NECESSARY USE OF Σ_{1}^{1} INDUCTION IN A REVERSAL

ITAY NEEMAN

Abstract

Jullien's indecomposability theorem states that if a scattered countable linear order is indecomposable, then it is either indecomposable to the left, or indecomposable to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic analysis, and then, in the base system $R C A_{0}$ plus Σ_{1}^{1} induction, it was shown by Neeman to have strength strictly between weak Σ_{1}^{1} choice and Δ_{1}^{1} comprehension. We prove in this paper that Σ_{1}^{1} induction is needed for the reversal of INDEC, that is for the proof that INDEC implies weak Σ_{1}^{1} choice. This is in contrast with the typical situation in reverse mathematics, where reversals can usually be refined to use only Σ_{1}^{0} induction.

§1. Introduction. This paper is concerned with a use of strong induction for a reversal, in reverse mathematics. We show that a use of Σ_{1}^{1} induction made in a reversal proof in Neeman [6] is necessary. This appears to be the first time such a use is shown to be needed.

We refer the reader to Simpson [9] for a systematic treatment of reverse mathematics. Let us here recall that it deals with calibrating the strength of theorems of second order number theory (a.k.a. analysis). Strength is measured relative to a hierarchy of systems of axioms. It was realized early on that full induction is not needed in the base system. And so today the standard base system is RCA_{0}, consisting of the axioms of Peano arithmetic other than induction, Δ_{1}^{0} comprehension, and induction limited to Σ_{1}^{0} formulas. The subscript 0 , in RCA_{0} and in other stronger systems, indicates that the induction schema in the system is restricted to Σ_{1}^{0} formulas.

This is not to say that stronger induction is not used in reverse mathematics. There are situations where theorems reverse to systems that include strong induction. For example, Simpson [8] shows that Σ_{1}^{1} transfinite induction is equivalent to $\mathrm{ATR}_{0}+\Sigma_{1}^{1}$ induction, but not equivalent to ATR_{0}. Nemoto [7] shows that determinacy for the Wadge pointclass immediately above Σ_{2}^{0} in Baire space is also equivalent to $\operatorname{ATR}_{0}+\Sigma_{1}^{1}$ induction. Medsalem-Tanaka [3] show that Δ_{3}^{1} CA_{0} plus Σ_{1}^{1} induction proves Δ_{3}^{0} determinacy, and that Σ_{1}^{1} induction cannot be dropped.

But in all these situations, Σ_{1}^{1} induction is used in proving the theorem, not in the reversal, that is not as part of the base system needed to extract strength from the theorem. It has typically been the case that reversals that (initially) use strong induction, can be refined to use only Σ_{1}^{0} induction, and this indeed

[^0]is the reason that by now the standard base system in reverse mathematics has only Σ_{1}^{0} induction.

Here we present a situation where Σ_{1}^{1} induction is used in a reversal, and the use is necessary.

Uses of strong induction in reversals, even uses that are not known to be necessary, are rare. But they do exist. For example Hirschfeldt-Shore [1] show that the combinatorial principles COH and CADS are equivalent in RCA_{0} plus $B \Sigma_{2}^{0} . B \Sigma_{2}^{0}$ is in some sense an induction principle, being strictly between Σ_{1}^{0} induction and Σ_{2}^{0} induction. In RCA_{0} alone COH implies CADS, and it is not known if the implication can be reversed.

Other uses, more closely related to the situation here, come from work of Montalbán [5, 4]. The work there is concerned with the strength of various results on countable orders, and many of the results are proved in the base system $R C A_{0}+\Sigma_{1}^{1}$ induction, rather than RCA_{0}. To name just one, Montalbán proves, in $R C A_{0}$ plus Σ_{1}^{1} induction, that Fraïssés conjecture (FRA) is equivalent to a certain principle JUL of extendibility for linear orders. In RCA ${ }_{0}$ alone, JUL implies FRA, and it is not known if the implication can be reversed.

Montalbán [4] also studies a particular theorem of Jullien [2], on indecomposability. Recall that a linear order is scattered if it does not embed the rationals. A gap in a linear order is a pair $\langle L, R\rangle$, which partitions the order, with L closed to the left, and R closed to the right. The gap is a decomposition if the full order does not embed into L and does not embed into R. The order is indecomposable if it has no decompositions, meaning that for every gap $\langle L, R\rangle$, the order embeds either into L or into R. The order is indecomposable to the left if for all gaps with $L \neq \emptyset$ the full order embeds into L. It is indecomposable to the right if the same holds with R instead of L. Jullien's indecomposability theorem, which Montalbán called INDEC, states that every scattered countable linear order which is indecomposable, is indecomposable to the left, or indecomposable to the right.

