Inner models and ultrafilters in $L(\mathbb{R})$

Itay Neeman

Department of Mathematics University of California Los Angeles

Los Angeles, CA 90095-1555 ineeman@math.ucla.edu

Part 1:

1. Preliminaries.
2. The club filter on ω_{1}.
3. An ultrafilter on $\left[\omega_{1}\right]^{<\omega_{1}}$.
4. Forcing over $L(\mathbb{R})$ to add a cub subset of ω_{1}.

Let M have ω Woodin cardinals. Let δ be their supremum. Let $\mathbb{P} \in M$ be the poset $\operatorname{col}(\omega,<\delta)$.

Let $G=\left\langle G_{\xi} \mid \xi<\delta\right\rangle$ be \mathbb{P}-generic $/ M$.
Define: $R^{*}=R^{*}[G]=\bigcup_{\beta<\delta} \mathbb{R}^{M[G\lceil\beta]}$.
R^{*} is called a symmetric collapse of M.

A set of reals B is realized as a symmetric collapse of M if there is a generic G so that $R^{*}[G]=B$.

Note: Let φ be a formula and let a_{1}, \ldots, a_{k} be reals or ordinals in M. Let R_{1} and R_{2} be two symmetric collapses of M. Then
$\mathrm{L}\left(R_{1}\right) \models \varphi\left[a_{1}, \ldots, a_{k}\right]$

$$
\mathrm{L}\left(R_{2}\right) \models \varphi\left[a_{1}, \ldots, a_{k}\right] .
$$

(This follows from the homogeneity of \mathbb{P}.)

Cor: $\varphi\left[a_{1}, \ldots, a_{k}\right]$ is true in $\mathrm{L}\left(R^{*}[G]\right)$ iff this is forced by the empty condition.

We informally refer to $\mathrm{L}\left(R^{*}[G]\right)$ (rather than $R^{*}[G]$ itself) as a symmetric collapse of M.

We say that $\varphi\left[a_{1}, \ldots, a_{k}\right]$ is forced to hold in the symmetric collapse of M if it is forced (by the empty condition) to hold in $\mathrm{L}\left(R^{*}[G]\right)$.

Suppose now that M is iterable (more on this later) and that $\mathcal{P}(\delta)^{M}$ is countable in V . Let $g: \omega \rightarrow \mathbb{R}$ be a generic surjection.

Fact: In $\vee[g]$ there is an M^{*} and an elementary $\pi: M \rightarrow M^{*}$ so that \mathbb{R} (the true \mathbb{R} of V) is realized as a symmetric collapse of M^{*}.

Any statement forced to hold in the symmetric collapse of M is also forced to hold in the symmetric collapse of M^{*}, since π is elementary.

It follows that any statement forced to hold in the symmetric collapse of M, holds in the true $L(\mathbb{R})$.

This works for statements with real parameters and parameters bounded in δ. (One can arrange that π does not move such parameters.)

The Fact is used to prove $A D^{L(\mathbb{R})}$ from the following large cardinal assumption:

For each $u \in \mathbb{R}$ there is a class model M s.th. (1) $u \in M$;
(2) M has ω Woodin cardinals, say with sup δ;
(3) $\mathcal{P}(\delta)^{M}$ is countable in V; and
(4) M is iterable.

We will use the fact and the large cardinal assumption directly, to obtain ultrafilters in $L(\mathbb{R})$.

An ultrafilter on ω_{1} :
Let M be a countable model of ZFC with (at least) a measurable cardinal. Let $a(M)$ be the first measurable cardinal of M.

The measures in M can be used to form ultrapowers, and the process can be iterated.

By a (linear) iterate of M we mean any model P obtained through a countable iteration of this kind.
M is (linearly) iterable if all its iterates are wellfounded.

For an iterable M define

$$
C_{M}=\{a(P) \mid P \text { is an iterate of } M\} .
$$

Note then $C_{M} \subset \omega_{1}{ }^{\vee}$.

Let M_{1} and M_{2} be countable, iterable models with (at least) a measurable cardinal.

Let M^{*} be a countable, iterable model with a measurable cardinal, and such that both M_{1} and M_{2} belong to M^{*}. (Such M^{*} exists by our large cardinal assumption. Note both M_{1} and M_{2} are coded by reals.)

It's easy to see then that both $C_{M^{*}} \subset C_{M_{1}}$ and $C_{M^{*}} \subset C_{M_{2}}$.

It follows that the collection
$\left\{C_{M} \mid \mathrm{M} \mathrm{ctbl}\right.$, iterable, with a measurable $\}$ has the finite intersection property.

Let \mathcal{F} be the filter generated by this collection.

An argument similar to the above shows that in fact the collection has the countable intersection property. So \mathcal{F} is countably complete.

