Inner models and ultrafilters in $L(\mathbb{R})$

Itay Neeman

Department of Mathematics University of California Los Angeles Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

Part 1:

- 1. Preliminaries.
- 2. The club filter on ω_1 .
- 3. An ultrafilter on $[\omega_1]^{<\omega_1}$.
- 4. Forcing over $L(\mathbb{R})$ to add a cub subset of ω_1 .

Let *M* have ω Woodin cardinals. Let δ be their supremum. Let $\mathbb{P} \in M$ be the poset $\operatorname{col}(\omega, <\delta)$.

Let $G = \langle G_{\xi} | \xi < \delta \rangle$ be \mathbb{P} -generic/M.

Define: $R^* = R^*[G] = \bigcup_{\beta < \delta} \mathbb{R}^{M[G \upharpoonright \beta]}$.

 R^* is called a **symmetric collapse** of M.

A set of reals *B* is **realized as a symmetric collapse** of *M* if there is a generic *G* so that $R^*[G] = B$.

Note: Let φ be a formula and let a_1, \ldots, a_k be reals or ordinals in M. Let R_1 and R_2 be two symmetric collapses of M. Then

$$L(R_1) \models \varphi[a_1, \dots, a_k] \iff L(R_2) \models \varphi[a_1, \dots, a_k].$$

(This follows from the homogeneity of \mathbb{P} .)

Cor: $\varphi[a_1, \ldots, a_k]$ is true in L($R^*[G]$) iff this is forced by the empty condition.

We informally refer to $L(R^*[G])$ (rather than $R^*[G]$ itself) as a symmetric collapse of M.

We say that $\varphi[a_1, \ldots, a_k]$ is forced to hold in the symmetric collapse of M if it is forced (by the empty condition) to hold in $L(R^*[G])$. Suppose now that M is iterable (more on this later) and that $\mathcal{P}(\delta)^M$ is countable in V. Let $g: \omega \to \mathbb{R}$ be a generic surjection.

Fact: In V[g] there is an M^* and an elementary $\pi: M \to M^*$ so that \mathbb{R} (the true \mathbb{R} of V) is realized as a symmetric collapse of M^* .

Any statement forced to hold in the symmetric collapse of M is also forced to hold in the symmetric collapse of M^* , since π is elementary.

It follows that any statement forced to hold in the symmetric collapse of M, holds in the *true* $L(\mathbb{R})$.

This works for statements with real parameters and parameters bounded in δ . (One can arrange that π does not move such parameters.)

The Fact is used to prove $AD^{L(\mathbb{R})}$ from the following *large cardinal assumption*:

For each $u \in \mathbb{R}$ there is a class model M s.th. (1) $u \in M$;

- (2) *M* has ω Woodin cardinals, say with sup δ ;
- (3) $\mathcal{P}(\delta)^M$ is countable in V; and
- (4) M is iterable.

We will use the fact and the large cardinal assumption directly, to obtain ultrafilters in $L(\mathbb{R})$.

An ultrafilter on ω_1 :

Let M be a countable model of ZFC with (at least) a measurable cardinal. Let a(M) be the first measurable cardinal of M.

The measures in M can be used to form ultrapowers, and the process can be iterated.

$$M \longrightarrow \mathsf{Ult}(M,\mu) \longrightarrow \mathsf{Ult}(M_1,\mu_1) \longrightarrow \mathbb{Ult}(M_1,\mu_1) \longrightarrow \mathbb{Ult}(M_1$$

By a (linear) iterate of M we mean any model P obtained through a countable iteration of this kind.

M is (linearly) **iterable** if all its iterates are wellfounded.

For an iterable M define

 $C_M = \{a(P) \mid P \text{ is an iterate of } M\}.$

Note then $C_M \subset \omega_1^{\vee}$.

5

Let M_1 and M_2 be countable, iterable models with (at least) a measurable cardinal.

Let M^* be a countable, iterable model with a measurable cardinal, and such that both M_1 and M_2 belong to M^* . (Such M^* exists by our large cardinal assumption. Note both M_1 and M_2 are coded by reals.)

It's easy to see then that both $C_{M^*} \subset C_{M_1}$ and $C_{M^*} \subset C_{M_2}$.

It follows that the collection

 $\{C_M \mid M \text{ ctbl, iterable, with a measurable}\}$ has the finite intersection property.

Let ${\mathcal F}$ be the filter generated by this collection.

An argument similar to the above shows that in fact the collection has the countable intersection property. So \mathcal{F} is countably complete.

