
AN INTRODUCTION TO PROOFS OF DETERMINACY OF LONG

GAMES

ITAY NEEMAN

Abstract. We present the basic methods used in proofs of determinacy of long

games, and apply these methods to games of continuously coded length.

From the dawn of time women and men have aspired upward. The devel-
opment of determinacy proofs is no exception to this general rule. There has
been a steady search for higher forms of determinacy, beginning with the re-
sults of Gale–Stewart [2] on closed length ω games and continuing to this day.
Notable landmarks in this quest include proofs of Borel determinacy in Martin
[5]; analytic determinacy in Martin [4]; projective determinacy in Martin–Steel

[8]; and AD
L(R) in Woodin [17].1 Those papers consider length ω games with

payoff sets of increasing complexity. One could equivalently fix the complexity
of the payoff and consider games of increasing length. Such “long games” form
the topic of this paper.

Long games form a natural hierarchy, the hierarchy of increasing length.
This hierarchy can be divided into four categories: games of length less than
ω ·ω; games of fixed countable length; games of variable countable length; and
games of length ω1.

Games in the first category can be reduced to standard games of length ω, at
the price of increasing payoff complexity. The extra complexity only involves
finitely many real quantifiers. Thus the determinacy of games of length less
than ω · ω, with analytic payoff say, is the same as projective determinacy.

Games in the second category can be reduced to combinations of standard
games of length ω, with increased payoff complexity, and some additional
strength assumptions. The first instance of this is given in Blass [1]. The tech-
niques presented there can be used to prove the determinacy of length ω · ω
games on natural numbers, with analytic payoff say, from AD

L(R) + “R
# ex-

ists.” In another, choiceless reduction to standard games, Martin and Woodin
independently showed that AD + “all sets of reals admit scales” implies that
all games in the second category are determined.
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L(R) is the statement that all standard length ω games with payoff in L(R) are

determined.
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It is in the third category that the methods presented here begin to yield
new determinacy principles. (The one previously known determinacy proof for
games in the third category is a theorem of Steel [16], which applies to games
of the kind described in Remark 1.1.)

Neeman [12] concentrates on third category games and reaches to the low
end of the fourth category. Our goal here is to provide an introduction to
the methods of [12]. We illustrate these methods with one game of the first
category, one of the second, and one of the third. The proofs, like the results,
form a hierarchy.

The proofs in the first category are closely related to the main construction
of Martin–Steel [8].

The proofs in the second category can be viewed as combinations of (1) a
construction which reduces one side of a given game to an iteration game;
and (2) an appeal to a winning strategy for the good player in the iteration
game. (Iteration games are described in Section 1.2.) This is a general pattern
that continues higher up. Determinacy is thus dependent upon iterability—the
existence of winning strategies for the good player in iteration games. We say
more on this at the end of Section 1.2.

The construction for part (1) above is a matter of breaking the construc-
tion of the first category into blocks, and reassembling the blocks spreading
them over countably many stages. In some ways this is analogous to the way
scale propagation under infinitely many real quantifiers relates to the basic
propagation under one quantifier. Readers interested in a side tour may check
Sections 6C and 6E of Moschovakis [10], Moschovakis [11], and Martin [6] for
results on scale propagation.

Third category proofs use the techniques of the second category, but the
reassembling of the blocks is not done at the outset. Instead the decisions
on how to spread the blocks of the construction are taken during the game
and depend on the players’ moves. Similar methods apply to open games of
length ω1 (the low end of the fourth category). Beyond that determinacy is
not known.

We try to make this progression of ideas evident through the organization
of the paper. In Section 2 we present the basic tools. One of the two lemmas
there, Lemma 2.8, draws heavily on the techniques of Martin–Steel [8]. In
Section 3 we use the basic tools to prove the determinacy of standard length ω

games with Σ1
2 payoff. In Section 4 we prove the determinacy of games of fixed

length ω ·ω, with Σ1
2 payoff. The proof involves breaking and reassembling the

previous construction of Section 3. In Section 6 we prove the determinacy of
games of continuously coded length. (These are games of the third category;
of variable countable length. We define these games in Section 1.1.) Again the
proof involves breaking and reassembling a construction of the kind done in
Section 3. But now the break line is not fixed at the outset; it varies depending
on the actual moves during the game.
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Sections 3 and 4 are included for their role in the development of methods
which lead to Section 6. The results stated in those two sections, Theorem
3.1 and Theorem 4.12 are not new. Both are due to Woodin by methods
different from ours. Theorem 3.1 in slightly weakened form was first proved
by Martin–Steel [8].

As chance would have it the methods of Section 6 are also useful for longer
games of the third category, specifically games ending at ω1 in L of the play.
These in turn are useful for the determinacy proof for open games of length
ω1. But we shall not reach that far here. Our discussion ends with Theorem
6.15, which establishes determinacy for games of continuously coded length.

§1. Preliminaries. We take this section to define precisely the long games
which we intend to prove determined and sketch the large cardinal notions
needed for the proofs, mainly iteration trees and iteration games. Our sketch
of the large cardinal notions is informal, maybe even superficial, but it suffices
for our needs.

1.1. The games. Following standard abuse we let R denote Baire space,
namely the space N

ω. Let C ⊂ R
<ω1 be given. Let ν : R → N, a partial

function, be given. Gcont−ν(C) is played according to Diagram 1.

I . . . . . . . . . yα(0) yα(2)
II yα(1) yα(3) · · ·

Diagram 1. The game Gcont−ν(C).

In mega-round α, players I and II alternate playing natural numbers yα(i),
i < ω, producing a real yα. If ν(yα) is not defined, the game ends. I wins iff
〈y0, y1, . . . . . . , yα〉 ∈ C. Otherwise we set nα = ν(yα). If there exists ξ < α

so that nα = nξ, the game ends. Again I wins iff 〈y0, y1, . . . . . . , yα〉 ∈ C.
Otherwise the game continues.

The end length of a run of Gcont−ν(C) may vary depending on the moves
played by the two players. But the length is always countable. Indeed, a map
witnessing that the length is countable is produced continuously—one extra
bit of information at each mega-round—during the play. The game is said to
have continuously coded length.

Remark 1.1. Our definition here generalizes the definition of continuously
coded games in Steel [16], where ν acted on 〈yξ | ξ < α〉, and nα was set to
be ν(yξ | ξ < α). (Why is our definition a generalization? One could easily
force one of the players to code 〈yξ | ξ < α〉 into her moves for yα. Thus in
our settings too ν can refer to 〈yξ | ξ < α〉.) The generalization is proper, in
the sense that there are games which fall within our definition, but outside the
definition of Steel [16].
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We make a few simple observations about the game.

Claim 1.2. Suppose that 〈yξ | ξ < λ〉 is a position of limit length. Then
nξ → ∞ as ξ → λ.

Proof. This is immediate. The nξ-s are distinct, and so they cannot be
forever bounded. a

Suppose 〈yξ | ξ < α〉 is a position reached during the game. The map
ξ 7→ nξ = ν(yξ) embeds α into N, and can be used to code the position by a
real. We let pyξ | ξ < αq denote this real code. The precise method of coding
is not important, so long as it satisfies the following property:

Property 1.3. The real codes pyξ | ξ < αq and pyξ | ξ < α + 1q agree to
nα = ν(yα).

Any reasonable use of the map ξ 7→ nξ to code 〈yξ | ξ < α〉 will have this
property.

Remark 1.4. Combining Claim 1.2 and Property 1.3 we see that the reals
xα = pyξ | ξ < αq converge to xλ = pyξ | ξ < λq as α → λ.

Remark 1.4 will be crucial later when we reach the determinacy proof in
Section 6. Indeed continuity is important throughout this paper, starting
already in the arguments of Sections 3.

Let us say that the payoff set C is Γ in the codes—where Γ is some
pointclass, for example Σ1

2—if there is a Γ set A ⊂ R × R so that

〈yξ | ξ ≤ α〉 ∈ C ⇐⇒ 〈xα, yα〉 ∈ A

where xα = pyξ | ξ < αq.
Our goal is to give a proof of determinacy for the games Gcont−ν(C) when

ν is continuous and C is Σ1
2 in the codes. As in illustrative case we will first

consider games of fixed length. We will handle games of two lengths: games of
length ω, and then games of length ω ·ω. We remind the reader of the format
of these games:

Let C ⊂ R
ω = N

ω·ω be given. In Gω·ω(C) players I and II play ω mega-
rounds according to Diagram 2.

I y0(0) . . . . . . y1(0) . . .

II y0(1) y1(1) . . .

Diagram 2. The game Gω·ω(C).

In mega-round k the players alternate playing natural numbers yk(i), pro-
ducing together a real yk. Once ω mega-rounds are completed, I wins if
〈yk | k < ω〉 belongs to C. Otherwise II wins.



AN INTRODUCTION TO PROOFS OF DETERMINACY OF LONG GAMES 5

Let C ⊂ R = N
ω be given. In Gω(C) the players play only one mega-round,

alternating natural number moves y(i) as in Diagram 3 to produce together
the real y. I wins if y ∈ C. Otherwise II wins.

I y(0) y(2) . . .

II y(1) y(3) . . .

Diagram 3. The game Gω(C).

1.2. Iteration trees. We include here an informal description of iteration
trees and the notions of iterability which we shall need. This description is far
from complete, and even further from precise. The reader who desires more
thorough knowledge should consult Kanamori [3] and Martin–Steel [9].

An extender on κ is a directed system of measures on κ. For an exact
definition see [3, §26]. We use dom(E) to denote κ. An extender E allows us to
form an ultrapower of V, denoted Ult(V, E), and an elementary ultrapower

embedding π : V → Ult(V, E). We refer the reader to [3, §26] or [8, §1] for
the exact construction.

Let us say that two ZFC models Q∗ and Q agree to κ if P(κ) ∩ Q∗ =
P(κ) ∩Q. Suppose Q |=“E is an extender on κ.” Suppose Q∗ and Q agree to
κ. Then E measures all subsets of κ in Q∗, and can thus be used to form an
ultrapower Ult(Q∗, E) of Q∗, and an elementary ultrapower embedding

σ : Q∗ → Ult(Q∗, E). Ult(Q∗, E) needn’t always be wellfounded, but if it is
then we assume it is transitive.

An iteration tree T of length ω consists of:

• A tree order T on ω;
• A sequence of models 〈Mk | k < ω〉; and
• Embeddings jk,l : Mk → Ml for k T l.

An iteration tree on M is a tree with M0 = M .
A sample iteration tree together with its tree order T is displayed in Diagram

5. A precise definition can be found in [8, §3]. Rather than reproduce this def-
inition let us only explain how to form an iteration tree: Suppose M0, . . . ,Ml

and the order T � l + 1 are known. We wish to form Ml+1 and extend the tree
order to T � l + 2. To do this, we pick some extender El in Ml, and pick some
k ≤ l so that Ml and Mk agree to dom(El). (Note that taking k = l gives this
agreement for free.) Set Ml+1 = Ult(Mk, El), and extend T by letting k be
the predecessor of l + 1. The result is presented in Diagram 4. An iteration
tree of length ω is any object produced by ω repetitions of this process.

A cofinal branch through an iteration tree of length ω is an infinite set
b ⊂ ω which is linearly ordered by T . The sample iteration tree of Diagram
5 has an even branch—the branch consisting of {0, 2, 4, 6, . . .}. Most of our
iteration trees will have an even branch, and some complicated tree structure
on the odd models. We use Meven to denote the direct limit of the models along
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Ml+1

El ∈ Ml

Mk

jk,l+1

OO

Diagram 4. Forming Ml+1.

M7

M6

OO

M5

M4

OO

::uuuuuu

M3

M2

j2,4

OO

M1

j1,3

CC�����������

KK���������������������������������

M0

j0,2

OO

j0,1

::uuuuuu

Diagram 5. A sample iteration tree, with the tree order 0 T

1, 0 T 2, 1 T 3, 1 T 7, . . . .

the even branch. In general given a cofinal branch b we use Mb to denote the
direct limit of the models along b.

We shall need a couple of notions of iteration games. The notions we need are
defined below. We call both of them “iteration games” though they correspond
more closely to the standard notion of a “weak iteration game.” Iteration
games were first defined by Martin and Steel. The interested reader can find
the general definition in [9].

Let M be a given model. In the first iteration game which we consider,
players “good” and “bad” collaborate to produce a sequence of iteration trees
as in Diagram 6.
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M
b0 //jjjjjjjjj

T0

TTTTTTTTT
M1

b1 //jjjjjjjjj

T1

TTTTTTTTT
M2

b2 //jjjjjjjjj

T2

TTTTTTTTT
M3

//____

//____ Mω

bω //jjjjjjjjj

Tω

TTTTTTTTT
Mω+1

//____

Diagram 6. An iteration game.

In round ξ “bad” plays a length ω iteration tree Tξ on Mξ. “Good” plays
a cofinal branch bξ through Tξ. We let Mξ+1 be the direct limit model de-
termined by bξ and proceed to the next round. For limit λ we let Mλ be the
direct limit of the models Mξ, ξ < λ. We start with the given model M = M0.
The game continues to ω1.

If ever a model Mξ, where ξ < ω1, is reached which is illfounded, “bad”
wins. Otherwise “good” wins.

In the second iteration game which we consider, round ξ has the form pre-
sented in Diagram 7.