Claim: \mathcal{F} is an ultrafilter in $L(\mathbb{R})$.
Proof: Let $X \in \mathrm{~L}(\mathbb{R})$ be a subset of ω_{1}. For simplicity suppose X is definable in $L(\mathbb{R})$ from a real parameter u. Fix a formula ψ so that $\alpha \in X$ iff $\mathrm{L}(\mathbb{R}) \models \psi[\alpha, u]$.

Using the large cardinal assumption fix a model M, with ω Woodin cardinals etc., and with $u \in M$.

Ask: Is $\psi[a(M), u]$ forced to hold in the symmetric collapse of M ?

Suppose yes (*).
Let P be an iterate of M. Have then an elementary embedding $j: M \rightarrow P$ (the iteration embedding generated by the various ultrapowers taken).

By (*) and since j is elementary, $\psi[a(P), u]$ is forced to hold in the symmetric collapse of P.

By preliminaries' Fact, it follows that $\psi[a(P), u]$ really holds in $L(\mathbb{R})$.

So $a(P) \in X$.

This is true for each iterate P of M.

So $C_{M}=\{a(P) \mid P$ an iterate of $M\}$ is contained in X.

Showed: If $\psi[a(M), u]$ is forced to hold in the symmetric collapse of M then $C_{M} \subset X$.

A similar argument shows that if $\psi[a(M), u]$ is forced to fail then $C_{M} \subset \omega_{1}-X$.

So \mathcal{F} is an ultrafilter.

An ultrafilter on $\left[\omega_{1}\right]^{<\omega_{1}}$:
Let M be a countable model with (at least) a measurable limit of measurable cardinals. Let $\kappa=\kappa(M)$ be the first such cardinal in M.

Let $\left\langle\tau_{\xi} \mid \xi<\gamma\right\rangle$ list the measurable cardinals of M below κ, in increasing order.

Define $a(M)=\left\langle\tau_{\xi} \mid \xi<\gamma\right\rangle$.
Note $a(M)$ then belongs to $\left[\omega_{1}\right]^{<\omega_{1}}$.

For an iterable M define:

$$
C_{M}=\{a(P) \mid P \text { is an iterate of } M\} .
$$

Note then $C_{M} \subset\left[\omega_{1}\right]^{<\omega_{1}}$.
The sets C_{M} generate an ultrafilter: simply carry the earlier proof (for ω_{1}), with the current definitions. Call this ultrafilter \mathcal{F}.

Let $\gamma(M)=$ o.t. $\{\tau<\kappa \mid \tau$ is measurable in $M\}$. The length of the seq. $a(M)$ is precisely $\gamma(M)$.

Note: If P is an ultrapower of M by a measure on κ, then $\gamma(P)>\gamma(M)$.

It follows that $C_{M}=\{a(P) \mid P$ is an iterate of $M\}$ has sequences of arbitrarily large countable length.

So \mathcal{F} does not concentrate on any particular countable length. (We say that \mathcal{F} "concentrates on long sequences.")

The projection of \mathcal{F} to $\left[\omega_{1}\right]^{1}$ is simply our previous ultrafilter on ω_{1}. (This is because the first coordinate in $a(M)=\left\langle\tau_{\xi} \mid \xi<\gamma\right\rangle$ is the first measurable of M.)

Similarly the projection of \mathcal{F} to $\left[\omega_{1}\right]^{\alpha}$ for each countable α is the α-length iteration of our previous ultrafilter on ω_{1}.

Say that $X \subset\left[\omega_{1}\right]^{<\omega_{1}}$ is nice if:
(1) X belongs to \mathcal{F};
(2) X is countably closed $\left(r_{0} \frown r_{1} \frown \ldots r_{n} \in X\right.$ for each n, then $r_{0}{ }^{-} r_{1} \frown \cdots \in X$); and
(3) For each $s \in X,\{r \mid s \sim r \in X\}$ belongs to \mathcal{F}.

Each C_{M} is nice:
$C_{M} \in \mathcal{F}$ by definition, and by composing iterations one can check C_{M} is countably closed.

As for (3): For $s \in C_{M}$ have some iterate P of M so that $s=a(P)$. Let Q be the ultrapower of P by a measure on $\kappa(P)$. Notice then $s=a(P)$ is a strict initial segment of $a(Q)$. Let Q^{*} be a generic extension of Q collapsing the ordinals of $a(P)$ to ω. Then $a(Q)=a(P) \frown a\left(Q^{*}\right)$, and $\left\{r \mid a(P) \frown r \in C_{M}\right\}$ contains $C_{Q^{*}}$.

Note: If X is nice and $s \in X$, then $X^{*}=\left\{s^{*} \mid\right.$ $\left.s \frown s^{*} \in X\right\}$ is also nice.

There is a natural forcing notion suggested by \mathcal{F}. Conditions are pairs (t, Y) where:
$t \in\left[\omega_{1}\right]^{<\omega_{1}} ; Y$ is a set of extensions of t; and $\{s \mid t \subset s \in Y\}$ is nice.