INDEC is of interest to us here because of another reversal that uses Σ_{1}^{1} induction. Neeman [6] shows that the strength of INDEC lies strictly between weak Σ_{1}^{1} choice and Δ_{1}^{1} comprehension, and in particular INDEC implies weak Σ_{1}^{1} choice. This strengthens work of Montalbán [4], who shows that INDEC has hyperarithmetic strength. For more on this we refer the reader to the two papers. Here let us only say that the proof in Neeman [6] that INDEC implies weak Σ_{1}^{1} choice was carried out in the system RCA_{0} plus Σ_{1}^{1} induction.

It was generally expected that the uses of Σ_{1}^{1} induction that we mentioned above could be removed, that technically more elaborate proofs would establish the reversals in RCA ${ }_{0}$. This has been the typical case in reverse mathematics.

But it turns out that the use of Σ_{1}^{1} induction in the reversal from INDEC to weak Σ_{1}^{1} choice cannot be removed. We prove in this paper that:

Theorem 1.1. In the system $\mathrm{RCA}_{0}+\Delta_{1}^{1}$ induction, INDEC does not imply weak Σ_{1}^{1} choice.

Note that neither INDEC nor weak Σ_{1}^{1} choice implies Σ_{1}^{1} induction. It is not that INDEC reverses to a system with Σ_{1}^{1} induction, but that Σ_{1}^{1} induction is needed as part of the base system for the reversal. To our knowledge this is the
first time that strong induction is shown to be needed for a reversal in such a way.

The rest of the paper contains the proof of Theorem 1.1. We prove the theorem by constructing a model where INDEC and Δ_{1}^{1} induction hold, yet weak Σ_{1}^{1} choice fails. The model is non-standard of course. It is constructed using Steel forcing, and Section 2 includes some preliminaries on this. The model itself is defined in Section 3, where we also prove that it satisfies Δ_{1}^{1} induction, and fails to satisfy weak Σ_{1}^{1} choice. Finally in Section 4 we show that the models satisfies INDEC.
§2. Preliminaries. We briefly recall the forcing technique of Steel [10, 11]. This is a powerful technique for creating models of hyperarithmetic analysis. Our description of the actual poset follows Van Wesep [12].

Let \prec be a recursive (illfounded) linear order on a recursive subset of ω, so that the wellfounded part of \prec has order type $\omega_{1}^{c k}$, and so that no hyperarithmetic sequence witnesses the illfoundedness of \prec.

Define a poset \mathbb{P} as follows. Conditions are triples $p=\left\langle T_{p}, f_{p}, h_{p}\right\rangle$ where:

1. $T_{p} \subseteq \omega^{<\omega}$ is a finite tree.
2. f_{p} is a function from a finite subset of ω to T. Let $\operatorname{Dc}\left(f_{p}\right)$, the downward closure of range $\left(f_{p}\right)$, be the set $\left\{f_{p}(i) \upharpoonright j \mid i \in \operatorname{dom}\left(f_{p}\right), j \leq \operatorname{lh}\left(f_{p}(i)\right)\right\}$ of initial segments of nodes in range $\left(f_{p}\right)$.
3. h_{p} is a $\left\langle T_{p}, f_{p}\right\rangle$-tagging. I.e., h_{p} is a function from $T_{p}-\{\emptyset\}-\operatorname{Dc}\left(f_{p}\right)$ into $\operatorname{dom}(\prec)$, with $t \supsetneq s \rightarrow h_{p}(t) \prec h_{p}(s)$.
Conditions are ordered by reverse extension. $p \leq q$ iff $T_{p} \supseteq T_{q}, h_{p} \supseteq h_{q}$, and $\left(\forall i \in \operatorname{dom}\left(f_{q}\right)\right) f_{p}(i)$ is defined and extends $f_{q}(i)$.

