
MONADIC DEFINABILITY OF ORDINALS

ITAY NEEMAN

Abstract. We identify precisely which singular ordinals are definable by monadic sec-

ond order formulae over the ordinals, assuming knowledge of the definable regular cardi-

nals.

In the paper Neeman [4] the author defines a class of finite state automata
acting on transfinite sequences, connects these automata with monadic second
order truth over the ordinals, and uses the connection to show that ℵω is not
definable by a monadic second order formula over (ON;<), and in fact no singular
cardinal is definable. This can be viewed as a “negative” result, but it turns out
that the same tools can be used to produce some positive results. Here we use
the connection between automata and monadic truth to show that if an ordinal
θ > 0 is definable then:

1. cof(θ) is definable.
2. There are definable ordinals δ, γ < θ so that θ = δ + γ · cof(θ).

This, and the observation that the set of definable ordinals is closed under ordinal
addition and multiplication, leads to a complete characterization of the definable
singular ordinals in term of the definable regular cardinals: an ordinal is definable
by a monadic formula iff it can be obtained from definable regular cardinals using
ordinal addition and multiplication. (The results of Magidor [3] strongly suggest
that the question of which regular cardinals are definable is independent of ZFC.)

In light of the fact that the definability of θ implies the definability of cof(θ),
it is tempting to imagine that, for all θ, cof(θ) is definable with parameter θ.
Similarly, in light of the closure of the set of definable ordinals under addition
and multiplication, it is tempting to imagine that α+ β and α · β are definable
with parameters α and β. We end the paper with a precise analysis of monadic
definability with parameters, showing that both these fantasies are false.

§1. Preliminaries. For a function t : δ → S, where δ is an ordinal and S a
set, define cf(t) = {b ∈ S | the set {ξ | t(ξ) = b} is cofinal in δ}.

Definition 1.1. Let S be a set. The language L∗

S , used to describe structures
of the form (γ; s, r) where γ ∈ ON, s : γ → S, and r : γ ⇀ S (partial), is the
second order language generated through the following clauses:
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1. α ∈ A, s(α) = b, r(α) = b, b ∈ cf(s), and b ∈ cf(s↾α) are atomic formulae
of L∗

S , where α is a first order variables, A a second order variables, and b
an element of S.

2. If ϕ and ψ are formulae in L∗

S then so are ¬ϕ and (ϕ ∧ ψ).
3. If ϕ is a formula in L∗

S then so is (∃A)ϕ, where A is a second order variable.
4. If ϕ is a formula in L∗

S then so are (∀∗α < β)ϕ and (∀∗α)ϕ, where α and β
are first order variables.

When a formula ϕ in the language L∗

S is interpreted over the structure (γ; s, r),
its first order variables range over elements of γ, and its second order variables
range over subsets of γ. Truth value over (γ; s, r) is defined in the obvious way for
formulae generated through conditions (1)–(3) of Definition 1.1. As for formulae
generated through condition (4): (γ; s, r) |= (∀∗α < β)ϕ just in case that:

1. β is a limit ordinal of cofinality at least ω1, and
2. there exists a club C ⊂ β so that (γ; s, r) |= ϕ[α] for all α ∈ C.

(γ; s, r) |= (∀∗α)ϕ just in case that the same conditions hold, but with β replaced
by γ.

Claim 1.2. Let ϕ be a sentence in L∗

S. Then the truth value of ϕ in a structure
(γ; s, r) with γ of cofinality ω (or a successor) depends only on cf(s).

Definition 1.3. Two structures (γ; s, r) and (γ∗; s∗, r∗) are similar, denoted
(γ; s, r) ∼ (γ∗; s∗, r∗), if:

1. cf(s) = cf(s∗).
2. There are clubs C in γ and C∗ in γ∗, and an order preserving bijection
f : C → C∗, so that s∗(f(ξ)) = s(ξ) and r∗(f(ξ)) = r(ξ) for all ξ ∈ C.

Claim 1.4. Let ϕ be a sentence in L∗

S. Let (γ; s, r) and (γ∗; s∗, r∗) be similar.
Then (γ; s, r) |= ϕ iff (γ∗; s∗, r∗) |= ϕ.

For proofs of Claims 1.2 and 1.4 see Neeman [4]. Using Claim 1.2 define
D |= ψ, where D ⊂ S and ψ is a sentence of L∗

S to hold iff (γ; s, r) |= ψ for some
(and hence all) structures (γ; s, r) with cof(γ) = ω and cf(s) = D.