More on this forcing later.

Claim: Let $g:\left[\omega_{1}\right]^{<\omega_{1}} \rightarrow \omega_{2}$. Then there is a set $X \in \mathcal{F}$ so that $g \upharpoonright X$ is bounded below ω_{2}.

Proof: Recall that ω_{2} is equal to δ_{2}^{1}, the sup of Δ_{2}^{1} prewellorderings.

Have a norm $\rho: \mathbb{R} \rightarrow \omega_{2}$ (partial, surjective) so that if $E \subset \operatorname{dom}(\rho)$ is Σ_{2}^{1} then $\rho^{\prime \prime} E$ is bounded below ω_{2}.

Define $g^{*}(a)=\{x \mid x \in \operatorname{dom}(\rho) \wedge \rho(x)=g(a)\}$. This is g "in the codes."
g^{*} belongs to $L(\mathbb{R})$. For simplicity suppose it is definable in $L(\mathbb{R})$ from a real parameter, u. Fix ψ so that $x \in g^{*}(a)$ iff $\mathrm{L}(\mathbb{R}) \models \psi[a, x, u]$.

Suppose P satisfies our large cardinal assumption (ω Woodin cardinals, etc.) with $u \in P$.

Then inside every symmetric collapse of P, there is a real x so that $\psi[a(P), x, u]$ holds in the symmetric collapse.

This follows from the preliminaries' Fact:
$\mathrm{L}(\mathbb{R})$ satisfies $(\exists x) \psi[a(P), x, u]$, just take any x in $g^{*}(a(P))$.

So the symmetric collapse of P must also satisfy $(\exists x) \psi[a(P), x, u]$.

If $\psi[a(P), x, u]$ holds in a symmetric collapse of P, then (again by the preliminaries' Fact) it holds in $\mathrm{L}(\mathbb{R})$, meaning that $x \in g^{*}(a(P))$.

We showed: $\{x \mid \psi[a(P), x, u]$ holds in a symmetric collapse of $P\}$ is non-empty and contained in $g^{*}(a(P))$.

Now let M satisfy our large cardinal assumption with $u \in M$.

Let E be the set of reals x so that:
(\exists an iterate P of $M)(\psi[a(P), x, u]$ holds in a symmetric collapse of P).

By the previous slide

$$
E \subset \bigcup\left\{g^{*}(a(P)) \mid P \text { an iterate of } M\right\}
$$

and E meets each $g^{*}(a(P))$.
It follows that $E \subset \operatorname{dom}(\rho)$ and $\rho^{\prime \prime} E$ is precisely equal to $\{g(a(P)) \mid P$ an iterate of $M\}$.

Recall $C_{M}=\{a(P) \mid P$ is an iterate of $M\}$.
We showed: range $\left(g \upharpoonright C_{M}\right)=\rho^{\prime \prime} E$.
Now E is Σ_{2}^{1} : "There exists a (linear) iterate P of M " amounts to saying that there is a linear iteration, of wellfounded countable length, leading from M to P.

It follows that $\rho^{\prime \prime} E$ is bounded below ω_{2}. \square

Return now to the forcing.

Conditions are pairs (t, Y) so that $t \in\left[\omega_{1}\right]^{<\omega_{1}}$; Y is a set of extensions of t; and $\left\{s \mid t^{\curvearrowleft} s \in Y\right\}$ is nice.
(t^{*}, Y^{*}) extends (t, Y) if t^{*} extends t and $Y^{*} \subset$ Y.

Let \mathbb{P} denote this forcing. A generic object adds a cub subset of ω_{1}.
\mathbb{P} is countably closed. So ω_{1} is not collapsed.

Remark: In general forcing with countable conditions over $L(\mathbb{R})$ may collapse \mathbb{R} to ω_{1} (in particular collapse ω_{2} and all cardinals up to Θ).

Claim: \mathbb{P} does not collapse ω_{2}.

Proof: Let \dot{f} name a function from ω_{1} into ω_{2}. For a stem t let $A(t)=\{\beta \mid$ for some α and some $Y,(t, Y) \Vdash \dot{f}(\breve{\alpha})=\breve{\beta}\}$.

Note: for each α, the set $\{\beta \mid$ for some Y, $(t, Y) \Vdash \dot{f}(\breve{\alpha})=\breve{\beta}\}$ has at most one element.

So $A(t)$ has size at most ω_{1}.

Let $g(t)=\sup A(t)$. Then $g:\left[\omega_{1}\right]^{<\omega} \rightarrow \omega_{2}$.

Using last claim can find a nice Y so that $g \upharpoonright Y$ is bounded.
(\emptyset, Y) then forces \dot{f} to be bounded in ω_{2}. \square