We use \mathbb{P} to force over the model $L_{\omega_{1}^{c k}}$. Let G be generic over this model. Let $T=T^{G}=\bigcup_{p \in G} T_{p}$ and define $h=h^{G}$ and $f(i)=f^{G}(i)$ similarly. We use \dot{T}, \dot{f}, and \dot{h} for the canonical names for T, f, and h. T is a tree on ω, $B=B^{G}=\{f(i) \mid i \in \omega\}$ is a set of branches through T, and h "ranks" nodes of T which are not initial segments of branches in B, meaning that it embeds the order of reverse extension on these nodes to \prec. (If \prec were wellfounded then h would witness that these nodes do not extend to branches of T.)

In talking about h, we identify each member of the wellfounded part of \prec with its ordinal rank. Thus when we write $h(t)=\alpha$ we mean $h(t)=i$ for i whose order type in \prec is α.

For each finite $F \subseteq B$ let $M_{F}=M_{F}^{G}$ be the model $L_{\omega_{1}^{c k}}(\{T\} \cup F)$. The subsets of ω which belong to M_{F} are precisely those which are hyperarithmetic in the join of $\{T\} \cup F$. The models of hyperarithmetic analysis that one typically produces using Steel forcing are unions of models of the form $M_{F} \cap(\omega \cup \mathcal{P}(\omega))$. (In our case we will use unions of non-standard models of a similar form.)
M_{F} has the tree T, but not the function h. For each $\alpha<\omega_{1}^{\mathrm{ck}}$, the restriction of h to nodes t with $h(t)<\alpha$ does belong to M_{F} : genericity implies that $h(t)$, when wellfounded, is precisely equal to the rank of t in T, and for each $\alpha<\omega_{1}^{c k}$ the ranks up to α can be computed from T by recursion. But these recursions become increasingly complicated as α increases. If one is restricted to some bounded complexity below hyperarithmetic, then one cannot distinguish between
sufficiently high values of h. A precise formulation of this symmetry is given in Lemma 2.3 below.

Let $A \subseteq \omega$ be finite. Let $F(A)=F^{G}(A)$ denote the set $\left\{f^{G}(i) \mid i \in A\right\}$. By induction on $\alpha<\omega_{1}^{c k}$ we define the A-nice names for elements of $L_{\alpha}(\{T\} \cup F(A))$, and the order of these names. The order of \dot{x} is denoted $o(\dot{x})$, and we shall have $L_{\alpha}(\{T\} \cup F(A))=\{\dot{x}[G] \mid \dot{x}$ is A-nice and $o(\dot{x})<\alpha\}$. We start at level ω, with $L_{\omega}(\{T\} \cup F(A))=L_{\omega} \cup\left\{T^{G}\right\} \cup F(A)$. $1_{\mathbb{P}}$ denotes $\langle\emptyset, \emptyset, \emptyset\rangle$, the weakest condition in \mathbb{P}.

- The A-nice names for elements of L_{ω}, for T^{G}, and for $f^{G}(i), i \in A$, are simply the canonical \mathbb{P}-names for these objects. The order of these names is 0 .
- Let $\alpha \geq \omega$. Let $\dot{z}=\left\{\left\langle\dot{x}, 1_{\mathbb{P}}\right\rangle \mid \dot{x}\right.$ is A-nice and $\left.o(\dot{x})<\alpha\right\}$. (By induction, \dot{z} names $L_{\alpha}(\{T\} \cup F(A))$.) If $\varphi\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is a formula, and $\dot{a}_{1}, \ldots, \dot{a}_{k}$ are A-nice names of order $<\alpha$, then $\{\langle\dot{u}, p\rangle \mid \dot{u}$ is A-nice, $o(\dot{u})<\alpha$, and $\left.p \Vdash " \dot{z} \models \varphi\left[\dot{u}, \dot{a}_{1}, \ldots, \dot{a}_{k}\right] "\right\}$ is an A-nice name of order α.
It is clear that every element of $M_{F}=L_{\omega_{1}^{k}}(\{T\} \cup F(A))$ has an A-nice name, and that $M_{F}=\{\dot{x}[G] \mid \dot{x}$ is A-nice $\}$.

A statement $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$ in the forcing language is A-nice if \dot{x}_{i} are A-nice, and all quantifiers of φ are bounded to range over A-nice names. When talking about $M_{F(A)}$ in the forcing language we shall only use A-nice statements.

An A-nice statement $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$ is ranked if there is $\alpha<\omega_{1}^{\mathrm{ck}}$ so that $o\left(\dot{x}_{i}\right)<$ α and all quantifiers in φ are bounded to range over A-nice names of order $<\alpha$. The least α witnessing this is the order of $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$. The rank of $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$ is defined to be $\omega^{2} \cdot o+\omega \cdot q+n$ where o is the order of $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$, q is the number of quantifier in φ, and n the number of logical connectives. The definition is taken from Steel [11].