Definition 1.5. Let Σ be a finite non-empty set. A Σ-automaton is a tuple
A = 〈S, P, T, ~ϕ,Ψ, h, u〉 where:

1. S and P are finite non-empty sets.
2. T ⊂ S × Σ × S.
3. ~ϕ = 〈ϕ1, . . . , ϕk〉 is a finite tuple of sentences in L∗

S .
4. Ψ is a function from 2k into S, where k = lh(~ϕ).
5. u is a function from S into {U | U ( P}.
6. h is a function from S into P with the property that h(b) ∈ P − u(b) for

each b ∈ S.

A is called deterministic if T is a function from S × Σ into S, meaning that
for each pair 〈b, σ〉 ∈ S × Σ there is precisely one b∗ ∈ S so that 〈b, σ, b∗〉 ∈ T .

We refer to Σ as the alphabet, to S as the set of states of A, and to P as the
set of pebbles. T is the successor transition table. ~ϕ and Ψ determine limit
transitions in a way that we explain below. h and u determine the placement
and maintenance of pebbles.
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Definition 1.6. Let ~ϕ and Ψ be as in conditions (3) and (4) above. Given

a domain (γ; s, r) with γ ∈ ON, s : γ → S, and r : γ ⇀ S, define t~ϕ(γ;s,r) : k → 2

by setting t
~ϕ

(γ;s,r)(i) = 1 if (γ; s, r) |= ϕi and t
~ϕ

(γ;s,r)(i) = 0 otherwise for each

i ≤ k. Define a function Ψ ⊕ ~ϕ, acting on domains (γ; s, r) as above, by setting

(Ψ ⊕ ~ϕ)(γ; s, r) = Ψ(t~ϕ(γ;s,r)).

Remark 1.7. For D ⊂ S set t~ϕD(i) = 1 if D |= ϕi and t~ϕD(i) = 0 otherwise. Set

(Ψ⊕ ~ϕ)(D) = Ψ(t~ϕD). For γ of cofinality ω then, (Ψ⊕ ~ϕ)(γ; s, r) = (Ψ⊕ ~ϕ)(cf(s)).

Definition 1.8. Let α be an ordinal and let X : α → Σ. A pair 〈s, r〉 where
s : α+1 → S and r : α ⇀ S is called a run of A on X just in case that it satisfies
the following conditions:

(S) 〈s(ξ),X(ξ), s(ξ + 1)〉 ∈ T for each ξ < α.
(L) s(λ) = (Ψ ⊕ ~ϕ)(λ; s↾λ, r↾λ) for each limit λ ≤ α.
(R) If there exists some γ > ξ so that h(s(ξ)) 6∈ u(s(γ)) then r(ξ) = s(γ) for

the least such γ, and otherwise r(ξ) is undefined.

Condition (S) governs successor transitions, condition (L) governs limit transi-
tions, and condition (R) determines values for r.

The Σ-automaton A should be viewed as running over the input X : α → Σ
and producing a run 〈s, r〉 through a transfinite sequence of stages. In each stage
β the automaton determines s(β) through either condition (S) or condition (L),
depending on whether β is a successor or a limit. In the case of successor ξ + 1,
the automaton determines the state s(ξ + 1) based on the previous state s(ξ)
and the input X(ξ). The transition table T dictates the possible choices, as
s(ξ + 1) must be picked to that 〈s(ξ),X(ξ), s(ξ + 1)〉 ∈ T . In the case of a limit
λ, the automaton determines s(λ) based on a bounded fragment of the almost-
all theory of the run (λ; s↾λ, r↾λ) produced so far. The fragment consulted is
the restriction of the theory to the sentences in ~ϕ. The function Ψ tells the
automaton how to set the state s(λ) based on this fragment.

Having determined s(β), the automaton places the pebble p = h(s(β)) on the
ordinal β. The pebble p remains placed on β until a later stage β∗ is reached
with p 6∈ u(s(β∗)). At the first such stage β∗ the automaton removes the pebble
from β, and sets r(β) = s(β∗). This is expressed precisely in condition (R).
r(β) remains undefined until the pebble placed on β is removed, and may indeed
remain undefined throughout, if the pebble is not removed at all during the run.
The use of pebbles therefore introduces a delay into part of the construction of
a run. This delay is essential in the proof of Theorems 1.10 and 1.11 below.