//____ Mξ

Eξ $$bξ //jjjjjjjjj

Tξ

TTTTTTTTT
Qξ Mξ+1 //____

Diagram 7. Round ξ of the second type iteration game.

“Bad” plays a length ω iteration tree Tξ on Mξ. “Good” plays a cofinal
branch bξ, giving rise to the direct limit Qξ. Then “bad” plays an extender
Eξ in Qξ, with dom(Eξ) within the level of agreement between Mξ and Qξ.
We set Mξ+1 = Ult(Mξ, Eξ) and continue to the next round.

As before the game continues to ω1, taking direct limits at limit stages. If
ever a model Qξ or Mξ, where ξ < ω1, is reached which is illfounded, “bad”
wins. Otherwise “good” wins.

M is iterable if the good player has a winning strategy for each of the
iteration games described above and combinations thereof. We refer to such
winning strategies as iteration strategies.

Typically in our constructions the iteration trees, but not the branches
through them, will be produced by some mechanism which is part of the
construction. To keep the construction going we will need a method of picking
branches through the iteration trees we encounter. It will be important to
maintain the wellfoundedness of all the models we construct. We will thus
need an iteration strategy to carry our construction through.
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The existence of winning strategies for the good player in general iteration
games is one of the central problems facing large cardinalists. Our own defi-
nition of iterability is restricted to the weak iteration games described above.
These weak games are easier for “good” than the general games, and we have
the following theorem of Martin–Steel [9]:

Theorem 1.5 (Martin–Steel). Let Vη be some sufficiently closed rank ini-
tial segment of V. Then countable elementary substructures of Vη are iterable
(in the weak sense described above).

We note that once one tries to prove determinacy of games somewhat longer
than the continuously coded, for example games ending at ω1 in L of the play,
the weak iteration games described above no longer suffice for the construc-
tions. The kind of iterability needed for games ending at ω1 in L of the play was
proved in Neeman [15]. For longer games, for example open games of length
ω1, it seems that nothing short of general iterability could suffice for the de-
terminacy proofs. This is one of several examples of the great importance of
general iterability.

§2. Auxiliary moves. Fix throughout this section some ZFC model M

which has a Woodin cardinal δ. Assume that in V there are M–generics for
col(ω, δ). Fix a name Ȧ ∈ M for a set of reals in M col(ω,δ).

Work with some x = 〈xn | n < ω〉 ∈ R. We work to define an auxiliary
game, A[x], of ω moves taken from M . In this game I tries to witness that

x ∈ Ȧ[h] for some generic h. II tries to witness the opposite. We shall use this
method of “witnessing” later on in our determinacy proofs. What we present
here is a gentle guide to the definition of A[x]. The actual definition can be
found in [12, Chapter 1].

The format of the auxiliary game A[x] is presented in Diagram 8. All moves
belong to M , and each rule should be read relativized to M .

I . . . ln,Xn, pn . . .

II Fn,Dn . . .

Diagram 8. Round n of A[x].

In round n I plays:

• ln, a number smaller than n, or ln = “new”;
• Xn, a set of names for reals of M col(ω,δ); and
• pn, a condition in col(ω, δ).

II plays:

• Fn a function from Xn into the ordinals; and
• Dn, a function from Xn into {dense sets in col(ω, δ)}.

Set l = ln. If ln = “new” we make no requirements on I. Otherwise we require:
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1. pn extends pl;
2. Xn ⊂ Xl.

We further require that for every name ẋ ∈ Xn:

3. pn forces “ẋ ∈ Ȧ”;
4. pn forces “ẋ(0) = x̌0,”. . . . . . ,“ẋ(l) = x̌l”; and
5. pn belongs to Dl(ẋ).

We make the following requirement on II when ln 6= “new”:

6. For every name ẋ ∈ Xn, Fn(ẋ) < Fl(ẋ).

This completes the rules for round n.

If there is an h which is col(ω, δ)–generic/M and so that x ∈ Ȧ[h], then I
can pick a name for x, play Xn containing this name, and play pn ∈ h. Rule 6
ensures defeat for II. In other words, if there is an infinite run of A[x] where I
played wisely enough, then there cannot be a name ẋ and a generic h so that
x ∈ Ȧ[h].

The game A[x] thus follows its stated intuitive goal—being a game in which

II tries to witness that there is no generic h so that x ∈ Ȧ[h], while I tries
to witness there is such h. This is consolidated below. In Section 2.1 we see
that, if I plays wisely, then II’s moves witness that x 6∈ Ȧ[h] for any generic
h. Then in Section 2.2 we see that, if II plays wisely, then I’s moves witness
that x belongs to jb(Ȧ)[h], where jb(Ȧ) is some shifted image of Ȧ, and h is
generic for the collapse of the shifted δ.

Remark 2.1. Rather than play the sets Xn directly, I plays their type. I
plays κn < δ, and a set un of formulae with parameters in M‖κn∪{κn, δ, Ȧ}.2

We take Xn to be the set of names which satisfy all these formulae. The fact
that this still allows I enough control over her choice of Xn has to do with our
assumption that δ is a Woodin cardinal. We refer the reader to [12, Chapter 1]
for precise details. Fn and Dn are played similarly.

Observe that all moves in A[x] are therefore elements of M‖ δ.

Note that the association x 7→ A[x] is continuous: the rules governing the
first n+1 rounds of A[x] depend only on x� n. We in fact defined an association
s 7→ A[s]; for s ∈ ω<ω we have A[s], a game of lh(s) + 1 many rounds.

Definition 2.2. A denotes the map (s 7→ A[s]).

Our definition of A[s] from s takes place entirely in M . It follows that
the map A belongs to M . This is important; it allows us to shift A using
elementary embeddings which act on M . Given an elementary j : M → M∗

we have the map j(A) defined on s ∈ ω<ω. For a real x (in V) we can then
define j(A)[x] in the natural way: j(A)[x] =

⋃
n<ω j(A)[x� n]. We shall use

such shiftings later on, see for example Section 2.2.

2By M‖κn we mean VM
κn

.
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2.1. Generic runs. Fix some g which is col(ω, δ)–generic/M . We alter-
nate between thinking of g as a generic enumeration of δ, and as a generic
enumeration of M‖ δ. (δ and M‖ δ have the same cardinality in M .)

Working in M [g] define σgen[x], a strategy for I in A[x], as follows: σgen[x]
plays in each round the first (with respect to the enumeration g) legal move.
(Remember that moves in A[x] are elements of M‖ δ; see Remark 2.1.)

The association x 7→ σgen[x] is continuous; we are in fact defining a map
s 7→ σgen[s] for s ∈ ω<ω. This map belongs to M [g].

Definition 2.3. (Made with respect to a fixed g.) σgen denotes the map
(s 7→ σgen[s]).

Lemma 2.4. Suppose that there exists an infinite run of A[x], played ac-

cording to σgen[x]. Then x 6∈ Ȧ[g]. (This is only useful if x ∈ M [g].)

Proof Sketch. Suppose for contradiction that x ∈ Ȧ[g]. In particular

x ∈ M [g]. We have some name ẋ so that ẋ[g] = x and g “ẋ ∈ Ȧ.”
We have some infinite run of A[x], as displayed in Diagram 8. The run

splits into branches: a branch is a sequence {nk}k<ω so that ln0
= “new”

and lnk
= nk−1 for k > 0.

Note that ẋ and conditions p ∈ g satisfy rules 3–5 of A[x]. The genericity
of I’s moves allows us to find a branch which realizes ẋ and g. More precisely,
a branch so that (a) ẋ ∈ Xnk

for all k; and (b) pnk
belongs to g for all k. But

then using rule 6 we get an infinite sequence of ordinals, a contradiction. a

The key to the proof of Lemma 2.4 is the use of genericity in the last para-
graph. We refer the reader to [12, Chapter 1] for a precise argument. The same

proof can be used to show that in fact there is no generic h so that x ∈ Ȧ[h].

2.2. Pivots. We wish to phrase a lemma similar to Lemma 2.4, but now
with a method of playing for II so that infinite runs put x in (something like)

Ȧ[h]. We cannot directly come up with moves for II in A[x]. Instead we
phrase another game which is similar to A[x] but easier for II, and come up
with a method of playing for II in the easier game. This easier game is denoted
Apiv[x]. Its format is presented in Diagrams 9 and 10.

I . . . ln,Xn, pn . . .

II E2n, E2n+1,Fn,Dn . . .

Diagram 9. Round n of Apiv[x].

At the start of round n we have a finite iteration tree T � 2n+1 on M ending
with a model M2n, an embedding j0,2n : M → M2n, and a position Pn of n

rounds in j0,2n(A)[x]. During the round:

• I plays ln,Xn, pn, a legal move in j0,2n(A)[x] following Pn.
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M =M0

��
M1 M2

��
M3 M4

��
M5 M6 · · ·

I

l0
X0

p0_

_

///o/o/o/o/o/o

II
F0

D0

I

l1
X1

p1_

///o/o/o/o/o/o

II
F1

D1

I

l2
X2

p2_

///o/o/o/o/o/o

Diagram 10. Apiv[x], the dynamic view.

We extend the tree order T � 2n+1 by setting (2ln+1) T (2n+1) if ln 6= “new”
and (2n) T (2n + 1) otherwise. We set further (2n) T (2n + 2). We have now
T � 2n + 3.

• II plays extenders E2n, E2n+1, which combined with our definition of
T � 2n+3 give rise to models M2n+1 and M2n+2. (It is II’s responsibility to
make sure the domains of the extenders are within the level of agreement
of the relevant models.)

We have an embedding j2n,2n+2 : M2n → M2n+2. Let Qn be the position
j2n,2n+2(Pn−−, ln,Xn, pn).3 This “shifting” of Pn−−, ln,Xn, pn from M2n to
M2n+2 is indicated in squiggly arrows in Diagram 10.

• II plays Fn,Dn, a legal move in j0,2n+2(A)[x] following Qn.

This completes the round. We let T � 2n + 3 be the extended iteration tree
(ending with M2n+2), let Pn+1 = Qn−−,Fn,Dn, and proceed to round n + 1.

3We write Pn−−, ln,Xn, pn to indicate that Pn is a sequence while ln, Xn, and pn are
singleton objects. Formally we should write Pn

_〈ln,Xn, pn〉, but we prefer to avoid the

additional brackets.
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Remark 2.5. We make one extra, technical demand on player II. We de-
mand that all extenders used are taken from below δ, and have critical points
larger than some pre-specified ordinal λ < δ. For one example of how this
is used (and which λ is specified) see Remark 4.6. For another example see
Remark 4.9. Similar uses are made later, in Section 6.

We note as usual that the association x 7→ Apiv[x] is continuous; for s ∈ ω<ω

we get Apiv[s], a game of lh(s) + 1 many round.

Definition 2.6. We use Apiv to denote the map (s 7→ Apiv[s]).

As usual the map Apiv = (s 7→ Apiv[s]) belongs to M .

Definition 2.7. A pivot for x is a pair T , ~a so that:

1. T is a length ω iteration tree on M , with an even branch.
2. ~a is a run of jeven(A)[x].
3. For every cofinal odd branch b of T , there exists some h so that:

(a) h is col(ω, jb(δ))–generic/Mb; and

(b) x ∈ jb(Ȧ)[h].

Any run of Apiv[x] produces T , ~a which satisfy conditions 1 and 2. To be a
pivot the run must further satisfy the crucial condition 3. Intuitively condition
3 states that x belongs to interpretations of “shifts” of the name Ȧ. Our goal
here is to phrase a lemma which complements Lemma 2.4 and the notions of
the previous subsection. We can now say precisely what this means: we need
a strategy which plays for II in Apiv[x] and always secures condition 3.

Fix some map % : ω → M‖ δ + 1. Applying techniques of the kind used
in Neeman [13]—which in turn builds on Martin–Steel [8]—it is possible to
construct a strategy σpiv[%, x] which plays for II in Apiv[x], and so that:

Lemma 2.8. Suppose % is onto M‖ δ+1. Then all runs according to σpiv[%, x]
are pivots.

As usual the map x 7→ σpiv[%, x] is continuous in x. But we cannot expect
this map to belong to M , since % need not belong to M . This is why we include
the extra variable %. The map %, x 7→ σpiv[%, x] is continuous, not only in x,
but also in %. For s ∈ ωn and ϑ : n → M‖ δ + 1 we get a strategy σpiv[ϑ, s]
which plays for II in Apiv[s]. We have

σpiv[%, x] =
⋃

n<ω

σpiv[%� n, x� n].

Definition 2.9. σpiv denotes the map (ϑ, s 7→ σpiv[ϑ, s]).

The construction of σpiv[ϑ, s], indeed of the map ϑ, s 7→ σpiv[ϑ, s], is phrased
entirely in M . The map σpiv, taken as a function in two variables, therefore
belongs to M . This is important—it will allow us to shift this map using
elementary embeddings which act on M . For an example of this see Section
4, particularly Remark 4.5.
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For details on the construction of σpiv and the proof of Lemma 2.8 we refer
the reader to [12, Chapter 1]. Let us here only say that the construction draws
heavily on the techniques of Martin–Steel [8], and that the assumption (earlier
in this section) that δ is a Woodin cardinal is crucial.