Claim: \mathcal{F} is an ultrafilter in L(\mathbb{R}).

Proof: Let $X \in L(\mathbb{R})$ be a subset of ω_1 . For simplicity suppose X is definable in $L(\mathbb{R})$ from a real parameter u. Fix a formula ψ so that $\alpha \in X$ iff $L(\mathbb{R}) \models \psi[\alpha, u]$.

Using the large cardinal assumption fix a model M, with ω Woodin cardinals etc., and with $u \in M$.

Ask: Is $\psi[a(M), u]$ forced to *hold* in the symmetric collapse of *M*?

Suppose yes (*).

Let P be an iterate of M. Have then an elementary embedding $j: M \rightarrow P$ (the **itera-tion embedding** generated by the various ultrapowers taken).

By (*) and since j is elementary, $\psi[a(P), u]$ is forced to hold in the symmetric collapse of P.

By preliminaries' Fact, it follows that $\psi[a(P), u]$ really holds in L(\mathbb{R}).

So $a(P) \in X$.

This is true for each iterate P of M.

So $C_M = \{a(P) \mid P \text{ an iterate of } M\}$ is contained in X.

Showed: If $\psi[a(M), u]$ is forced to *hold* in the symmetric collapse of M then $C_M \subset X$.

A similar argument shows that if $\psi[a(M), u]$ is forced to *fail* then $C_M \subset \omega_1 - X$.

So \mathcal{F} is an ultrafilter.

An ultrafilter on $[\omega_1]^{<\omega_1}$:

Let M be a countable model with (at least) a measurable limit of measurable cardinals. Let $\kappa = \kappa(M)$ be the first such cardinal in M.

Let $\langle \tau_{\xi} \mid \xi < \gamma \rangle$ list the measurable cardinals of M below κ , in increasing order.

Define $a(M) = \langle \tau_{\xi} | \xi < \gamma \rangle$.

Note a(M) then belongs to $[\omega_1]^{<\omega_1}$.

For an iterable M define:

 $C_M = \{a(P) \mid P \text{ is an iterate of } M\}.$

Note then $C_M \subset [\omega_1]^{<\omega_1}$.

The sets C_M generate an ultrafilter: simply carry the earlier proof (for ω_1), with the current definitions. Call this ultrafilter \mathcal{F} .

9

Let $\gamma(M) = \text{o.t.} \{ \tau < \kappa \mid \tau \text{ is measurable in } M \}$. The length of the seq. a(M) is precisely $\gamma(M)$.

Note: If P is an ultrapower of M by a measure on κ , then $\gamma(P) > \gamma(M)$.

It follows that $C_M = \{a(P) \mid P \text{ is an iterate of } M\}$ has sequences of *arbitrarily large* countable length.

So \mathcal{F} does not concentrate on any particular countable length. (We say that \mathcal{F} "concentrates on long sequences.")

The projection of \mathcal{F} to $[\omega_1]^1$ is simply our previous ultrafilter on ω_1 . (This is because the first coordinate in $a(M) = \langle \tau_{\xi} | \xi < \gamma \rangle$ is the first measurable of M.)

Similarly the projection of \mathcal{F} to $[\omega_1]^{\alpha}$ for each countable α is the α -length iteration of our previous ultrafilter on ω_1 .

Say that $X \subset [\omega_1]^{<\omega_1}$ is **nice** if:

(1) X belongs to \mathcal{F} ; (2) X is countably closed $(r_0 \frown r_1 \frown \dots r_n \in X)$ for each n, then $r_0 \frown r_1 \frown \dots \in X$; and (3) For each $s \in X$, $\{r \mid s \frown r \in X\}$ belongs to \mathcal{F} .

Each C_M is nice:

 $C_M \in \mathcal{F}$ by definition, and by composing iterations one can check C_M is countably closed.

As for (3): For $s \in C_M$ have some iterate Pof M so that s = a(P). Let Q be the ultrapower of P by a measure on $\kappa(P)$. Notice then s = a(P) is a strict initial segment of a(Q). Let Q^* be a generic extension of Qcollapsing the ordinals of a(P) to ω . Then $a(Q) = a(P) \frown a(Q^*)$, and $\{r \mid a(P) \frown r \in C_M\}$ contains C_{Q^*} . Note: If X is nice and $s \in X$, then $X^* = \{s^* \mid s^{\frown}s^* \in X\}$ is also nice.