Notice that the value of r↾λ known by stage λ—call it (r↾λ)local—is not the
same as the final value r↾λ known by the end of the run, after stage α, as there
may be ordinals ξ < λ so that the pebble h(s(ξ)) placed on ξ is removed at
a stage γ ≥ λ. But there may only be finitely many such ordinals, since the
number of pebbles is finite and since no pebble is ever located on two ordinals
at the same stage (to see this use the restriction h(b) 6∈ u(b) in condition (6) of
Definition 1.5). Thus (r↾λ)local and r↾λ may only differ on a finite set.

When reaching a limit stage λ the automaton looks at the value of r↾λ known
by stage λ, setting s(λ) equal to (Ψ ⊕ ~ϕ)(λ; s↾λ, (r↾λ)local). This assignment
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satisfies condition (L) in Definition 1.8 since, by Claim 1.4 and the fact that
(r↾λ)local and r↾λ differ only on a finite set, the structures (λ; s↾λ, (r↾λ)local)
and (λ; s↾λ, r↾λ) satisfy precisely the same sentences.

Remark 1.9. Coding runs and inputs by sets of ordinals, one can express
the existence of a run starting at a given state b and ending at a given state
b∗ in the monadic second order language. To be precise, for X : θ → Σ and
σ ∈ Σ set AX,σ = {ξ | X(ξ) = σ}. Let σ1, . . . , σl enumerate Σ. Then for
every b, b∗ ∈ S there is a formula ϕb,b∗ so that (for all θ and all X : θ → Σ)
(θ;<) |= ϕb,b∗ [AX,σ1

, . . . , AX,σl
] iff there is a run 〈s, r〉 of A on X with s(0) = b

and s(θ) = b∗.

An accepting condition for an automaton A is a pair 〈I, F 〉 where I ∈ S and
F ⊂ S. 〈A, I, F 〉 is said to accept X : α→ Σ just in case that there exists a run
〈s, r〉 of A on X so that s(0) = I and s(α) ∈ F . Notice that if A is deterministic
then it has exactly one run 〈s, r〉 on X with s(0) = I, so that 〈A, I, F 〉 accepts
X iff s(lh(X)) ∈ F for s taken from this unique run.

Call 〈A, I, F 〉 and 〈A∗, I∗, F ∗〉 equivalent if for every ordinal α and every
X : α→ Σ, 〈A, I, F 〉 accepts X iff 〈A∗, I∗, F ∗〉 accepts X.

Theorem 1.10 (Neeman [4]). For any automaton A and accepting condition
〈I, F 〉, there is a deterministic automaton A∗ with accepting condition 〈I∗, F ∗〉
so that 〈A, I, F 〉 and 〈A∗, I∗, F ∗〉 are equivalent.

Theorem 1.10 extends the work of Büchi [1] and Büchi–Zaiontz [2] to automata
acting on inputs of lengths ω2 and greater. The specific details of the definition
of automata above are of course important to the proof of the theorem.

For a ∈ ON define χf(a) : ON → 2 through the condition χf(a)(γ) = 1 if γ = a

and χf(a)(γ) = 0 otherwise. For a ⊂ ON define χs(a) : ON → 2 through the
condition χs(a)(γ) = 1 if γ ∈ a and χs(a)(γ) = 0 otherwise. (f and s here stand
for “first order” and “second order.”) Given a monadic second order formula ϕ
with free variables x1, . . . , xk let sig(ϕ) : k → {s, f} be the function defined by
the condition sig(ϕ)(i) = s if xi is a second order variable, and sig(ϕ)(i) = f if
xi is a first order variable. A sequence 〈a1, . . . , ak〉 fits the signature of ϕ if
ai is an ordinal for i such that sig(ϕ)(i) = f, and a set or class of ordinals for i
such that sig(ϕ)(i) = s. Given a sequence 〈a1, . . . , ak〉 which fits the signature
of ϕ define χ(a1, . . . , ak) : ON → 2k through the condition χ(a1, . . . , ak)(γ) =
〈χsig(ϕ)(1)(a1)(γ), . . . , χsig(ϕ)(k)(ak)(γ)〉. This is the characteristic function of
〈a1, . . . , ak〉.