Claim 2.1. For each $\alpha<\omega_{1}^{c k}$, the restriction of the forcing relation to A-nice statements of rank $<\alpha$ belongs to $L_{\omega_{1}^{\mathrm{ck}}}$.

Claim 2.1 is taken from Van Wesep [12] and relies on Van Wesep's definition of \mathbb{P}, which differs slightly from that of Steel [11].

DEFINITION 2.2. Let $p, p^{*} \in \mathbb{P}, \eta<\omega_{1}^{c k} . p^{*}$ is an η-absolute A-reduct of p if:

1. $T_{p}=T_{p^{*}}$ and $f_{p}(i)=f_{p^{*}}(i)$ for $i \in A$.
2. $h_{p^{*}}(s)=h_{p}(s)$ whenever either one of $h_{p^{*}}(s), h_{p}(s)$ is defined and $<\eta$.

Lemma 2.3 (Steel [11]). Let $\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$ be A-nice and ranked, with rank $\leq \eta<\omega_{1}^{\mathrm{c} k}$. Suppose p^{*} is an $\omega \eta$-absolute A-reduct of p. Then $p \Vdash \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$ iff $p^{*} \Vdash \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right)$.

Lemma 2.3 gives precise meaning to the statement that if one is restricted to complexity bounded below hyperarithmetic, in T and finitely many branches through it, then one cannot distinguish between values of h beyond a bounded level. It implies in particular that the only branches of T in M_{F} are the ones in F :

Claim 2.4 (Steel [11]). Let $A \subseteq \omega$ be finite. Let $F=\left\{f^{G}(i) \mid i \in A\right\}$. Then the only branches of T which belong to M_{F} are those in F.

Proof. Suppose not. Let \dot{b} be an A-nice name for a branch of T which is distinct from $f^{G}(i)$ for each $i \in A$. Let $p \in \mathbb{P}$ force this. Strengthening p, we may fix $n<\omega$ and a node t, and assume that p forces $\dot{b} \upharpoonright \check{n}=\check{t}, t \in T_{p}$, and t is incompatible with $f_{p}(i)$ for each $i \in A$. This is a ranked statement. Let $\eta<\omega_{1}^{c k}$ be its rank. (How large it is exactly depends on the order of \dot{b}.)

Let p^{*} be obtained from p by setting $T_{p^{*}}=T_{p}$, setting $f_{p^{*}}=f_{p} \upharpoonright A$, and modifying h_{p} to produce $h_{p^{*}}$ which agrees with h_{p} on nodes of rank $<\omega \eta$, but gives t a wellfounded rank (greater than or equal to η or course).

Then p^{*} is an $\omega \eta$-absolute A-reduct of p. By Lemma 2.3, p^{*} forces that \dot{b} is a branch through \dot{T}, and \dot{b} extends \check{t}. But now letting G^{*} be generic with $p^{*} \in G^{*}$, we get that $h^{G^{*}}\left(\dot{b}\left[G^{*}\right]\lceil j), j>n\right.$, is an infinite descending chain in \prec below $h_{p^{*}}(t)$, contradicting the fact that $h_{p^{*}}(t)$ is wellfounded.
§3. The model, induction, and failure of weak choice. Let $M=L_{\omega_{1}^{c k}}$, let G be generic over M for Steel's forcing \mathbb{P}, let $T=T^{G}$, and let $f=f^{G}$. T is a tree on ω, and each $f(i)$ is a branch through T. By genericity, for each $n<\omega$ there is a branch $f(i)$ whose first coordinate, $f(i)(0)$, is of the form (n, k) for some k. (Here and throughout, $(*, *): \omega^{2} \rightarrow \omega$ is some standard pairing function.) Let i_{n} be the least i witnessing this. Let $K=\left\{f\left(i_{n}\right) \mid n \in \omega\right\}$.

Let \mathcal{F} be the collection of finite subsets of K. For each $F \in \mathcal{F}$ let $M_{F}=$ $M(\{T\} \cup F)$. These are the usual settings for applications of Steel's forcing with the set K. Let \mathcal{M} denote the function $F \mapsto M_{F}$.

Let \mathfrak{H} be a standard (transitive) model of enough of ZFC, which is countable and contains all the objects above.