§3. A first application, Σ1
2 determinacy. As a first example we use the

methods of Section 2 to prove Σ1
2 determinacy. The result we obtain, Theorem

3.1, was previously proved by Woodin using different methods. It strengthens
a result of Martin–Steel [8]. For more information on determinacy within the
projective hierarchy we refer the reader to Neeman [14] and [13].

Theorem 3.1. Suppose there is an iterable class model M with a Woodin
cardinal δ. Suppose further that M‖ δ + 1 is countable in V. Then Σ1

2 deter-
minacy holds.

Proof. Fix A ⊂ R a Σ1
2 set, say the set of reals which satisfy a given Σ1

2

statement φ. We wish to show that the standard game Gω(A) is determined.

Fix M and δ which satisfy the hypothesis of Theorem 3.1. Let Ȧ ∈ M

name the set of reals of M col(ω,δ) which satisfy φ in M col(ω,δ). We have the
corresponding maps A, σgen, Apiv, and σpiv of Section 2.

Working inside M we define a game G∗, played according to Diagram 11.

I x0 l0,X0, p0 l1,X1, p1 x2 . . .

II F0,D0 x1 F1,D1

Diagram 11. The game G∗.

I and II alternate playing natural numbers xn, producing together x = 〈xn |
n < ω〉 ∈ R. In addition they play auxiliary moves subject to the rules of
A[x]. If a player cannot follow these rules, she loses. Infinite runs of G∗ are
won by II.

Remark 3.2. Our definition of G∗ implicitly uses the continuity of the map
x 7→ A[x]; in round n of G∗ we only know x� n, but this is enough to figure the
rules for round n of A[x]. Similarly, the fact that G∗ exists inside M follows
from the fact that A = (s 7→ A[s]) belongs to M .

We will show that if I wins G∗ in M then I wins G(A) in V. Later on we
will phrase a mirror image game H∗, and show that if II wins H∗ in M then II
wins G(A) in V. Then we will use the determinacy of G∗ and H∗ in M—note
G∗ is an open game and H∗ will be a closed game—to argue that one of these
cases must hold.

Case 1, if I wins G∗ in M . Fix σ∗ ∈ M a winning strategy for I (the open
player) in G∗. We wish to show that I wins Gω(A) in V. Let us play Gω(A)
against an imaginary opponent. We describe how to play, and win.



14 ITAY NEEMAN

M =M0

��
M1 M2

��
M3 M4

��
M5 M6 · · ·

σ∗ x0

σ∗

l0
X0

p0_

_

///o/o/o/o/o/o

σpiv
F0

D0

Oppnt x1

j0,2(σ
∗)

l1
X1

p1_

///o/o/o/o/o/o

σpiv
F1

D1

j0,4(σ
∗) x2

j0,4(σ
∗)

l2
X2

p2_

///o/o/o/o/o/o

Diagram 12. The construction in case 1.

In V fix a surjection % : ω → M‖ δ + 1. Our description takes the form of a
construction in V. We construct a run x ∈ R of Gω(A). At the same time we
construct T , ~a, a run of Apiv[x]. The participants in our construction are:

• The imaginary opponent: playing xn for odd n.
• The strategy σpiv[%, x]: playing for II in Apiv[x].
• The strategy σ∗ and its shifts along the even branch of T : playing xn for

even n and playing for I in Apiv[x] (i.e., playing for I in shifts of A[x]).

The time line of the construction is presented in Diagram 12. At the start of
round n we have x�n, T � 2n+1 ending with the model M2n, and a position Pn

of n rounds in j0,2n(A)[x� n]. If n is odd, our opponent opens the round playing
xn. If n is even j0,2n(σ∗) plays xn. Then j0,2n(σ∗) plays an auxiliary move
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ln,Xn, pn, according to the rules of j0,2n(A)[x� n] following the position Pn.
At this point we apply σpiv[%, x� n] which creates the models M2n+1, M2n+2.
Let Qn = j2n,2n+2(Pn−−, ln,Xn, pn). σpiv[%, x� n] further plays Fn,Dn, a legal
move for II in j0,2n+2(A)[x� n] following Qn. We let Pn+1 = Qn−−,Fn,Qn.
This completes round n.

Once the construction is completed we let

an = j2n,even(ln,Xn, pn)−−, j2n+2,even(Fn,Dn).

We let ~a = 〈an | n < ω〉. Our construction is such that x and ~a form an infinite
play of jeven(G∗), which is played according to jeven(σ∗). This play is created
in V, since our opponent lives in V. If Meven were wellfounded the existence
of such a play could be reflected into Meven. It could then be pulled back via
jeven to yield the existence in M of an infinite play of G∗ which is according
to σ∗. But σ∗ is a winning strategy for I, the open player in G∗; so there are
no infinite plays according to σ∗. We conclude that Meven is illfounded.

Since M is iterable there must exist some cofinal wellfounded cofinal branch
b through T . b must be an odd branch. Our use of σpiv[%, x] during the
construction guarantees that T ,~a is a pivot. Applying condition 3 of Definition
2.7 we conclude that there exists some h which is col(ω, jb(δ))–generic/Mb and
so that:

(∗) x ∈ jb(Ȧ)[h].

This means that in Mb[h] x satisfies the Σ1
2 statement φ. By Shoenfield abso-

luteness x must also satisfy φ in V. (We are using here the wellfoundedness of
Mb.) So x ∈ A as required. This completes case 1. a

Remark 3.3. Note the importance of continuity throughout our construc-
tion. In round n we are able to use σpiv[%, x] despite only having knowledge
of x�n + 1.

Remark 3.4. Note further the importance of having G∗ and σ∗ inside M .
During the construction we shifted G∗ and σ∗ along the even branch of T ,
using j0,2n(σ∗) in round n.

Let Ḃ ∈ M name the set of reals which do not satisfy φ in M col(ω,δ).
Define x 7→ B[x] and x 7→ Bpiv[x] as in Section 2, but changing Ȧ to Ḃ and
interchanging I and II. We have strategies τgen[x] and τpiv[%, x] as before,
but with the roles of I and II switched. (In particular, τgen is a strategy for II
and τpiv is a strategy for I.) These strategies satisfy Lemmas 2.4 and 2.8, but

with Ȧ (in Lemma 2.4 and in condition 3b of Definition 2.7) changed to Ḃ.
Working inside M we define a game H∗, played according to Diagram 13.
As before I and II alternate playing natural numbers xn, producing together

x = 〈xn | n < ω〉 ∈ R. This time they play auxiliary moves subject to the
rules of B[x]. If a player cannot follow these rules, she loses. This time infinite
runs of the game are won by I.
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I x0 F0,D0 F1,D1 x2 . . .

II l0,X0, p0 x1 l1,X1, p1

Diagram 13. The game H∗.

Case 2, if II wins H∗ in M . Then an argument similar to that of case 1
shows that (in V) II has a strategy to get into B = R − A. In other words, II
wins Gω(A) in V. a

So far we showed:

• (In case 1.) If I wins G∗ in M , then I wins Gω(A) in V.
• (In case 2.) If II wins H∗ in M , then II wins Gω(A) in V.

It is now enough to check that one of these cases must occur. Suppose not,
i.e., assume that in M II wins G∗ and I wins H∗. Fix strategies σ∗ and τ∗ in
M witnessing this. We intend to derive a contradiction.

We work in M [g] to construct a real x = 〈xn | n < ω〉, an infinite play
~a = 〈an−I, an−II | n < ω〉 of A[x] (an−I denotes I’s auxiliary move in round

n; an−II denotes II’s auxiliary move in round n), and an infinite play ~b =
〈bn−II, bn−I | n < ω〉 of B[x]. We construct as follows:

• σ∗ (playing for II in G∗) produces xn for odd n, and an−II for all n.
• σgen[x] produces an−I for all n.
• τ∗ (playing for I in H∗) produces xn for even n and bn−I for all n.
• τgen[x] produces bn−II for all n.

As usual continuity is important. Our use of σgen[x] and τgen[x] in round n

can be carried through since it only requires knowledge of x�n. We note that
the maps σgen and τgen exist in M [g]. Since σ∗ and τ∗ exist in M the entire
construction can be carried inside M [g].

Our use of σgen guarantees that x 6∈ Ȧ[g] (see Lemma 2.4). Since x belongs
to M [g] this means that x fails to satisfy φ in M [g]. Similarly our use of τgen

guarantees that x 6∈ Ḃ[g], and this means that x fails to not satisfy φ in M [g].
But this is a contradiction. a

§4. Games of length ω · ω. Fix C ⊂ R
ω a Σ1

2 set, say the set of all
sequences 〈yn | n < ω〉 ∈ R

ω which satisfy a given Σ1
2 statement φ. Fix M

and an increasing sequence 〈δ1, δ2, . . . , δω〉 in M so that:

• M is a class model;
• M is iterable;
• Each δξ, 1 ≤ ξ ≤ ω, is a Woodin cardinal in M ; and
• M‖ δω + 1 is countable in V.

The existence of such an M is our large cardinal assumption. We work under
this assumption to prove that Gω·ω(C) is determined.
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We work to define auxiliary games in M , analogous to the games G∗ and
H∗ of Section 3. These games will be open and closed respectively, and hence
determined. If in M I wins the analogue of G∗, we will show that in V I wins
Gω·ω(C). This is an analogue to case 1 in Section 3. If in M II wins the
analogue of H∗, then by a parallel argument II wins Gω·ω(C) in V. This is
an analogue to case 2 in Section 3. Determinacy will follow once we verify, in
Section 4.4, that one of these cases must occur. This is an analogue to the
final argument in Section 3.

4.1. Names. Let δ∞ denote δω. Let Ȧ∞ ∈ M name the set of sequences
〈yn | n < ω〉 ∈ R

ω in M col(ω,δ∞) which satisfy φ in M col(ω,δ∞). For each
〈yn | n < ω〉 ∈ R

ω we have the associated auxiliary game A∞[yn | n < ω] of

Section 2 corresponding to the name Ȧ∞ and the Woodin cardinal δ∞. (There
is a slight abuse of notation here; formally we should think of 〈yn | n < ω〉 as
coded by some real x.) We remind the reader that moves in A∞[yn | n < ω]

are arranged so that I tries to witness 〈yn | n < ω〉 ∈ Ȧ∞[h] for some h, while
II tries to witness the opposite.

The association 〈yn | n < ω〉 7→ A∞[yn | n < ω] is continuous, given by
the map A∞. This map belongs to M . We will talk about A∞[y0, . . . , yk−1],
which we take to be a game of k + 1 rounds. (Only a finite part of the reals
y0, . . . , yk−1 is needed to determine the rules of this game.) We use a∞

0−I,
a∞
0−II, a∞

1−I, etc. to refer to moves in the games A∞[yn | n < ω], and use a∞
n

to denote 〈a∞
n−I, a

∞
n−II〉. We use ~a∞ = 〈a∞

n | n < ω〉 to refer to infinite runs of
A∞[yn | n < ω].

Definition 4.1. A k-sequence is a sequence

S = 〈y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γ〉

so that:

1. Each yi is a real;
2. a∞

0 , . . . , a∞
k−1 is a position in the auxiliary game A∞[y0, . . . , yk−1]; and

3. γ is an ordinal.

Definition 4.2. A valid extension for a k-sequence S as in Definition 4.1
is a triple yk, a∞

k , γ∗ so that:

1. yk is a real;
2. a∞

k = 〈a∞
k−I, a

∞
k−II〉 where a∞

k−I and a∞
k−II are legal moves for I and II

respectively in the game A∞[y0, . . . , yk−1] following a∞
0 , . . . , a∞

k−1; and
3. γ∗ is an ordinal smaller than γ.

We use S−−, yk, a∞
k , γ∗ to denote the k + 1-sequence

〈y0, . . . , yk−1, yk, a∞
0 , . . . , a∞

k−1, a
∞
k , γ∗〉.

We remind the reader that A∞[y0, . . . , yk−1] is a game of k + 1 rounds, so
condition 2 of Definition 4.2 makes sense.

For expository simplicity fix for each k < ω some gk which is col(ω, δk)–
generic/M . Below we define sets in M [gk] where strictly speaking we should
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be defining names in M col(ω,δk). For a tuple a∞
0 , . . . , a∞

k−1 and an ordinal γ we

work to describe Ak[a∞
0 , . . . , a∞

k−1, γ], a subset of R
k in M [gk]. We shall then

let Ȧk[a∞
0 , . . . , a∞

k−1, γ] be the canonical name for this set.
We use the notation

〈y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γ〉 ∈ Ak

to mean that 〈y0, . . . , yk−1〉 belongs to Ak[a∞
0 , . . . , a∞

k , γ]. We similarly think

of Ȧk as a (class) name for the collection of tuples S so that S ∈ Ak. Thus we
say

S = 〈y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γ〉 ∈ Ȧk[h]

to mean that 〈y0, . . . , yk−1〉 belongs to Ȧk[a∞
0 , . . . , a∞

k−1, γ][h].
Let Ak[y0, . . . , yk−1, a

∞
0 , . . . , a∞

k−1, γ] be the auxiliary games corresponding

to the name Ȧk[a∞
0 , . . . , a∞

k−1, γ] and the Woodin cardinal δk. We use Ak[S]

to refer to these games, and use ak
0−I, ak

0−II etc. to denote moves in the games.

These moves are arranged so that I tries to witness that S belongs to Ȧk[h]
for some generic h, while II tries to witness the opposite.