The following theorem, essentially a converse to Remark 1.9, completes the
connection between monadic second order formulae over the ordinals and finite
state automata. The theorem is proved by induction on the complexity of ϕ. The
case of existential quantification is easy when working with non-deterministic
automata, and the case of negation is easy when working with deterministic
automata. Thus the bulk of the work in reaching Theorem 1.11 is securing The-
orem 1.10, namely the equivalence between deterministic and non-deterministic
automata.

Theorem 1.11 (Neeman [4]). Let ϕ be a monadic second order formula in the
language of order, with k free variables say. Then there is a deterministic finite
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state automaton A, with accepting condition 〈I, F 〉, so that: for every ordinal θ
(also for θ = ON), and for every sequence a1, . . . , ak which fits the signature of
ϕ, (θ;<) |= ϕ[a1, . . . , ak] iff 〈A, I, F 〉 accepts χ(a1, . . . , ak)↾ θ.

Call an ordinal θ definable if there is a monadic formula ϕ(v) so that (ON;<) |=
ϕ[α] iff α = θ, and definable with parameters x1, . . . , xk if there is a formula
ϕ(v1, . . . , vk, v) so that (ON;<) |= ϕ[x1, . . . , xk, α] iff α = θ.

An ordinal θ can be pinpointed iff there is a sentence ψ so that (θ;<) |= ψ

and for all α < θ, (α;<) 6|= ψ. ψ is said to pinpoint θ.
It is clear that ordinals which can be pinpointed are definable. Using Theorem

1.11 one can prove the converse:

Lemma 1.12 (Neeman [4]). If θ is definable then it can be pinpointed.

For α ∈ ON let 0α denote the input X : α→ {0} defined by X(ξ) = 0 for all ξ.
If θ can be pinpointed then by Theorem 1.11 there is a deterministic automaton
A and accepting condition 〈I, F 〉 so that 〈A, I, F 〉 accepts 0θ and does not accept
0α for any α < θ. This makes the following claim useful in the study of monadic
definability of ordinals:

Claim 1.13 (Neeman [4]). Let A be a deterministic automaton and let 〈s, r〉
be a run of A on 0θ. Let D = cf(s↾ θ). Let δ < θ be least so that {s(ξ) | δ ≤ ξ <

θ} = D. Let γ be least so that {s(ξ) | δ ≤ ξ < δ + γ} = D and s(δ + γ) = s(δ).
Let C = {α ∈ (δ, θ] | α is closed under addition of γ}. Then cf(s↾α) = D for
every α ∈ C, and, for α, β ∈ C, if cof(α) = cof(β) then s(α) = s(β).

Notice that, in the notation of the last claim, θ is closed under addition of
γ (else cf(s↾ θ) would not be equal to D). Thus it follows from the claim that
either θ = δ+ γ · cof(θ), or else there is α < θ, namely α = δ+ γ · cof(θ), so that
s(α) = s(θ). If A and 〈I, F 〉 are obtained from Theorem 1.11 using a formula
which pinpoints θ, and 〈s, r〉 is an accepting run of 〈A, I, F 〉, then the latter is
impossible. Thus:

Claim 1.14 (Neeman [4]). Suppose that θ is definable. Then there is a deter-
ministic automaton A and a run 〈s, r〉 of A on 0θ so that θ = δ+γ ·cof(θ) where
δ and γ are defined from s as in Claim 1.13.

In particular, no singular cardinal can be definable. Neeman [4] concludes
with this result.

§2. Definability, forward. In this section we make the simple observation
that the set of definable ordinals is closed under ordinal addition and multiplica-
tion. This is true even though neither addition nor multiplication is a definable
operation, and α+ β need not in general be definable from α and β, as we shall
see in Section 4. (Recall that definability here is in the monadic language.)

Given a monadic formula ϕ(v1, . . . , vk), let ϕrel(v1, . . . , vk, A) be the formula
obtained from ϕ by replacing all first order quantifiers (∃vi) and (∀vi) in ϕ with
(the formal equivalent of) (∃vi ∈ A) and (∀vi ∈ A).