Let \mathfrak{H}^{*} be a non-standard countable elementary extension of \mathfrak{H}, and let $j: \mathfrak{H} \rightarrow$ \mathfrak{H}^{*} be an elementary embedding. We use \mathcal{M}^{*} to denote $j(\mathcal{M})$, and similarly with ω, M, T, K, and $\mathcal{F} . \omega^{*}=j(\omega)$ is an illfounded end extension of ω of course.

Each $F \in \mathcal{F}^{*}$ has a size, possibly non-standard, in ω^{*}. It is the unique $n \in \omega^{*}$ so that $\mathfrak{H}^{*} \models$ "the size of F is n." We write $|F|$ to denote this n.

For each $F \in \mathcal{F}^{*}$ let $M_{F}^{*}=\mathcal{M}^{*}(F)$. This is the model $M^{*}\left(\left\{T^{*}\right\} \cup F\right)$, as computed in \mathfrak{H}^{*}. Let $\mathcal{U}=\left\{F \in \mathcal{F}^{*}| | F \mid \in \omega\right\}$. \mathcal{U} thus consists of all elements of \mathcal{F}^{*} which have standard size.

Let $N=\bigcup_{F \in \mathcal{U}} M_{F}^{*}$. N is the model we use to witness Theorem 1.1.
Lemma 3.1. N satisfies RCA_{0} and Δ_{1}^{1} induction.
Proof. The first order axioms hold in ω^{*} by elementarity of $j . \Delta_{1}^{0}$ comprehension holds in all M_{F}^{*} by elementarity of j, and from this and the fact that $F_{1}, F_{2} \in \mathcal{U} \rightarrow F_{1} \cup F_{2} \in \mathcal{U}$ it follows that the axiom holds in N. We prove that Δ_{1}^{1} induction holds in N.

Let $\varphi(n)$ and $\psi(n)$ be a Σ_{1}^{1} formulas, possibly with parameters. Suppose for simplicity that the parameters belong to M_{\emptyset}^{*}. In the general case one has to restrict below to l greater than the (standard) least size of an F so that the parameters belong to M_{F}^{*}.

Suppose that $N \models(\forall n)(\varphi(n) \leftrightarrow \neg \psi(n))$. Suppose that $N \models \varphi(0)$, and $N \models(\forall n)(\varphi(n) \rightarrow \varphi(n+1))$. We prove that $N \models(\forall n) \varphi(n)$.

For each $l \in \omega$ let $N_{l}=\bigcup_{F \subseteq K,|F|=l} M_{F}$. Let s be the function $l \mapsto N_{l}$. As \mathfrak{H} satisfies a sufficient fragment of ZFC, we may assume s belongs to \mathfrak{H}. Let $s^{*}=j(s)$, and let N_{l}^{*} for $l \in \omega^{*}$ be $s^{*}(l)$.

Claim 3.2. N is equal to $\bigcup_{l \in \omega} N_{l}^{*}$.
Proof. Clear from the definitions. Note that the union is taken over standard l only.

Claim 3.3. There exists a non-standard l so that $N_{l}^{*} \models(\forall n)(\varphi(n) \rightarrow \neg \psi(n))$.
Proof. Suppose not. In other words suppose that for every non-standard l, $N_{l}^{*} \vDash(\exists n)(\varphi(n) \wedge \psi(n))$.

Recall that \mathfrak{H} is a model of a sufficiently large fragment of ZFC. By elementarity of j, so is \mathfrak{H}^{*}. We may assume the fragment is large enough to define the set $A=\left\{l \in \omega^{*} \mid s^{*}(l)=N_{l}^{*} \models(\exists n)(\varphi(n) \wedge \psi(n))\right\}$. The set then belongs to \mathfrak{H}^{*}, and therefore has a smallest element, call it l_{0}. Since we assume for contradiction that all non-standard l belong to the set, l_{0} must be standard. But then $N_{l_{0}}^{*} \subseteq N$. Since $(\exists n)(\varphi(n) \wedge \psi(n))$ is a Σ_{1}^{1} formula it reflects from $N_{l_{0}}^{*}$ to N, so $N \models(\exists n)(\varphi(n) \wedge \psi(n))$, contradiction.