Given S = 〈y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γ〉 a k-sequence, we define a game
G∗

k(S) played inside M according to Diagram 14.

I γ∗, a∞
k−I yk(0) ak+1

0−I ak+1
1−I yk(2) . . .

II a∞
k−II ak+1

0−II yk(1) ak+1
1−II

Diagram 14. The game G∗
k(S).

I and II play

• γ∗,
• a∞

k = 〈a∞
k−I, a

∞
k−II〉, and

• yk = 〈yk(n) | n < ω〉

which form a valid extension of S. To be more precise we require:

1. γ∗ is smaller than γ, in line with condition 3 of Definition 4.2.
2. a∞

k−I and a∞
k−II are legal moves for I and II respectively in A∞[y0, . . . , yk−1]

following a∞
0 , . . . , a∞

k−1. This is in line with condition 2 of Definition 4.2.
Note that knowledge of yk is not needed here.

3. yk(n) are natural numbers.

In addition I and II play auxiliary moves in the game Ak+1[S−−, yk, a∞
k , γ∗].

If a player cannot follow these rules she loses. Infinite runs of the game are
won by II.

Definition 4.3. For S ∈ M [gk] set S ∈ Ak iff S is a k-sequence and in
M [gk] I has a winning strategy in G∗

k(S).

Definition 4.3 at last specifies the sets Ak[a∞
0 , . . . , a∞

k−1, γ], and by extension

the names Ȧk[a∞
0 , . . . , a∞

k−1, γ].
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Remark 4.4. Our definition of the sets Ak[a∞
0 , . . . , a∞

k−1, γ] is by induc-
tion on γ, not on k. To figure out whether 〈y0, . . . , yk−1〉 ∈ M [gk] belongs
to the set Ak[a∞

0 , . . . , a∞
k−1, γ] we need knowledge of the game G∗

k(S) where
S = 〈y0, . . . , yk−1, a

∞
0 , . . . , a∞

k−1, γ〉. For this we require knowledge of the aux-
iliary games Ak+1[S−−, yk, a∞

k , γ∗], but only for γ∗ which are smaller than γ

because of rule 1. Thus to determine Ȧk[a∞
0 , . . . , a∞

k−1, γ] we need knowledge

of the names Ȧk+1[a
∞
0 , . . . , a∞

k−1, a
∞
k , γ∗], but only for γ∗ < γ. We have this

knowledge by induction.

Some words of motivation are due on Definition 4.3. Suppose that S ∈ M [gk]
is a k-sequence and belongs to Ak. So I wins G∗

k(S). Let us for a moment
ignore the first round of G∗

k(S). The remaining rounds essentially follow the
rules of G∗ of Section 3. (See Diagram 11 and the rules below it.) Our
experience from Section 3 tells us that if I has a winning strategy for these
rounds, then in V I has a strategy to enter some shift of Ȧk+1. In other words, if

S belongs to Ak = Ȧk[gk] we expect to be able to produce yk (working against
an imaginary opponent who plays the odd half of yk) so that S−−, yk, a∞

k , γ∗

belongs to jb(Ȧk+1)[h] for some iteration map jb and some generic h.
This is a process of perpetuation. Membership in Ak allows us to aim for

membership in a shift of Ȧk+1.
And what about the first round of G∗

k(S)? This round too is related to the

game G∗ of Section 3, this time with the name Ȧ∞. It is just one round out of
this game, and our experience from Section 3 tells us that a winning strategy
for I will allow us to aim into a shift of the name Ȧ∞.

In short, membership in Ak allows us to (a) advance one round in witnessing

that our sequence of reals belongs to a shift of Ȧ∞; and (b) produce the next

real, yk, so that the resulting sequence belongs to a shift of Ȧk+1. Once

we entered a shift of Ȧk+1 we can repeat the process, advancing an extra

round towards Ȧ∞ and entering a shift of Ȧk+2, etc. At the end we make the

full sequence of advances needed to witness membership in Ȧ∞. This means
that our sequence of reals (produced with the collaboration of some imaginary
opponent playing for II) satisfies the Σ1

2 statement φ. So we win the long game
Gω·ω(C), playing for I.

This argument is made more precise in Section 4.2. Then in Section 4.3
we phrase the mirror image argument and show under reversed circumstances
that II wins the long game. The relationship between Sections 4.2 and 4.3 is
analogous to the relationship between cases 1 and 2 in Section 3. Finally in
Section 4.4 we show that either the circumstances of Section 4.2 (where I ends
up winning) or the circumstances of Section 4.3 (where II ends up winning)
must hold. This establishes the determinacy of Gω·ω(C).

4.2. I wins. Suppose that there exists some γ so that in M I wins G∗
0(γ).

(Note that γ by itself is a 0-sequence.) We will show that I wins the original
long game Gω·ω(C) in V.
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Fix σ∗
0 ∈ M , a winning strategy for I (the open player) in G∗

0(γ). Fix an
imaginary opponent, playing for II in the long game Gω·ω(C).

Recall that we have strategies σpiv−∞[yn | n < ω] corresponding to the name

Ȧ∞ (see Section 2.2).4 Similarly we have strategies

σpiv−k[y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γ]

(which we denote σpiv−k[S]) corresponding to the names Ȧk[a∞
0 , . . . , a∞

k−1, γ].
These strategies are given by maps σpiv−∞ and σpiv−k, continuous in the
relevant reals and in the suppressed variable %. The maps belong to M .

We will use σ∗
0 , the strategies σpiv−1, σpiv−2, . . . , the strategy σpiv−∞, and

an iteration strategy for M , to play against the imaginary opponent and win.

Let us begin playing Gω·ω(C). We divide the game into ω mega-rounds. In
mega-round k we construct (among other things) the real yk. At the start of
mega-round k we will have:

(A) Reals y0, . . . , yk−1;
(B) An iterate Mk of M (the result of k iteration trees stacked one after the

other) with iteration embedding jk : M → Mk;
(C) (If k > 0.) hk which is col(ω, jk(δk))–generic/Mk;
(D) A position of k rounds in the game jk(Apiv−∞)[y0, . . . , yk−1], played ac-

cording to jk(σpiv−∞)[y0, . . . , yk−1]; and
(E) An ordinal γk.

Remark 4.5. With respect to (D) it is important to remember that the
maps Apiv−∞ and σpiv−∞ belong to M . These maps can therefore be shifted
via the embedding jk : M → Mk.

The position indicated in (D) includes an iteration tree Uk on Mk of length
2k + 1. We use W k

0 , . . . ,W k
2k to denote the models of this tree, and πk

∗,∗

to denote the embeddings. The position indicated in (D) further includes a
position P∞

k of k rounds in the shift of A∞[y0, . . . , yk−1] to W k
2k, namely in

(πk
0,2k ◦ jk)(A∞)[y0, . . . , yk−1].

Note that 〈y0, . . . , yk−1, P
∞
k , γk〉 is a k-sequence in the sense of W k

2k—this is
simply a restatement of the fact that P∞

k is a position of k rounds in (πk
0,2k ◦

jk)(A∞)[y0, . . . , yk−1]. We use Sk to denote this k-sequence. We shall make
sure that

(i) Sk belongs to W k
2k[hk] (to M = W 0

0 if k = 0); and
(ii) In W k

2k[hk] (in M = W 0
0 if k = 0) I wins (πk

0,2k ◦ jk)(G∗
k)(Sk).

In condition (i) we are saying that the reals y0, . . . , yk−1 belong to W k
2k[hk].

The rest of Sk is just a finite list of objects from W k
2k.

Remark 4.6. The game Apiv−∞ is played in the vicinity of the Woodin
cardinal δ∞, and all critical points used in the game are larger than some

4We are suppressing here and below the extra parameter %. We shall comment on this in

the discussion which follows Claim 4.10.
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Mk = W k
0

πk
0,2k

''n
g _ W P

W k
2k

Diagram 15. At the start of mega-round k.

pre-specified ordinal λ < δ∞. (See Remark 2.5.) The ordinal we specify is
λ = sup{δk | k < ω}. We know then that the models W k

2k and Mk = W k
0

agree beyond jk(δk), so that our reference to W k
2k[hk] in conditions (i) and (ii)

makes sense. Moreover, the iteration tree Uk can then be regarded not just as
a tree on Mk, but also as a tree on Mk[hk].

We begin with M0 = M , and γ0 = γ. Condition (ii) holds because of
our case assumption, that I wins G∗

0(γ) in M . Let us handle mega-round k.
Our models at the start of mega-round k are presented in Diagram 15. Our
situation at the end of the mega-round is presented in Diagram 16.

Using condition (ii) we have σ∗
k ∈ W k

2k[hk], a winning strategy for I (the
open player) in (πk

0,2k ◦ jk)(G∗
k)[Sk].

(a) To open mega-round k this strategy plays γ∗
k+1.

The game (πk
0,2k ◦ jk)(G∗

k)[Sk] now proceeds with one round—round k—from
the shifted A∞, followed by all ω rounds from the shifted Ak+1 together with
natural number moves to produce yk. Folding in constructions of the kind
done in Section 3 we create:

(b) The models W k
2k+1 and W k

2k+2 extending Uk, and the embedding πk
2k,2k+2;

(c) A position of k + 1 rounds in the shift of A∞ to W k
2k+2, extending

πk
2k,2k+2(P

∞
k );

(d) The real yk;
(e) A length ω iteration tree Tk on W k

2k+2, a cofinal odd branch bk through
it, the direct limit model Wbk

, and the direct limit embedding jbk
; and

(f) hk+1 which is generic over Wbk
for the collapse of (jbk

◦πk
0,2k+2◦jk)(δk+1).

We let P∞
k+1 denote the position of (c), shifted to Wbk

via jbk
. We let γk+1

denote γ∗
k+1 of (a) shifted to Wbk

via jbk
◦ πk

2k,2k+2. As in Section 3 we get

(∗) 〈y0, . . . , yk〉 ∈ Ȧs
k+1[P

∞
k+1, γk+1][hk+1],

where Ȧs
k+1 denotes Ȧk+1 shifted to Wbk

.

Remark 4.7. Our construction in (b) and (c) simply extends the position
of (D) to k + 1 rounds. This is nothing more than an adaptation of the
construction in round k of case 1 in Section 3, using the shifts of δ∞ and A∞.

Remark 4.8. Our construction in (d)–(f) is an adaptation of the entire
argument of case 1 in Section 3, using the shifts of δk+1 and Ak+1. We make
the following notes:
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Mk = W k
0

πk
0,2k

''o
k g c _ [ W S P

bk
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33
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Mk+1 = W k+1
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((
W k+1

1
. . . . . . Wbk

Diagram 16. Mega-round k.

The real yk is constructed as a collaborative process involving our imaginary
opponent and shifts of the strategy πk

2k,2k+2(σ
∗
k) along the even branch of Tk.

As a reminder of this we refer the reader to Diagram 12.
Remember that we have not a single name Ȧk+1, but a whole class of them.

Our construction in (d)–(f) uses the strategy σpiv−k+1 which corresponds to

Ȧk+1[X] (shifted to W k
2k+2) where “X” consists of the position created in (b)

and the shift to W k
2k+2 of the ordinal of (a). It is this use of σpiv−k+1 which

gives hk+1 for (f) and secures (∗), see Section 2.2.
The branch bk is the work of an iteration strategy for M which we pick at

the outset. (Recall that our initial assumptions on M included iterability.) In
particular the wellfoundedness of Wbk

is guaranteed.

Remark 4.9. The starting model for (d)–(f) is W k
2k+2[hk]. The generic

extension here is important. Remember that as part of the construction we
must shift the strategy πk

2k,2k+2(σ
∗
k) along the even branch of the iteration tree

Tk. (See Diagram 12 and Remark 3.4.) W k
2k+2 does not contain this strategy;

Tk must therefore act on W k
2k+2[hk].

This is where we use the fact that δk+1 is greater than δk, so that hk is a
“small generic” compared to the shift of δk+1. With Remark 2.5 this allows
us to make sure that all extenders used in Tk—a tree created in the vicinity
of δk+1—have critical points above the shift of δk. Tk then extends to act on
W k

2k+2[hk].

We have so far the embeddings indicated in solid lines in Diagram 16. The
top horizontal line represents the tree Uk and its extension by two extra models.
This tree has critical points above the shift of sup{δ1, δ2, . . .} (see Remark 4.6),
and hence certainly above the shift of δk+1. The vertical tree on the right is
our Tk. It has critical points below its Woodin cardinal, the shift of δk+1.
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Using these relations between the critical points, standard commutativity
allows us to switch the order of Tk and the extended Uk. We can first apply
Tk—which we may regard as a tree on Mk—and then apply the image of the
extended Uk. This new order is represented in dotted lines in Diagram 16.

We let Uk+1 be the image of the extended Uk (this image is presented in

dots on the lower line of Diagram 16). The final model of this tree, W k+1
2k+2, is

precisely equal to Wbk
. We are now in a position to start mega-round k + 1.

Conditions (i) and (ii) hold because of (∗) above.
Two points about our construction in mega-round k should be recorded for

future reference. We have:

(†) Uk+1 extends jbk
(Uk); and

(‡) γk+1 < (jbk
◦ πk

2k,2k+2)(γk).