Claim 2.1. For a sentence ψ, (ON;<) |= ψrel[A] iff (ot(A);<) |= ψ, where
ot(A) is the order type of A.
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Proof. Fix A. Let f : ot(A) → A be the unique order preserving bijection.
Given a formula ϕ(v1, . . . , vk), call x1, . . . , xk and x∗1, . . . , x

∗

k similar if xi ∈ ot(A)
and x∗i = f(xi) for i such that vi is first order, and xi ⊂ ot(A) and x∗i ∩ A =
f ′′(xi) for i such that vi is second order. Then for every formula ϕ(v1, . . . , vk),
(ot(A);<) |= ϕ[x1, . . . , xk] iff (ON;<) |= ϕrel[x∗1, . . . , x

∗

k, A] whenever x1, . . . , xk

and x∗1, . . . , x
∗

k are similar. This statement is easily proved by induction on the
complexity of ϕ, and the case of k = 0 yields the claim. ⊣

Claim 2.2. Let α and β be ordinals. Suppose that α is definable with parame-
ters x1, . . . , xk and that β is definable. Then α+ β is definable with parameters
x1, . . . , xk.

Proof. Let ψβ pinpoint β. Let ψα(v1, . . . , vk, v) witness that α is definable
with parameters x1, . . . , xk. Let ϕ(v1, . . . , vk, y) be the formula

(∃η)(∃A)(ψα(v1, . . . , vk, η) ∧ (ξ ∈ A ⇐⇒ η ≤ ξ < y) ∧

ψrel
β (A) ∧ (∀u < y)¬ψrel

β (A ∩ u))

Then (ON;<) |= ϕ[x1, . . . , xk, θ] iff θ = α+ β. ⊣

Claim 2.3. Let α and β be definable ordinals. Then α · β is definable.

Proof. Fix ψα and ψβ which pinpoint α and β respectively. Then θ = α · β
iff there exists A so that:

• A is a closed unbounded subset of θ + 1 and 0 and θ are both in A.
• ψrel

β [A ∩ θ] holds, and for every u < θ, ψrel
β [A ∩ u] fails. So ot(A ∩ θ) = β.

• ψrel
α [C] holds whenever C = [ζ, ζ∗) with ζ ∈ A and ζ∗ equal to the first

element of A above ζ, and ψrel
α [C ∩ u] fails for all u < ζ∗. So ot(C) = α.

These conditions can be phrased in the monadic language, providing a formula
that defines α · β. ⊣

An ordinal is a multiple of γ if it has the form γ · ν for some ordinal ν.

Claim 2.4. Suppose that γ is definable. Then there is a formula ϕ(v) so that
(ON;<) |= ϕ[θ] iff θ is a multiple of γ.

Proof. Similar to the proof of the previous claim. ⊣

Given ordinals γ and α define truncγ(α) to be the largest multiple of γ which
is ≤ α. To give just two examples, trunc1(α) = α and trunc0(α) = 0.

Claim 2.5. Suppose that γ is definable. Then truncγ(α) is definable with pa-
rameter α.

Proof. Immediate from the last claim. ⊣

Claims 2.2 and 2.5 show that given a class P ⊂ ON, every ordinal of the
form truncγ(α) + β, where α ∈ P and γ, β are definable with no parameters, is
definable with parameters from P . We shall see later that in fact these are all
the ordinals definable with parameters from P .
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§3. Definability, backward. Let θ be a definable limit ordinal. Let ψ pin-
point θ. Using Theorem 1.11 fix a deterministic automaton A and an accepting
condition 〈I, F 〉 so that 〈A, I, F 〉 accepts 0α iff (α;<) |= ψ. Let 〈s, r〉 be the
unique run of A on 0θ with s(0) = I. As in Claim 1.13 set:

(i) D = cf(s↾ θ).
(ii) δ is least so that {s(ξ) | δ ≤ ξ < θ} = D.
(iii) γ is least so that {s(ξ) | δ ≤ ξ < δ + γ} = D and s(δ + γ) = s(δ).

Let b∗ = s(θ) and notice that s(α) 6= b∗ for α < θ since 〈A, I, F 〉 does not accept
0α. Let C = {δ+γ ·ω ·ξ | ξ ≥ 1∧δ + γ · ω · ξ ≤ θ}. θ belongs to C and by Claim
1.13 there is no α < θ in C with cof(α) = cof(θ). Hence θ = δ + γ · cof(θ).

Claim 3.1. δ and γ are definable.