There is a natural forcing notion suggested by \mathcal{F} . Conditions are pairs (t, Y) where:

 $t \in [\omega_1]^{<\omega_1}$; Y is a set of extensions of t; and $\{s \mid t \frown s \in Y\}$ is nice.

More on this forcing later.

Claim: Let $g: [\omega_1]^{<\omega_1} \to \omega_2$. Then there is a set $X \in \mathcal{F}$ so that $g \upharpoonright X$ is *bounded* below ω_2 .

Proof: Recall that ω_2 is equal to δ_2^1 , the sup of Δ_2^1 prewellorderings.

Have a norm $\rho \colon \mathbb{R} \to \omega_2$ (partial, surjective) so that if $E \subset \operatorname{dom}(\rho)$ is Σ_2^1 then $\rho''E$ is bounded below ω_2 .

Define $g^*(a) = \{x \mid x \in \text{dom}(\rho) \land \rho(x) = g(a)\}.$ This is g "in the codes."

 g^* belongs to L(\mathbb{R}). For simplicity suppose it is definable in L(\mathbb{R}) from a real parameter, u. Fix ψ so that $x \in g^*(a)$ iff L(\mathbb{R}) $\models \psi[a, x, u]$. Suppose P satisfies our large cardinal assumption (ω Woodin cardinals, etc.) with $u \in P$.

Then inside every symmetric collapse of P, there is a real x so that $\psi[a(P), x, u]$ holds in the symmetric collapse.

This follows from the preliminaries' Fact:

 $L(\mathbb{R})$ satisfies $(\exists x)\psi[a(P), x, u]$, just take any x in $g^*(a(P))$.

So the symmetric collapse of P must also satisfy $(\exists x)\psi[a(P), x, u]$.

If $\psi[a(P), x, u]$ holds in a symmetric collapse of P, then (again by the preliminaries' Fact) it holds in L(\mathbb{R}), meaning that $x \in g^*(a(P))$.

We showed: $\{x \mid \psi[a(P), x, u] \text{ holds in a symmetric collapse of } P\}$ is non-empty and contained in $g^*(a(P))$.

Now let M satisfy our large cardinal assumption with $u \in M$.

Let E be the set of reals x so that:

 $(\exists an iterate P of M)(\psi[a(P), x, u] holds in a symmetric collapse of P).$

By the previous slide

 $E \subset \bigcup \{ g^*(a(P)) \mid P \text{ an iterate of } M \},$ and E meets each $g^*(a(P))$.

It follows that $E \subset \operatorname{dom}(\rho)$ and $\rho''E$ is precisely equal to $\{g(a(P)) \mid P \text{ an iterate of } M\}$.

Recall $C_M = \{a(P) \mid P \text{ is an iterate of } M\}.$

We showed: range $(g \upharpoonright C_M) = \rho'' E$.

Now E is Σ_2^1 : "There exists a (linear) iterate P of M" amounts to saying that there is a linear iteration, of wellfounded countable length, leading from M to P.

It follows that $\rho''E$ is bounded below ω_2 .

15

Return now to the forcing.

Conditions are pairs (t, Y) so that $t \in [\omega_1]^{<\omega_1}$; Y is a set of extensions of t; and $\{s \mid t f \in Y\}$ is nice.

 (t^*, Y^*) extends (t, Y) if t^* extends t and $Y^* \subset Y$.

Let \mathbb{P} denote this forcing. A generic object adds a cub subset of ω_1 .

 $\mathbb P$ is countably closed. So ω_1 is not collapsed.

Remark: In general forcing with countable conditions over $L(\mathbb{R})$ may collapse \mathbb{R} to ω_1 (in particular collapse ω_2 and all cardinals up to Θ). **Claim:** \mathbb{P} does not collapse ω_2 .

Proof: Let \dot{f} name a function from ω_1 into ω_2 . For a stem t let $A(t) = \{\beta \mid \text{ for some } \alpha \text{ and some } Y, (t, Y) \Vdash \dot{f}(\check{\alpha}) = \check{\beta}\}.$

Note: for each α , the set $\{\beta \mid \text{ for some } Y, (t,Y) \Vdash \dot{f}(\check{\alpha}) = \check{\beta}\}$ has at most one element.

So A(t) has size at most ω_1 .

Let $g(t) = \sup A(t)$. Then $g: [\omega_1]^{<\omega} \to \omega_2$.

Using last claim can find a nice Y so that $g \upharpoonright Y$ is bounded.

 (\emptyset, Y) then forces \dot{f} to be bounded in ω_2 .