(‡) follows from our use of I’s strategy σ∗
k, because of rule 1 in the game G∗

k

(see also condition 3 of Definition 4.2). This is now our second use of this rule.
The first one was in Remark 4.4.

Once the construction is over we are left with a sequence of reals 〈yn | n < ω〉,
and a sequence of iteration trees Tk presented in Diagram 17 giving rise to a
direct limit M∞. Our use of an iteration strategy to pick the branches bk

during the construction guarantees the wellfoundedness of M∞.

M
b0 //jjjjjjjjj

T0

TTTTTTTTT
M1

b1 //jjjjjjjjj

T1

TTTTTTTTT
M2

//________ M∞

Diagram 17. At the end.

We have further for each k the finite tree Uk on Mk. Let U∞ on M∞ be
the natural limit of these trees, specifically the union of the trees jk,∞(Uk).
This makes sense because of (†). U∞ has an even branch, consisting of the
models W∞

2k . Let W∞
even denote the direct limit along this branch. W∞

even is in
fact equal to the direct limit of the models W k

2k under the embeddings jbk
◦

πk
2k,2k+2 : W k

2k → W k+1
2(k+1). (We use here the same kind of commutativity that

allowed us to “switch order” from the solid and broken lines to the dotted lines
in Diagram 16.) Condition (‡) tells us that this last direct limit is illfounded.

So we have U∞, a length ω iteration tree on M∞, with an illfounded even
branch. The iteration strategy for M , faced with U∞, is forced to produces
a cofinal odd branch c. Let W∞

c be the direct limit, and let πc : M∞ → W∞
c

be the direct limit embedding. Note W∞
c , played by an iteration strategy, is

wellfounded.
Now U∞ is part of a play according to j0,∞(σpiv−∞)[yn | n < ω]—this was

part of our construction, see (D) above. Our use of j0,∞(σpiv−∞)[yn | n < ω]
guarantees that there exists some h∞ so that:

1. h∞ is col(ω, (πc ◦ j0,∞)(δ∞))–generic/W∞
c ; and
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2. 〈yn | n < ω〉 ∈ (πc ◦ j0,∞)(Ȧ∞)[h∞].

From condition 2 we see that 〈yn | n < ω〉 satisfies the Σ1
2 statement φ, inside

W∞
c [h∞]. By absoluteness φ is satisfied in V. This means that 〈yn | n < ω〉

belongs to the payoff set C, and is won by I, as required. This completes the
argument. We proved:

Claim 4.10. Suppose that there exists γ so that I wins G∗
0(γ) in M . Then

I wins Gω·ω(C) in V. a

Before closing let us comment on our suppression throughout of the param-
eter %. We worked during the construction with the map σpiv−∞, which exists
in M and could thus be shifted via embeddings acting on M . This map takes
two parameters: x, which was interpreted by the sequence 〈yn | n < ω〉 in our
construction; and %, which was suppressed.

To be precise we should add the following to the list (A)–(D) of objects
constructed:

(F) A function ϑk : k → Mk‖ jk(δ∞) + 1.

We should also insert the parameter ϑk in (D), replacing the occurrence of
“jk(σpiv−∞)[y0, . . . , yk−1]” with “jk(σpiv−∞)[ϑk, y0, . . . , yk−1].”

The functions ϑk should be constructed so that ϑk+1 extends jk(ϑk). This
allows us at the end to set

% =
⋃

k<ω

jk,∞(ϑk).

% is then a function from ω into M∞‖ j0,∞(δ∞) + 1, and U∞ is part of a play
according to j0,∞(σpiv−∞)[%, yn | n < ω].

Most importantly, we should (using standard book-keeping) construct the
functions ϑk so that % ends up being onto. This is necessary for our application
of Lemma 2.8. It was Lemma 2.8 that gave us conditions 1 and 2 above.

4.3. II wins. Here we mirror the development of Section 4.2, just as case
2 of Section 3 mirrored case 1. Let Ḃ ∈ M name the set of sequences 〈yn |
n < ω〉 ∈ R

ω in M col(ω,δ∞) which do not satisfy φ. Let B∞[yn | n < ω] be the
associated auxiliary games, but with the roles of I and II interchanged.

We use Ḃ∞ and B∞ as our starting points here, instead of Ȧ∞ and A∞.
Define names Ḃk and games H∗

k(T ) to parallel the names Ȧk and games G∗
k(S)

of Section 4.1, only switching the roles of I and II, and using B∞ (which
corresponds to the negation of φ) instead of A∞. We very briefly outline these
definitions.

The game H∗
k(T ) is played according to Diagram 18.

yk, b∞k = 〈b∞k−II, b
∞
k−I〉, and γ∗ must form a valid extension of T . (See

Definition 4.2, with A∞ changed to B∞.) bk+1
n−II and bk+1

n−I are auxiliary moves
in Bk+1[T−−, yk, b∞k , γ∗]. Infinite runs of the game are won by I.

For T ∈ M [gk] set T ∈ Bk iff T is a k-sequence (with A∞ changed to
B∞) and II wins H∗

k(T ) in M [gk]. This definition mirrors Definition 4.3.
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I b∞k−I yk(0) bk+1
0−I bk+1

1−I yk(2) . . .

II γ∗, b∞k−II bk+1
0−II yk(1) bk+1

1−II

Diagram 18. The game H∗
k(T ), which mirrors G∗

k(S) of Di-
agram 14.

It determines the names Ḃk and by extension the auxiliary games Bk. The
definition is by induction on γ, see Remark 4.4.

An argument which mirrors that of Section 4.2 gives:

Claim 4.11. Suppose that there exists γ so that II wins H∗
0 (γ) in M . Then

II wins Gω·ω(C) in V. a

4.4. Otherwise. To prove that Gω·ω is determined it is now enough to
verify that the hypotheses of Claims 4.10 and 4.11 cannot both fail.

Suppose for contradiction that they do, i.e., assume that for every γ II wins
G∗

0(γ) in M and I wins H∗
0 (γ) in M . We intend to derive a contradiction.

Our argument here is similar to the final argument in Section 3, where we
constructed a real x which neither satisfied, nor failed to satisfy, the statement
φ. Here we shall construct a sequence 〈yn | n < ω〉 ∈ R

ω which neither satisfies
nor fails to satisfy φ. The reader may wish to compare our construction here
with the final construction in Section 3.

Fix g∞ ∈ V which is col(ω, δ∞)–generic/M . Replacing the generics gk if
needed, we may assume that each gk belongs to M [gk+1], and that the sequence
〈gk | k < ω〉 belongs to M [g∞].

Pick ordinals γmin < γmax, substantially larger than δ∞, so that

M‖ (γmin + ω) |= ϕ[~c, γmin] ⇐⇒

M‖ (γmax + ω) |= ϕ[~c, γmax]

for any formula ϕ and any parameter ~c ∈ (M‖ δ∞ + ω)<ω. These ordinals will
serve as indiscernibles.

We work in M [g∞] to construct 〈yn | n < ω〉 ∈ R
ω; an infinite play

~a∞ = 〈a∞
n−I, a

∞
n−II | n < ω〉 of A∞[yn | n < ω]; and an infinite play ~b∞ =

〈b∞n−II, b
∞
n−I | n < ω〉 of B[yn | n < ω]. We use the following notation:

Sk = 〈y0, . . . , yk−1, a
∞
0 , . . . , a∞

k−1, γmin〉

S′
k = 〈y0, . . . , yk−1, a

∞
0 , . . . , a∞

k−1, γmax〉.

(Note the switch from γmin in Sk to γmax in S′
k.) We use Tk and T ′

k similarly,

with ~b∞ instead of ~a∞.
We intend to maintain the following conditions:

1. (For k ≥ 1.) y0, . . . , yk−1 belong to M [gk];
2. In M [gk] (in M if k = 0) II wins G∗

k(Sk); and
3. In M [gk] (in M if k = 0) I wins H∗

k(Tk).
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We construct in mega-rounds. At the start of mega-round k we will have
conditions 1–3 for k. Note that for k = 0 conditions 2 and 3 hold because of
our initial case assumption in this subsection.

Let us begin mega-round k. Using the indisernibility of γmin and γmax

conditions 2 and 3 tell us that II wins G∗
k(S′

k) (note the switch to S′
k) and I

wins H∗
k(T ′

k). Fix strategies σ∗
k and τ∗

k in M [gk] (in M if k = 0) witnessing
this. We play the games G∗

k(S′
k) and H∗

k(T ′
k). Both games start with an ordinal

move, γ∗. In both games we play γ∗ = γmin. Note that this is a legal move
since γmin < γmax. We continue the games as follows:

• σgen−∞[y0, . . . , yk−1] plays a∞
k−I in G∗

k(S′
k), and σ∗

k plays a∞
k−II.

• Similarly, τgen−∞[y0, . . . , yk−1] plays b∞k−II in H∗
k(T ′

k), and τ∗
k plays b∞k−I.

This completes the first round. We pass to the remaining ω rounds which
involve auxiliary moves from Ak+1 and Bk+1.

• σ∗
k, playing for II in G∗

k(S′
k), produces yk(n) for odd n, and ak+1

n−II for all
n.

• σgen−k+1[S
′
k−−, yk, a∞

k , γmin] produces ak+1
n−I for all n.

• τ∗
k , playing for I in H∗

k(T ′
k), produces yk(n) for even n and bk+1

n−I for all n.

• τgen−k+1[T
′
k−−, yk, b∞k , γmin] produces bk+1

n−II for all n.

σgen−∞, σgen−k+1, τgen−∞, and τgen−k+1 are the generic strategies defined in
Section 2.1. As usual continuity is important; for example in the last item we
are using τgen−k+1[T

′
k−−, yk, b∞k , γmin] at a stage where we only know yk� n+1.

The reader should consult Diagrams 14 and 18 to verify that the above
strategies between them cover all moves in the games G∗

k(S′
k) and H∗

k(T ′
k).

(Well, except for the first move γ∗ = γmin which we decided on ourselves.)
The conditions above therefore complete the construction in mega-round k.
The reader may consult the final stages of Section 3 for a simpler example of
a similar argument.

In mega-round k we used σ∗
k and τ∗

k , which exist in M [gk] (in M if k = 0);
and the maps σgen−k+1 and τgen−k+1, which exist in M [gk+1]. The real yk

produced in mega-round k therefore belongs to M [gk+1].
Our use of the generic strategy σgen−k+1[S

′
k−−, yk, a∞

k , γmin] guarantees that

Sk+1 = S′
k−−, yk, a∞

k , γmin does not belong to Ȧk+1[gk+1]. Since yk and hence
Sk+1 belong to M [gk+1] we conclude (see Definition 4.3) that I does not win
G∗

k+1(Sk+1). Now G∗
k+1(Sk+1) is an open game, hence determined. Thus II

must win G∗
k+1(Sk+1). This secures condition 2 for k + 1.

Similarly our use of τgen−k+1[T
′
k−−, yk, b∞k , γmin] guarantees that Tk+1 =

T ′
k−−, yk, b∞k , γmin does not belong to Ḃk+1[gk+1], and this secures condition 3

for k + 1. We are now in a position to start mega-round k + 1.
Once completed the construction leaves us with 〈yn | n < ω〉 ∈ R

ω and

infinite plays ~a∞ of A∞[yn | n < ω] and ~b∞ of B∞[yn | n < ω]. Note that
everything we did took place in M [g∞]. (Here we are using the fact that
〈gk | k < ω〉 ∈ M [g∞].) These sequences therefore belong to M [g∞].
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Our use of σgen−∞[yn | n < ω] during the construction ensures that 〈yn |

n < ω〉 does not belong to Ȧ∞[g∞]. Since 〈yn | n < ω〉 belongs to M [g∞] we
conclude that 〈yn | n < ω〉 fails to satisfy φ, our original Σ1

2 statement, inside
M [g∞]. Similarly our use of τgen−∞[yn | n < ω] ensures that 〈yn | n < ω〉 fails
to not satisfy φ. This is a contradiction.

4.5. Summary. Claim 4.10, Claim 4.11, and the construction of Section
4.4 together give the following theorem:

Theorem 4.12. Suppose that there exist M and an increasing sequence
〈δ1, δ2, . . . , δω〉 in M so that:

• M is a class model;
• M is iterable;
• Each δξ, 1 ≤ ξ ≤ ω, is a Woodin cardinal of M ; and
• M‖ δω + 1 is countable in V.

Then all games Gω·ω(C) where C is Σ1
2 are determined. a

§5. Pivots revisited. In this section we return to our definition of auxil-
iary moves, and make some adjustments. These adjustments will be needed
later on, in Section 6. We begin in Section 5.1 with a minor modification to
the games A[x]. We describe the modification and its effect on the notions
of generic runs and pivots. Then in Section 5.2 we handle the more serious
adjustment. We describe a game Amix, a variant of Apiv, and use this game
to define the notion of a mixed pivot. Mixed pivots will be used in the proof
of determinacy of continuously coded games.

5.1. Modified auxiliary moves. Work as in Section 2 with a model M

which has a Woodin cardinal δ. Fix Ȧ ∈ M , a name for a subset of (M‖ δ)ω ×
ωω in M col(ω,δ). Note already here the change from Section 2, where we had
a name for a set of reals, i.e., a subset of ωω.