Proof. By Remark 1.9, and using the fact that A is deterministic, there is
for each b ∈ S a monadic formula ϕb(v) so that (ON;<) |= ϕb[ξ] iff s(ξ) = b.
Conditions (ii) and (iii) can thus be phrased in the monadic language, providing
a definition of γ, and a definition of δ from θ. Since θ is definable, both δ and γ
are definable. ⊣

Lemma 3.2. cof(θ) is definable.

Proof. We may assume that cof(θ) > ω, since otherwise cof(θ) is clearly
definable. Let X denote 0θ, so that 〈s, r〉 is a run of A on X. Note to begin
with that for every α, β ∈ (δ, θ), if s(α) = s(β) then r(α) = r(β). In fact,
if s(α) = s(β) then s(α + ξ) = s(β + ξ) for all ξ so that α + ξ, β + ξ < θ,
since A is deterministic and X(α+ ξ) = X(β + ξ). From this and the fact that
{s(ζ) | α < ζ < θ} = {s(ζ) | β < ζ < θ} it follows that r(α) = r(β).

Thus there is a function R : S → S so that, for α ∈ (δ, θ), r(α) = R(s(α)).
Let 〈S, P, T, ~ϕ,Ψ, h, u〉 constitute the automaton A. For each i < lh(~ϕ)

let ϕ∗

i be obtained from ϕi by replacing each occurrence of r(ξ) = b with∨
b̄∈R−1(b) s(ξ) = b̄. Then:

(iv) For each limit λ ∈ (δ, θ], (Ψ ⊕ ~ϕ∗)(λ; s↾λ, r↾λ) = (Ψ ⊕ ~ϕ)(λ; s↾λ, r↾λ).
(v) The sentences in ~ϕ∗ make no mention of r.

Let b1, . . . , bj enumerate the states in D. Set T ∗ = {〈bi, 0, bi+1〉 | i < j} ∪
{〈bj , 0, b1〉}. Let A∗ be the automaton 〈S, P, T ∗, ~ϕ∗,Ψ, h, u〉. Let τ = cof(θ) and
let 〈s∗, r∗〉 be the unique run of A∗ on 0τ with s∗(0) = s(δ).

Define r′ : θ ⇀ S by setting r′(δ + γ · ω · ξ) = r∗(ω · ξ) and leaving r′(ζ)
undefined on ζ not covered by this clause.

Claim 3.3. For every ξ ≤ τ :

1. s(δ + γ · ω · ξ) = s∗(ω · ξ).
2. Let ζ = δ+γ ·ω ·ξ. Then for ξ ≥ 1, (ζ; s↾ ζ, r′↾ ζ) and (ω ·ξ; s∗↾ω ·ξ, r∗↾ω ·ξ)

are similar.

Proof. The proof is by induction on ξ. Condition (1) for ξ = 0 follows from
the definition, as s∗(0) was set equal to s(δ). Condition (1) for ξ ≥ 1 follows
from condition (2) for ξ together with conditions (iv) and (v) above and Claim
1.4. Condition (2) for ξ of cofinality ≤ ω follows simply from the fact that
cf(s↾ ζ) = cf(s∗↾ω · ξ). (Both are equal to D, by Claim 1.13 in the case of
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cf(s↾ ζ) and by the definition of T ∗ in the case of cf(s∗↾ω ·ξ).) For ξ of cofinality
> ω condition (2) follows from the fact that cf(s↾ ζ) = cf(s∗↾ω · ξ), and from
condition (1) below ξ, which gives clubs below ζ and ω · ξ on which s↾ ζ and
s∗↾ω · ξ are equal. ⊣

Since s(θ) = b∗ and s(α) 6= b∗ for α < θ, it follows from the last claim that
τ = cof(θ) is least so that s∗(τ) = b∗. Using Remark 1.9 this can be turned into
a definition of τ in the monadic second order language. ⊣ (Lemma 3.2)

Theorem 3.4. Let θ be an ordinal. Then θ is definable iff θ = 0 or the
following conditions hold:

1. cof(θ) is definable.
2. There are definable ordinals δ, γ < θ so that θ = δ + γ · cof(θ).

Proof. The right-to-left direction is immediate from the results in Section
2. The left-to-right direction is clear for 0 and for successor θ, and follows from
Claim 3.1 and Lemma 3.2 for limit θ. ⊣

Theorem 3.5. An ordinal is definable iff it can be obtained from definable
regular cardinals using ordinal addition and multiplication.

