Hθ, then it is a Σ2

2 statement about P that there exists
Q ⊆ Hθ+ such that

• Q is θ+-cc (for all A ⊆ Q, if A is an antichain, then A ∈ Hθ+)
and

• there exists F : H<ω
θ+ → Hθ+ that witnesses Q is semi-proper.

The rest of the proof of Theorem 38 is a routine modification to the
proof of Theorem 12, including Lemmas 20 and 21, replacing Σ2

1 by Σ2
2

and θ-linked by θ+-cc. Here are some special cases of Theorem 38.

Corollary 39. Let λ be a Σ2
2-indescribable cardinal and assume that

2λ = λ+. Then there is a length λ semi-proper iteration I that is

amenable to Hλ such that

V I |= SPFA(c+-cc).
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By Corollaries 6 and 39, the consistency strengths of PFA(c+-cc) and
SPFA(c+-cc) are somewhere between a Σ2

1 indescribable cardinal and a
Σ2

2 indescribable cardinal. It would be interesting and seemingly within
the scope of current techniques to know these consistency strengths
exactly.

Corollary 40. Suppose that λ is a (λ+,Σ2
2)-subcompact cardinal and

2λ+
= λ++. Then there is a length λ semi-proper iteration I that is

amenable to Hλ such that

V I |= SPFA(c++-cc).

The least cardinal κ that is (κ+,Σ2
2)-subcompact is strictly less than

the least cardinal λ that is λ+-supercompact. This is because Lemma 10
holds with Σ2

2 substituted for Σ2
1.
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