Work with x ∈ R. We define an auxiliary game A[x] displayed in Diagram
19. We use an to denote 〈ln, un, pn, wn〉, the sequence of moves in round n,
and let ~a = 〈an | n < ω〉. Moves in A[x] are elements of M‖ δ, so that ~a

belongs to (M‖ δ)ω. A run ~a of A[x] is arranged so that I tries to witness that

〈~a, x〉 ∈ Ȧ[h] for some generic h, while II tries to witness the opposite. Note
the change from Section 2, where we dealt with “x” rather than 〈~a, x〉.

I l0, u0, p0 l1, u1, p1 . . .

II w0 w1 . . .

Diagram 19. Outline of A[x].

Moves in A[x] are elements of M , and each rule should be read relativized
to M . In round n I plays:

• l = ln, a number smaller than n, or ln = “new”;
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• a type un which codes Xn, a set of pairs of M col(ω,δ)–names; and
• pn, a condition in col(ω, δ).

II plays a type wn which codes Fn,Dn where:

• Fn is a function from Xn into the ordinals; and
• Dn is a function from Xn into {dense sets in col(ω, δ)}.

We remind the reader of Remark 2.1. Already in Section 2 the moves Xn

and Fn,Dn were coded by types. This part is not new. We didn’t say much
about the coding in Section 2, referring the reader to [12, Chapter 1] instead.
We adopt the same attitude here. Let us only note that the types un and
wn are essentially elements of M‖ δ. This is important. It means that an =
〈ln, un, pn, wn〉 is an element of M‖ δ, so that ~a is an element of (M‖ δ)ω.

If ln = “new” we make no requirements on I. Otherwise we demand that pn

extends pl, that Xn ⊂ Xl, and that for every pair 〈ȧ, ẋ〉 ∈ Xn:

1. pn forces “〈ȧ, ẋ〉 ∈ Ȧ”;
2. pn forces “ȧ(0) = ǎ0,”....,“ȧ(l) = ǎl”;
3. pn forces “ẋ(0) = x̌0,”....,“ẋ(l) = x̌l”; and
4. pn belongs to Dl(ȧ, ẋ).

We make the following demand on II when ln 6= “new”:

5. Fn(ȧ, ẋ) < Fl(ȧ, ẋ) for every pair 〈ȧ, ẋ〉 ∈ Xn.

Remark 5.1. Note the addition of condition 2, stating that ȧ must name
the actual run of A[x], ~a. This is the condition which distinguishes our game
here from the game in Section 2. Other than this the rules are essentially the
same.

Condition 2 makes sense; ~a is an element of (M‖ δ)ω and may potentially
be named by ȧ. Observe that condition 2 in round n only involves a0, . . . , al,
which are already known. It poses no greater hardship to the players than
condition 3. The arguments (not) presented in Section 2 thus go through
essentially unmodified. The curious reader can find these arguments in [12,
Chapter 1]. Let us briefly go over the results of these arguments.

Fix some g which is col(ω, δ)–generic/M . As in Section 2.1 we let σgen[x] be
the strategy which plays in each round the first, with respect to g, legal move.
The map x 7→ σgen[x] is continuous, given by some σgen = (s 7→ σgen[s]) which
belongs to M [g]. We have:

Lemma 5.2. Suppose that ~a is an infinite run of A[x] played according to

σgen[x]. Then 〈~a, x〉 6∈ Ȧ[g]. (This is only useful if both ~a and x belong to
M [g].)

This should be compared with Lemma 2.4. Where now we have 〈~a, x〉 6∈ Ȧ[g],

Lemma 2.4 had x 6∈ Ȧ[g].
Definition 2.7 can be adapted to our new game by changing condition 3 to:

3. For every cofinal odd branch b of T there exists some h so that:
(a) h is col(ω, jb(δ))–generic/Mb; and
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(b) 〈~a, x〉 ∈ jb(Ȧ)[h].

(Note the change from x to 〈~a, x〉 in condition 3b.)
As in Section 2 there are strategies σpiv[%, x] which are guaranteed to produce

pivots. But when proving determinacy of continuously coded games this is not
enough. We shall need stronger strategies than those given by σpiv, capable
of handling what we call mixing.

5.2. Mixed pivots. Instead of working with a single name Ȧ as before,
we work here with a collection of names. Fix some ordinal ν. Fix a map
Ȧ = (γ 7→ Ȧ[γ]) assigning to each ordinal γ < ν a name Ȧ[γ] for a subset of

(M‖ δ)ω × ωω in M col(ω,δ). We assume that the map Ȧ belongs to M .
We shall henceforth suppress mention of ν. When we say “for each γ” we

mean for each γ < ν. We generally think of ν as some very large ordinal.
Indeed, if it weren’t for our desire to work with sets rather than classes we
would take ν = ON.

For each γ we have the map x 7→ A[γ, x] of Section 5.1, associated to the

name Ȧ[γ]. We regard it now as a map γ, x 7→ A[γ, x]. This map, which
belongs to M , is continuous in x.

Working with reference to the map Ȧ, we define for each x ∈ R the game
Amix[x] played according to Diagram 20. As usual the association is continu-
ous, given by a map Amix = (s 7→ Amix[s]) which belongs to M .

I f(n), T � f(n) + 1, γn ln, pn, un · · ·
II · · · · · · Ef(n), Ef(n)+1, wn · · ·

Diagram 20. Round n of the game Amix[x].

At the start of round n we have a number e(n), an iteration tree T � e(n)+1
ending with the model Me(n), and a position Pn = 〈a0, . . . , an−1〉 in Me(n).
For n = 0 we set e(0) = 0, M0 = M , P0 = ∅.

The time line of round n is presented in Diagrams 20 and 21. At the start
of round n player I:

• Plays some f(n) ≥ e(n);
• Extends T � e(n) + 1 to T � f(n) + 1;
• Plays an ordinal γn so that Pn is a legal position in j0,f(n)(A)[γn, x].

The rest of the round follows the usual rules of Apiv (see Section 2.2): I
plays a move in j0,f(n)(A)[γn, x] following the position Pn; II shifts this move
to the model Mf(n)+2—this is illustrated by the squiggly arrow in Diagram
21—and replies there. We let an = jf(n),f(n)+2(ln, un, pn)−−, wn. Note the
shifting of ln, un, pn from Mf(n) to Mf(n)+2. We let Pn+1 = Pn−−, an =
〈a0, . . . , an−1, an〉, let e(n + 1) = f(n) + 2, and proceed to the next round.
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Diagram 21. Round n of Amix[x] and the beginning of round
n + 1.

Remark 5.3. Suppose I fixes some γ0 ∈ M and always plays f(n) = e(n)
(so that no extension of T � e(n) + 1 is needed) and γn = j0,f(n)(γ0). Then the

game degenerates into Apiv associated to the real x and the name Ȧ[γ0].
Amix is thus a variant of Apiv which gives some extra control to player I: I

may play f(n) > e(n), inserting her own interval of models into the tree T ,
and I may pick a new ordinal γn to work with.

In line with Remark 5.3 we make the following definition:

Definition 5.4. Round n is said to contain mixing if f(n) > e(n); or
(when n > 0) f(n) = e(n) but γn 6= jf(n−1),e(n)(γn−1).

There are some technical restrictions on the moves by the two players, not
explained above. (For example the critical point of jf(n),f(n)+2 must be large
enough that a0, . . . , an−1 are not moved. This is why we take Pn+1 = Pn−−, an,
and not Pn+1 = jf(n),f(n)+2(Pn)−−, an.) The reader may find the exact rules
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in [12, Chapter 1]. Here we only comment on how these rules affect the branch
structure of T .

Suppose ~a = 〈an | n < ω〉 and T are given by a run of Amix[x]. A cofinal
branch of T is even if it contains arbitrarily high nodes from {f(n) | n <

ω}.5 Otherwise the branch is odd. Note that a mixed T may have many
cofinal even branches; this has to do with not requiring e(n) T f(n) in the
rules of the game. How about the odd branches? The predecessors of nodes
{f(n) + 1, f(n) + 2 | n < ω} are determined by the moves {ln | n < ω} in the
manner of Section 2.2 (see the rules following Diagram 9). There are extra
rules now on player I limiting the way she may choose predecessors for nodes
in

⋃
n<ω(e(n), f(n)]. The main point of these rules is to make sure that the

following condition holds:

(o) Suppose b is a cofinal odd branch of T . Then there is a sequence 〈nk |
k < ω〉 so that:

– ln0
= “new”;

– lnk
= nk−1 for k > 0; and

– 〈f(nk) + 1 | k < ω〉 is a tail-end of b.

Thus the tree structure on the odd models is essentially the same structure we
had in Section 2.2.

We use n(b) to denote the n0 given by condition (o). We use f(b) to denote
f(n0). Note that f(b) is the largest node in b which belongs to {f(n) | n < ω}.
We think of f(b) as the even root of the odd branch b (though it needn’t be
an even number, see footnote 5).

Definition 5.5. A mixed pivot for x is a run of Amix[x] (given by ~a, ~f ,
~γ, and T say) with the property that for every cofinal odd branch b of T there
exists some h so that:

1. h is col(ω, jb(δ))–generic/Mb; and

2. 〈~a, x〉 ∈ jb(Ȧ)[γb][h], where γb = jf(b),b(γn(b)).

The reader should compare the conditions of Definition 5.5 to condition 3
listed immediately following Lemma 5.2. The difference is that here we work
not with a single name but with a collection of names. So we have to say
which γ to use in condition 2 of Definition 5.5. The γ we take is the one which
corresponds to I’s move at the even root of b.

Recall that the main point in Section 2.2 was the existence of strategies
σpiv[%, x] which produced pivots. Similar strategies exist in our current sit-
uation. For each real x and each map % : ω → M‖ δ + 1 there is a strategy
σmix[%, x], playing for II in Amix[x]. The association is continuous, given by a
map σmix = (ϑ, s 7→ σmix[ϑ, s]). This map belongs to M . Most importantly
we have:

5If there is no mixing in T this gives precisely the branch 0, 2, 4, . . . , and hence the

terminology. The terminology may be slightly confusing since in general the numbers f(n)

needn’t actually be even. One can avoid the confusion by adding the requirement “f(n) is
even” on I, and canceling the extra hardship by letting player I “pad” in her iteration trees.
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Lemma 5.6. Suppose % : ω → M‖ (δ + 1) is onto. Then all runs according
to σmix[%, x] are mixed pivots for x.

In the future we shall use Lemma 5.6 as before we had used Lemma 2.8. Note
that Lemma 2.8 is really a special case of our current Lemma 5.6. This follows
from Remark 5.3. We refer the reader to [12, Chapter 1] for more details on
the construction of σmix. The construction involves only minor modifications
to the construction of σpiv.

§6. Games of continuously coded length. Fix a continuous function
ν : R → N. Fix C ⊂ R

<ω1 which is Σ1
2 in the codes (see Section 1.1). We work

to prove, or at least sketch a proof of, the determinacy of Gcont−ν(C). Our
proof will build on the constructions presented in Sections 3 and 4, and will
use the notions of Section 5.

Let us say that an extender E overlaps δ if dom(E) is smaller than δ, and
the ultrapower embedding by E sends dom(E) above δ.

Fix M , δ < δ∞ in M , and an extender E ∈ M which overlaps δ, so that:

1. M is a class model;
2. M is iterable;
3. δ and δ∞ are Woodin cardinals of M ;
4. M‖ δ∞ + 1 is countable in V; and
5. E is strong enough that M‖ δ + 1 ⊂ Ult(M,E).

The existence of such a model is our large cardinal assumption.
Let N denote Ult(M,E), and let π : M → N denote the ultrapower embed-

ding. Let δ′ denote π(δ). For expository simplicity fix g which is col(ω, δ)–
generic/M , and g∞ which is col(ω, δ∞)–generic/M .

Claim 6.1. g is also col(ω, δ)–generic over N = Ult(M,E). If x is a real
which belongs to M [g], then x belongs also to N [g].

Proof. The proof is immediate. We only note that condition 5 is crucial
for the second part. a

Remember that in Section 4 we needed an increasing sequence of Woodin
cardinals. The reason was explained in Remark 4.9. Roughly speaking we
wanted y0, . . . , yk−1 to belong to a small generic extension relative to the
Woodin cardinal used in mega-round k. Here we have the single Woodin
cardinal δ, but Claim 6.1 tells us that we can use E to manufacture a “next”
Woodin cardinal δ′ and have the current real x belong to a small generic ex-
tension relative to δ′.

6.1. Names. Recall that C, the payoff set, is assumed to be Σ1
2 in the

codes. Fix a Σ1
2 set A ⊂ R×R so that 〈yξ | ξ ≤ α〉 ∈ C iff 〈pyξ | ξ < αq, yα〉 ∈

A. Fix a Σ1
2 statement φ so that 〈x, y〉 ∈ A iff 〈x, y〉 satisfies φ. Recall that

ν : R → N is assumed to be continuous. Fix a function ν̄ : ω<ω → N so that
ν(y) = n iff ∃i ν̄(y� i) = n. Without loss of generality ν̄, which is essentially a
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real number, belongs to M . (We can always absorb ν̄ into a generic extension
of an iterate of M of size much less than δ.)