Proof. Again the right-to-left direction is immediate from the results in Sec-
tion 2. The left-to-right direction is proved by induction using Theorem 3.4. ⊣

§4. Parameters. Let a1 < · · · < al be ordinals, and let θ 6∈ {a1, . . . , al} be a
limit ordinal definable with parameters a1, . . . , al. Let ϕ be a monadic formula
such that (ON;<) |= ϕ[a1, . . . , al, α] iff α = θ.

Adding a bogus parameter if needed we may assume that there is k < l so that
ak < θ < ak+1. For α ∈ (ak, ak+1) define Xα : ON → 2 through the conditions
X(ai) = 1 for each i, X(α) = 1, and X(ξ) = 0 for ξ 6∈ {α, a1, . . . , al}.

Using Theorem 1.11 find a deterministic automaton A and an accepting con-
dition 〈I, F 〉 so that, for each α ∈ (ak, ak+1), 〈A, I, F 〉 accepts Xα iff (ON;<) |=
ϕ[a1, . . . , al, α].

Let 〈s, r〉 be the unique run of A on Xθ with s(0) = I. Set D = cf(s↾ θ),
δ > ak least so that {s(ξ) | δ ≤ ξ < θ} = D, and γ least so that {s(ξ) | δ ≤ ξ <

δ + γ} = D and s(δ + γ) = s(δ).
Let b∗ = s(θ). Let C = {δ + γ · ω · ξ | ξ ≥ 1}. Note that θ is closed under

addition of γ, so θ ∈ C. Let τ be least so that s(δ + γ · ω · τ) = b∗. By Claim
1.13, s(α) = s(β) for α, β ∈ C of the same cofinality, so τ is a regular cardinal,
and s(δ + γ · ξ) = b∗ for all ξ of cofinality τ .

Claim 4.1. γ is definable with no parameters, τ is definable with no parame-
ters, and δ is definable with parameters a1, . . . , al.

Proof. Similar to the proofs of Claim 3.1 and Lemma 3.2. ⊣

Claim 4.2. Suppose that θ is not the first ordinal of cofinality τ in C. Then
ak+1 < θ + γ · τ · ω.

Proof. Suppose otherwise. Let α = θ+γ · τ . We show that 〈A, I, F 〉 accepts
Xα. Since α < ak+1 this implies that (ON;<) |= ϕ[a1, . . . , al, α], contradicting
the fact that ϕ defines θ from a1, . . . , al.
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Let 〈s∗, r∗〉 be the unique run of A onXα with s∗(0) = I. SinceXα↾ θ = Xθ↾ θ,
s and s∗ are the same up to an including θ. Thus s∗(θ) = b∗.

For ζ in the interval [θ, α), that is the interval [θ, θ+γ ·τ), Xα(ζ) is equal to 0.
By assumption θ is not the least ordinal of cofinality τ in C, hence θ ≥ δ+γ ·τ ·2,
so that Xθ(ζ) = 0 for ζ in the interval [δ + γ · τ, δ + γ · τ · 2).

Thus Xα(θ + ξ) = Xθ(δ + γ · τ + ξ) for all ξ < γ · τ . It follows from this, the
fact that s∗(θ) = s(δ + γ · τ) (both are equal to b∗), and the determinism of A,
that s∗(θ+ ξ) = s(δ+ γ · τ + ξ) for each ξ ≤ γ · τ . In particular then s∗(θ+ γ · τ)
is equal to s(δ + γ · τ · 2), and the latter is equal to b∗ since δ + γ · τ · 2 is in C

and of cofinality τ .
We established so far that s∗(α) = s(θ) (both are equal to b∗). Note that

Xα(α+ξ) = Xθ(θ+ξ) for every ξ: for ξ = 0 both are equal to 1, for ξ ∈ (0, γ ·τ ·ω)
both are equal to 0 as al+1 ≥ θ+γ ·τ ·ω by assumption, and for ξ ≥ γ ·τ ·ω, α+ξ
is equal to θ + ξ. From the fact that Xα(α + ξ) = Xθ(θ + ξ) for all ξ, the fact
that s∗(α) = s(θ), and the determinism of A it follows that s∗(α+ ξ) = s(θ+ ξ)
for all ξ.
s∗ and s are thus the same on a tail-end of ON. Since 〈s, r〉 is an accepting

run of 〈A, I, F 〉, it follows that so is 〈s∗, r∗〉. 〈A, I, F 〉 therefore accepts Xα,
meaning that (ON;<) |= ϕ[a1, . . . , al, α], contradicting the fact that ϕ defines
θ. ⊣

Claim 4.3. Either there is n < ω so that θ = δ + γ · τ · n, or else there is
n < ω so that θ = truncγ·τ ·ω(ak+1) + γ · τ · n.