Let Ȧ∞ be the canonical name for the set of pairs 〈x, y〉 ∈ R
2 in M col(ω,δ∞)

which satisfy the Σ1
2 statement φ. We have the associated auxiliary games

A∞[x, y], of the kind presented in Section 2, where I tries to witness 〈x, y〉 ∈
Ȧ[h∞] for some generic h∞ and II tries to witness the opposite.

For each ordinal γ we define a name Ȧ[γ] for a subset of (M‖ δ)ω × ωω in
M col(ω,δ). Following notation similar to that of Section 4.1 we write 〈~a, x, γ〉 ∈
Ȧ[h] to mean that 〈~a, x〉 ∈ Ȧ[γ][h]. We use A[γ, x] to denote the auxiliary

game of Section 5, associated to the name Ȧ[γ] and the real x. A run ~a of this

game is an attempt by I to witness that 〈~a, x〉 ∈ Ȧ[γ][h]—in other words that

〈~a, x, γ〉 ∈ Ȧ[h]—for some h, and an attempt by II to witness the opposite.

Definition 6.2. A code is any real x which has the form pyξ | ξ < αq for
some α and some position 〈yξ | ξ < α〉 in Gcont−ν .

Following the ideas of Section 4.1 we work in M [g] to define open games,
denoted here G∗(~a, x, γ). We then set:

Definition 6.3. For 〈~a, x〉 ∈ (M‖ δ)ω × ωω in M [g] put 〈~a, x〉 ∈ A[γ] iff x

is a code and I wins G∗(~a, x, γ) in M [g]. Let Ȧ[γ] be the canonical name for
A[γ].

As in Section 4 the definition is by induction on γ. The game G∗(~a, x, γ),

which we define shortly, will make reference to the names Ȧ[γ∗]—indeed to

the map γ∗ 7→ Ȧ[γ∗]—but only for γ∗ < γ.
Fix an ordinal γ, a code x = pyξ | ξ < αq, and a sequence ~a ∈ (M‖ δ)ω.

Suppose that ~a and x belong to M [g]. The game G(~a, x, γ) is played in two
parts, parts (F) and (M) described below. (F) stands for “finishing” and
(M) stands for “main.” In part (M) we use A to denote the map γ∗, x∗ 7→
A[γ∗, x∗], which we assume known for γ∗ < γ. The map is continuous in
x∗ and belongs to M . Recall that N = Ult(M,E) and π : M → N is the
ultrapower embedding. We use A′ to denote π(A). Similarly we use δ′ to
denote π(δ) and γ′ to denote π(γ).

(F) I and II collaborate as usual playing a real yα = 〈yα(i) | i < ω〉. In
addition they play auxiliary moves subject to the rules of A∞[x, yα].

The players stay in part (F) until, if ever, i < ω is reached so that ν̄(yα� i) is
defined. If and when this happens we set nα = ν̄(yα� i). If there exists ξ < α

so that nα = ν(yξ), the players simply continue with part (F). Otherwise they
set a′ = π(~a� nα) and pass to part (M):

(M) 1. I plays γ∗ so that γ∗ < γ′ and a′ is a legal position in A′[γ∗, x].
2. The players collaborate to form the real yα, continuing from the point

they left in part (F).
We set x∗ = p〈yξ | ξ < α〉−−, yαq. x∗ is obtained continuously as yα

is played out. Regardless of the end value of yα we know by Property
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1.3 that x and x∗ agree to nα. Using the continuity of A′ and rule (M1)
we see that a′ is a legal position in A′[γ∗, x∗], again regardless of the end
value of yα.
3. While forming yα the players play auxiliary moves subject to the

rules of A′[γ∗, x∗], starting from the position a′.

If a player cannot follow these rules she loses. Infinite runs are won by II.

Remark 6.4. As a whole, the game G∗(~a, x, γ) is defined inside M [g]. But
part (M) can be defined in the smaller model N [g]. (The parameters needed
to phrase part (M) are x, which is used in defining the continuous yα 7→ x∗,
A′, γ′, and a′. The last three parameters belong to N , and x belongs to N [g]
by Claim 6.1.)

This completes the inductive definition of G∗(~a, x, γ), and with it the induc-

tive definition of the names Ȧ[γ]. We make the following notes on motivation:
G∗(~a, x, γ) consists of two separate parts. So long as it seems that α is the

last round of the long game Gcont−ν(C)—so long as ν(yα) is not defined or
defined and equal to a previous nξ—the players follow the “finishing” part.
What they do in this part is aim for the Σ1

2 payoff set. I tries to witness that
〈x, yα〉 satisfies the Σ1

2 statement φ, while II tries to witness the opposite.
Once (if ever) it becomes clear that α is not the last round in the game,

the players pass to the “main” part. What they do is pass to the ultrapower
N = Ult(M,E) where they have the next Woodin cardinal π(δ). They play
auxiliary moves in the vicinity of π(δ). We use ~a∗ to denote these auxiliary
moves. Rule (M3) is such that ~a∗ must extend a′ = π(~a� nα).

Note that I’s goal in ~a∗ is to witness that 〈~a∗, x∗, γ∗〉 ∈ π(Ȧ)[h∗] for some
h∗ which is generic over N for the collapse of π(δ). II’s goal is to witness
the opposite. We draw the reader’s attention to the similarity with Section 4.
Here too we have a process of perpetuation. Membership in Ȧ[γ][h] allows I

to aim for membership in a shift of π(Ȧ)[γ∗]. But here we have an additional
ingredient. The witness ~a∗ agrees with the shift of the witness ~a up to nα.
Using Claim 1.2 this will allow us to argue that the witnesses converge at limit
stages.

6.2. I wins. Suppose that there exists some γ so that in M I wins the open
game G(∅, p∅q, γ). We claim that in this case I wins the long game Gcont−ν(C)
in V.

Fix an imaginary opponent playing for II in Gcont−ν(C). Working against
the imaginary opponent we construct:

(A) Reals yξ ∈ R. We set xα = pyξ | ξ < αq;
(B) Iterates Mα of M , with embeddings τ0,α : M → Mα;

(C) Mixed pivots ~aα, ~fα, ~γα, Tα for xα over the model Mα, played according
to τ0,α(σmix)[xα]; and

(D) Sequences ~ηα = {ηα
i }i<ω witnessing that Tα is continuously illfounded on

its “even nodes,” namely on nodes in {fα(n) | n < ω}.
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We use Pα to denote the mixed pivot of (C). In (D) we mean that jα
k,l(η

α
k ) >

ηα
l whenever k, l both belong to {fα(n) | n < ω} and k Tα l. (jα

∗,∗ here are
the iteration embeddings forming part of the tree Tα.) The existence of a
sequence ~ηα of this kind implies that all the cofinal even branches of Tα lead
to illfounded direct limits, forcing the iteration strategy to pick an odd branch.

The construction of the objects (A)–(D) is similar to the previous construc-
tions in Section 4.2 and in case 1 of Section 3. We shall not present it in great
detail. Instead we concentrate on the two points which are new. We explain
how to carry the construction through limits, and how and why mixed pivots
appear in the construction.

Let us first consider the matter of limit stages. Fix a limit ordinal λ, and
suppose that all objects up to λ were constructed. This includes the models
Mξ and reals yξ for ξ < λ. Let Mλ be the direct limit of the models Mξ, ξ < λ.
Let xλ = pyξ | ξ < λq. Our construction below λ will satisfy the following
agreement condition, which traces to the inclusion of a′ in rule (M3) above.

(i) Pα+1 agrees with the shifted image of Pα up to nα, and similarly for the
sequence ~ηα+1. To be more precise:

~aα+1�nα = τα,α+1(~aα� nα);

~fα+1�nα = ~fα� nα;

~γα+1�nα = τα,α+1(~γα� nα);

Tα+1� eα(nα) + 1 = τα,α+1(Tα� eα(nα) + 1); and

~ηα+1� eα(nα) + 1 = τα,α+1(~ηα� eα(nα) + 1).

(eα(nα) is 0 if nα = 0, and f(nα − 1) + 2 otherwise. See Section 5.2.)

It is this agreement condition that carries us through the limit. By Claim
1.2 nα → ∞ as α → λ. This, (i), and our pending definition at limit stages
imply that the mixed pivots τα,λ(Pα) converge as α → λ. We let Pλ be their
limit. By Remark 1.4 the reals xα converge to xλ as α → λ. Each τα,λ(Pα) is
a play according to τ0,λ(σmix)[xα], because of (C). The plays τα,λ(Pα) must
thus converge to a play according to τ0,λ(σmix)[xλ]. In other words Pλ is a
play according to τ0,λ(σmix)[xλ]. In particular Pλ is a mixed pivot for xλ over
Mλ.

A similar limit construction allows us to define ~ηλ, and argue that (D) is
satisfied. This completes the construction at the limit stage λ.

In sum, several factors combine to carry us through limit stages. One is the
convergence given by Remark 1.4. Another is the continuity of all the different
maps we defined in Sections 2 and 5. A third is the agreement between Pα+1

and τα,α+1(Pα).

Remark 6.5. The reader should compare the formation of Pλ to the forma-
tion of U∞ in Section 4.2. U∞ was formed in parts spread over previous stages
of the construction. Each stage contributed an extra round to the formation.
Pλ too is formed in parts spread over previous stages of the construction. But
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now the exact contribution of each stage is not set in advance. It depends on
the behavior of the nα-s, which in turn depends on the players. This extra
flexibility in setting the break lines in the formation of limit pivots is the key
to handling games of variable length.

Let us now consider the successor stage. We have the model Mα; the mixed
pivot Pα of (C); and the ordinal sequence ~ηα of (D). Our goal is to construct
Mα+1; the real yα, which gives rise to the code xα+1; the mixed pivot Pα+1;
and the sequence ~ηα+1.

To start we use the iteration strategy to pick a cofinal branch bα through
Tα. We let Qα denote the direct limit along bα. The sequence ~ηα of (D) forces
the iteration strategy to pick an odd branch. We have the models presented
in Diagram 22.

M
τ0,α //__________ Mα

bα //jjjjjjjjj

Tα

TTTTTTTTT
Qα

Diagram 22. At the start of round α.

For simplicity assume that Pα does not contain any mixing (see Remark
5.3 and Definition 5.4). So fα(n) = 2n and there is some single γα so that
γα

n = jα
0,2n(γα) for all n. Since bα is an odd branch we know that there is some

hα so that:

1. hα is col(ω, (jbα
◦ τ0,α)(δ))–generic/Qα; and

2. 〈~aα, xα〉 ∈ (jbα
◦ τ0,α)(Ȧ)[jbα

(γα)][hα].

Using condition 2 and Definition 6.3 we get

3. In Qα[hα], I wins the game (jbα
◦ τ0,α)(G∗)(~aα, xα, jbα

(γα)).

Fix σ∗
α ∈ Qα[hα] witnessing condition 3. Let us use G∗

α to denote the game
(jbα

◦ τ0,α)(G∗)(~aα, xα, jbα
(γα)) of condition 3.

We divide now into two cases. Suppose first that in playing G∗
α we stay

within part (F)—the “finishing” part. In this case we are essentially playing
the game G∗ of Section 3. Our construction in this case is similar to the
construction in case 1 of Section 3. We use σ∗

α together with the appropriate
image of σpiv−∞ to play against the imaginary opponent. The construction
produces the real yα, and makes sure that 〈xα, yα〉 satisfies the Σ1

2 statement
φ. The fact that we stayed within part (F) tells us that α is the last round
in our run of Gcont−ν(C). The fact that 〈xα, yα〉 satisfies φ tells us that
〈yξ | ξ ≤ α〉 ∈ C. 〈yξ | ξ ≤ α〉 is thus won by I, and our task for this
subsection has been achieved.

So suppose that while playing G∗
α we enter part (M)—the “main” part. Let

P denote our position when entering part (M). P determines yα� i for some i,
and yα� i suffices to determine nα. Let Eα denote (jbα

◦τ0,α)(E), where E is our
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Mα

Eα

τα,α+1

$$

jbα

//jjjjjjjjj

Tα

TTTTTTTTT
Qα Mα+1

j∗∗

bα

//jjjjjjjjj

T ∗∗

α

TTTTTTTTT
Q∗∗

α

copy with τα,α+1

FF

Mα
jbα

//jjjjjjjjj

Tα

TTTTTTTTT
Qα

Eα

πα // Nα

Diagram 23. Eα applied to Qα (lower line); and Eα applied
to Mα (upper line) followed by copying.

original extender fixed at the beginning of Section 6. Let Nα = Ult(Qα, Eα)
and let πα be the ultrapower embedding. This is presented in the lower line of
Diagram 23. Let a′

α = πα(~aα� nα). Note how we follow the definitions listed
just before the rules of part (M). Let G∗∗

α be the game obtained from G∗
α by

starting from the position P . G∗∗
α is played according to the rules of part (M).

Remark 6.6. G∗∗
α exists in Nα[hα]. This follows from Remark 6.4, which

in turn traces back to the strength of E assumed in condition 5 at the start of
Section 6.

Note that G∗∗
α is an open game. Note further that G∗∗

α , being a tail-end of
G∗

α played from a position according to σ∗
α, is won by I. Using Remark 6.6 we

may fix a winning strategy σ∗∗
α for player I so that:

(]) σ∗∗
α belongs to Nα[hα].

We wish to use σ∗∗
α in much the same way we had used similar strategies in

the past, combining it with moves given by some σpiv or in our case σmix. Our
problem is this: The starting position in G∗∗

α already includes auxiliary moves,
the moves in a′

α. But we do not know that these auxiliary moves correspond
to any starting position in the formation of a pivot. One particular aspect of
our problem is the following: Auxiliary moves which correspond to pivots have
some odd models around them. a′

α belongs to Nα and we have no odd models
around Nα. Nα was not created as part of an iteration tree, it is simply the
ultrapower of Qα by Eα.

To solve this problem we try to look at Nα from a different perspective.
Let Mα+1 be the ultrapower by Eα of the model Mα rather than Qα. Let
τα,α+1 : Mα → Mα+1 = Ult(Mα, Eα) be the ultrapower map. This is presented
in the upper left part of Diagram 23.
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Remark 6.7. To form this ultrapower we need some agreement between
Mα and Qα. Now Tα is part of a pivot corresponding to δα = τ0,α(δ). We
can arrange that the critical points in Tα are larger than any pre-specified λ

below δα (see Remark 2.5). We take λ = τ0,α(dom(E)). This ensures that all
critical points in Tα are above dom(Eα), and so Mα and Qα are in sufficient
agreement that Eα ∈ Qα can be applied to Mα.

Use τα,α+1 to copy Tα, a tree on Mα, to a tree on Mα+1. Let T ∗∗
α denote

the copied tree. Let ~a∗∗
α denote the result of copying ~aα, which is formed in

models of Tα, to the models of T ∗∗
α . While we are at it, let P∗∗

α be the result
of copying the entire pivot Pα via τα,α+1. Let Q∗∗

α be the direct limit of the
models of T ∗∗

α along bα, and let j∗∗bα
be the direct limit embedding. These

copies of Qα and jbα
are presented in the upper right part of Diagram 23.

Fact 6.8. Q∗∗
α equals Nα. Moreover ~a∗∗

α equals πα(~aα) and πα ◦ jbα
=

j∗∗bα
◦ τα,α+1.

Remark 6.9. Fact 6.8 assumes some closure conditions on the extenders
used in Tα. One can build these closure conditions into the construction of
σmix. Alternatively one can use a weaker version of Fact 6.8 which holds in
general. We refer the reader to [12, Chapter 4] for details.

Fact 6.8 is the answer to our problem. It tells us that πα(~aα) does correspond
to a pivot, the pivot P∗∗

α . It follows that a′
α = πα(~aα� nα) corresponds to

P∗∗
α � nα.
Let P∗∗∗

α denote P∗∗
α �nα. This includes T ∗∗∗

α = T ∗∗
α � 2nα + 1 and a′

α =
~a∗∗

α � nα. P∗∗∗
α represents a position of nα rounds in τ0,α+1(Amix)[xα], played

according to τ0,α+1(σmix)[xα]. Since xα and xα+1 agree to nα (regardless of
the end value of yα) P∗∗∗

α is also a position in τ0,α+1(Amix)[xα+1], played
according to τ0,α+1(σmix)[xα+1].

P∗∗∗
α will be our starting position when using τ0,α+1(σmix)[xα+1] for the

construction of Pα+1.

Remark 6.10. Note that starting the construction of Pα+1 from P∗∗∗
α —a

restriction of τα,α+1(Pα)—has the pleasant side effect of securing the agree-
ment condition, condition (i) above, which was used at limit stages.

Fix some k < ω which belongs to the odd branch bα, is larger than 2nα, and
is large enough that ~a∗∗

α � nα has a pre-image in Q∗∗
k . (We use Q∗∗

··· to denote
the models of T ∗∗

α .) Let ~a∗∗∗
α be this pre-image. Pick k large enough that G∗∗

α

and σ∗∗
α , which belong to Nα[hα] = Q∗∗

α [hα], have pre-images in Q∗∗
k [hα]. Let

G∗∗∗
α and σ∗∗∗

α be these pre-images. Note our use here of Remark 6.6 and the
condition (]) following it.

G∗∗∗
α is an open game played according to rules (M1)–(M3), from the starting

position ~a∗∗∗
α . σ∗∗∗

α is a winning strategy for I in this game.
From this point onward we continue along the lines of past constructions.

We combine σ∗∗∗
α , τ0,α+1(σmix)[xα+1], and the imaginary opponent to create
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yα and Pα+1. There is one difference though. We don’t start the construction
from zero. We start it from P∗∗∗

α which already contains nα rounds according
to τ0,α+1(σmix)[xα+1].

The construction starts at round nα. Let us go over this round. σ∗∗∗
α , in

accordance with rule (M1), plays an ordinal γ∗. We have by that rule:

(†) γ∗ < (j∗∗0,k ◦ τα,α+1)(γ
α); and

(‡) ~a∗∗∗
α is a position in the auxiliary game (j∗∗0,k ◦ τ0,α+1)(A)[γ∗, xα+1].

We now play round nα of the mixed game τ0,α+1(Amix)[xα+1] (see Diagram
21), continuing from the position given by P∗∗∗

α . We play for I, and we intend
to mix.

To begin, we play fα+1(nα) = k and Tα+1� k+1 = T ∗∗
α � k+1. Note that here

already we have mixing, since k is larger than 2nα. Next we play γα+1
nα

= γ∗.
This is a legal move because of (‡).

The rest of the construction follows precisely the lines of case 1 in Section
3, except that the starting point is the model Q∗∗

k . σ∗∗∗
α and its shifts provide

moves for I, τ0,α+1(σmix) provides auxiliary moves for II, and the imaginary
opponent provides natural number moves for II. These characters combined
produce Pα+1. We omit further details, and only point out that in shifting
σ∗∗∗

α we use the fact that it belongs to Q∗∗
k [hα], and the fact that Q∗∗

k [hα]
is a small extension relative to τ0,α+1(dom(E))—hence relative to the critical
points used in Tα+1, see Remark 6.7. The first fact traces back to condition
(]) above, which in turn traces back to condition 5 at the start of this section.
The second fact traces back to our initial assumption that E overlaps δ.

Remark 6.11. At the start of the construction we made the simplifying
assumption that Pα does not contain any mixing. Still, we ended with Pα+1

which does contain mixing. Mixed pivots are therefore an essential part of the
construction.

We point out that Pα+1 contains mixing in round nα, but does not contain
mixing in any round above nα. (Rounds below nα depend on Pα� nα, which
in general may contain mixing.) This is a general pattern at successor stages.

The case of a limit ordinal λ is different. Pλ is the limit of the mixed pivots
τα,λ(Pα), and can contain mixing in cofinally many rounds.

Finally, note that every time a mixing is initiated, some “smaller ordinal” is
produced by (†) above. (Without the simplifying assumption that Pα does not
contain mixing, the statement of (†) becomes more involved. (j∗∗0,k◦τα,α+1)(γ

α)
is replaced by the pre-image to Q∗∗

k of the ordinal corresponding to the even
root of bα, see condition 2 of Definition 5.5.) These ordinals are used to create
the sequences ~ηα of (D), ensuring the agreement in the last item of (i) so that
(D) holds at limits.

Remark 6.12. The base case of α = 0 is similar to the successor case; our
initial assumption, that I wins G∗(∅, p∅q, γ), is similar to condition 3 above
and the construction starts from there. We leave this case to the reader.
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6.3. Closing arguments. So far we defined the games G∗(~a, x, γ), open
games played in M [g]. We showed that if there exists γ so that I wins
G∗(∅, p∅q, γ) then I wins Gcont−ν(C) in V. This work is analogous to the
developments of Sections 4.1 and 4.2. To complete the proof of determinacy
we must:

1. Define the mirror image games H∗(~b, x, γ);
2. Show that if there exists γ so that II wins H∗(∅, p∅q, γ) then II wins

Gcont−ν(C) in V; and
3. Derive a contradiction from the assumption that for all ordinals γ, II

wins G∗(∅, p∅q, γ) and I wins H∗(∅, p∅q, γ).

The first two tasks are routine. Task 3 is an analogue of our work in Section
4.4. Working with σgen and τgen we construct a run of Gcont−ν in M [g∞] which
fails to satisfy φ, and fails to satisfy ¬φ. The argument is an adaptation of the
one in Section 4.4, but the adaptation is not entirely straightforward; some
additional work is necessary. The precise details can be found in [12, Chapter
4]. Once task 3 is completed we get:

Theorem 6.13. Suppose that there exist M , δ < δ∞ ∈ M , and E ∈ M

overlapping δ, which satisfy conditions 1–5 listed at the beginning of Section
6. Then all games Gcont−ν(C) where ν is continuous and C is Σ1

2 in the codes
are determined. a

6.4. Summary. We end with several observations about the proof of The-
orem 6.13. Two of these observations show how the theorem can be improved
somewhat.

In some sense our construction is a method for converting an iteration strat-
egy into a winning strategy for I in Gcont−ν(C). (The mirror image construc-
tion of task 2 converts an iteration strategy into a winning strategy for II.)
Note that the iteration trees in Section 6.2 are of the kind presented in Diagram
7, the “second” kind. The iteration strategy we use during the construction
must therefore apply to the second kind iteration game. In contrast, Section
4 only used games of the first kind.

Next we note that the large cardinal assumption in Theorem 6.13 can be
weakened without forcing great change to the proof. Suppose there exist M

and δ < δ∞ which satisfy conditions 1–4 listed at the beginning Section 6 and
satisfy the following weakened version of condition 5:

w5. For every X ∈ M‖ δ + 1 there exists an extender E in M overlapping δ

and strong enough that X ∈ Ult(M,E).

(In the original condition 5 one extender E worked for all X ∈ M‖ δ + 1.)
The proof of Theorem 6.13 can be repeated, almost verbatim, under this

weaker assumption. Our main use of condition 5 was in Remark 6.6 and the
condition (]) which followed it. This use traced back to condition 5 through
Claim 6.1; we needed to know that the real xα ∈ Qα[hα] belonged also to
Ult(Qα, Eα)[hα]. Given a real xα ∈ Qα[hα], the weak condition 5 can also be
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used to find an extender Eα so that xα ∈ Ult(Qα, Eα)[hα]. So we can adjust
the construction to only use the weak condition 5. (Note that with the weak
condition we cannot expect a single extender to handle all reals. Thus we
cannot at the outset fix E ∈ M and always let Eα = τ0,α(E). Instead we must
let the extenders vary.)

Theorem 6.13 applies to games Gcont−ν(C) where ν is continuous, i.e., Σ0
1

measurable. Our final note is that the theorem can be strengthened to apply
to ν which are Σ0

2 measurable.
Fix ν : R → N which is Σ0

2 measurable. For each n ∈ N the pre-image
ν−1{n} is Σ0

2. Let C include all the closed sets which participate in the unions
defining the sets ν−1{n}, n < ω. Without loss of generality the real parameter
which defines ν belongs to M . Working in M [g] and using the unraveling
techniques of Martin [7], find a covering (R, π, ϕ) of ω<ω which unravels each
of the sets in C. Moves in the game on R are subsets of ωω in M [g]. For
each n ∈ N, the pre-image (π−1 ◦ ν−1){n} is open. Revise the rule of part
(F) in Section 6.1 so that instead of forming yα = 〈yα(i) | i < ω〉 by directly
playing on ω<ω, the players play on R. Part (F) continues until, if ever, the
players enter one of the sets (π−1 ◦ ν−1){n}, n < ω. Note that the revision
makes sense because these sets are open. If the players enter (π−1 ◦ ν−1){n}
we set nα = n and, if nα is new, pass to part (M). The rules of part (M) are as
before, except for rule (M2). What does it mean now to form yα “continuing
from the point” left in part (F)? The moves in part (F) give us some position
in R to continue from. A position in R includes some initial segment yα� i of
yα, and some commitment T ; T is a subtree of ω<ω and both players are
committed to staying inside T . Revise rule (M2) to say that I and II play on
ω<ω continuing from yα� i and must stay inside the tree T .

These revisions to parts (F) and (M) redefine the games G∗(~a, x, γ). Using
the techniques of Martin [7] one can adapt the construction of Section 6.2 to
the new games, and complete the determinacy proof.

Remark 6.14. In adapting the construction of Section 6.2 we must take
care to preserve Remark 6.6 and the subsequent condition (]). Tracing back
we must preserve Remark 6.4. Let us check that Remark 6.4 applies to the
revised part (M). The revised part (M) is defined from the parameters listed
in Remark 6.4, plus the additional parameter T . T , a commitment in the
covering R, is a subset of ω<ω in M [g]. The strength given by condition 5 is
enough to make sure that it belongs to N [g], as required.

Note that we have here a limitation on the size of moves permitted in R.
This in turn limits the complexity of functions ν which we can handle. To
handle functions in pointclasses above Σ0

2 we would need stronger agreement
between M [g] and N [g] than the one given by condition 5.

Combining the observations above we get the following strengthening of
Theorem 6.13:
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Theorem 6.15. Suppose that there exist M and δ < δ∞ ∈ M which satisfy
the following conditions:

1. M is a class model;
2. M is iterable;
3. δ and δ∞ are Woodin cardinals of M ;
4. M‖ δ∞ + 1 is countable in V; and

w5. For every X ∈ M‖ δ + 1 there exists an extender E in M overlapping δ

and strong enough that X ∈ Ult(M,E).

Then all games Gcont−ν(C) where ν is Σ0
2 measurable and C is Σ1

2 in the codes
are determined. a
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