Proof. The choice of τ above is such that θ has the form δ + γ · ξ for some
ξ of cofinality ≥ τ . Suppose that θ is not equal to δ+ γ · τ · n for any n. Then θ
must have the form δ + γ · τ · ξ for ξ ≥ ω, and since δ + γ · τ · ω is a multiple of
γ · τ we may drop δ, concluding that θ has the form γ · τ · ξ for some ξ.

Recall that truncγ·τ ·ω(ak+1) is the largest multiple of γ · τ ·ω which is ≤ ak+1.
Since θ is not equal to δ + γ · τ , it follows from the previous claim that θ ≥
truncγ·τ ·ω(ak+1). θ < ak+1 and ak+1 of course is smaller than truncγ·τ ·ω(ak+1)+
γ·τ ·ω. Thus θ belongs to the interval [truncγ·τ ·ω(ak+1), truncγ·τ ·ω(ak+1)+γ·τ ·ω).
From this and the fact that θ is a multiple of γ · τ it follows that θ has the form
truncγ·τ ·ω(ak+1) + γ · τ · n for some n < ω. ⊣

Corollary 4.4. Let θ be definable with parameters a1, . . . , al. Then at least
one of the following conditions holds:

1. There is δ < θ definable with parameters a1, . . . , al, and an ordinal β de-
finable with no parameters, so that θ = δ + β.

2. There is i ≤ l and ordinals α, β definable with no parameters, so that θ =
truncα(ai) + β.

Proof. If θ is a successor ordinal then condition (1) holds with δ = θ − 1.
If θ = 0 then condition (2) holds with α = β = 0. If θ ∈ {a1, . . . , al} then
condition (2) holds with α = 1 and β = 0. Finally, for θ a limit ordinal not in
{a1, . . . , al}, the corollary follows from the previous claim using the fact that γ
and τ (an hence also γ · τ , γ · τ · n for each n < ω, and γ · τ · ω) are definable
with no parameters. ⊣
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Theorem 4.5. Let P ⊂ ON be a non-empty class. Then θ is definable with
parameters from P iff it belongs to the class {truncγ(α)+β | α ∈ P and γ, β are
definable with no parameters}.

Proof. The right-to-left direction follows from the results in Section 2. The
left-to-right follows from Corollary 4.4 by induction on θ. ⊣

Theorem 4.5 shows that very little can be gained from parameters in the case of
monadic definability over (ON;<). It has the following immediate consequences:

Claim 4.6. There are ordinals α, β so that α + β is not definable with para-
meters α, β. There are ordinals α, β so that α ·β is not definable with parameters
α, β. There is an ordinal α so that cof(α) is not definable with parameter α.

Proof. The ordinal ωω is (by Theorem 3.5) a multiple of all the definable
countable ordinals, and not itself definable. It follows from Theorem 4.5 that
ωω + ωω is not definable with parameter ωω (and, equivalently, ωω · 2 is not
definable with parameters ωω and 2).

As for the cofinality function, let τ be the first regular cardinal which is not
definable. Let α = τ +τ . All the definable γ ≤ α are smaller than τ by Theorem
3.5, and therefore truncγ(α) is always either α or 0 for definable γ. By Theorem
4.5, τ is not definable with parameter α. ⊣

Claim 4.6 is not surprising in the case of monadic definability. But notice that
each of its clauses fails with the added condition that α and β are definable, by
Claims 2.2 and 2.3 and Lemma 3.2.
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[2] J. Richard Büchi and Charles Zaiontz, Deterministic automata and the monadic

theory of ordinals < ω2, Z. Math. Logik Grundlag. Math., vol. 29 (1983), no. 4, pp. 313–
336.

[3] Menachem Magidor, Reflecting stationary sets, J. Symbolic Logic, vol. 47 (1982),

no. 4, pp. 755–771 (1983).
[4] Itay Neeman, Finite state automata and monadic definability of singular cardinals, To

appear.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA LOS ANGELES

LOS ANGELES, CA 90095-1555

E-mail : ineeman@math.ucla.edu