Work with l given by the last claim. Then for each $n \in \omega^{*}$:

$$
\begin{align*}
\varphi^{N}(n) & \rightarrow \varphi^{N_{l}^{*}}(n) \tag{1}\\
& \rightarrow \neg \psi^{N_{l}^{*}}(n) \tag{2}\\
& \rightarrow \neg \psi^{N}(n) \tag{3}\\
& \rightarrow \varphi^{N}(n) . \tag{4}
\end{align*}
$$

The implications (1) and (3) use Σ_{1}^{1} reflection from N to N_{l}^{*}, which is a superset of N since l is non-standard. The implication (2) uses the last claim, and the implication (4) is the equivalence of φ and $\neg \psi$ in N.

Note that N_{l}^{*}, unlike N, belongs to \mathfrak{H}^{*}. Since \mathfrak{H}^{*} thinks that ω^{*} is wellfounded, N_{l}^{*} is a model of full induction. Using the equivalence $\varphi^{N}(n) \leftrightarrow \varphi^{N_{l}^{*}}(n)$ given by the implications above, we may induct in N_{l}^{*} to conclude, from $N \models \varphi(0) \wedge$ $(\forall n)(\varphi(n) \rightarrow \varphi(n+1))$, that $N \models(\forall n) \varphi(n)$.
\dashv (Lemma 3.1)
Let finite weak Σ_{1}^{1} choice be the following schema: for each arithmetic formula $\varphi(k, x)$, if $(\forall k)(\exists!x) \varphi(k, x)$, then for all n there exists a sequence $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ so that $(\forall k<n) \varphi\left(k, x_{k}\right)$.

Finite weak Σ_{1}^{1} choice is a consequence of weak Σ_{1}^{1} choice. Indeed, under weak Σ_{1}^{1} choice, if $(\forall k)(\exists!x) \varphi(k, x)$ then in fact there exists an infinite sequence $\left\langle x_{k} \mid k<\omega\right\rangle$ so that $(\forall k) \varphi\left(k, x_{k}\right)$.

But really finite weak Σ_{1}^{1} choice is an induction principle, and a fairly weak one at that. It is an innocent looking, weak consequence of Σ_{1}^{1} induction:

CLAIM 3.4. (In $\left.\mathrm{RCA}_{0}.\right) \Sigma_{1}^{1}$ induction implies finite weak Σ_{1}^{1} choice.
Proof. Let $\psi(n)$ be the statement that there exists a sequence $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$ so that $(\forall k<n) \varphi\left(k, x_{k}\right) . \psi(n)$ is a Σ_{1}^{1} statement. It is clearly true for $n=$ 0 . Further, assuming $(\forall k)(\exists!x) \varphi(k, x), \psi(n+1)$ follows from $\psi(n)$ by taking any sequence witnessing $\psi(n)$, and concatenating to it the unique x witnessing
$\varphi(k, x)$. Thus, assuming $(\forall k)(\exists!x) \varphi(k, x), \Sigma_{1}^{1}$ induction shows that $\psi(n)$ holds for all n.

Remark 3.5. The only use of Σ_{1}^{1} induction in the proof in Neeman [6] that INDEC implies weak Σ_{1}^{1} choice, comes through an instance of Claim 3.4.

Lemma 3.6. Finite weak Σ_{1}^{1} choice fails in N.
Proof. Let $\varphi(k, b)$ be the statement that b is a branch through T^{*} with first coordinate $b(0)$ of the form (k, i) for some i.

By definition of K and the elementarity of j, for every k in ω^{*} there exists a unique $b \in K^{*}$ so that $\varphi(k, b)$ holds. It follows that in $N,(\forall k)(\exists!b) \varphi(k, b)$.

But the statement $\psi(n)$, that there exists a sequence $\left\langle b_{0}, \ldots, b_{n-1}\right\rangle$ so that $(\forall k<n) \varphi\left(k, b_{k}\right)$, fails in N for some n. Indeed it fails for all non-standard n. This is because $N=\bigcup_{F \in \mathcal{U}} M_{F}^{*}$, each $F \in \mathcal{U}$ has standard size, and every sequence of distinct branches through T^{*} in M_{F}^{*} has length at most the size of F by Claim 2.4.

Corollary 3.7. Σ_{1}^{1} induction and weak Σ_{1}^{1} choice both fail in N.
§4. INDEC. We begin the section with a lemma that holds in the standard model \mathfrak{H}. By the elementarity of j, the same lemma holds in \mathfrak{H}^{*}. Later we will use the lemma in \mathfrak{H}^{*} to show that INDEC holds in N.

Let $F_{0} \subseteq K$ be finite. Let $U \in M_{F_{0}}$ be a linear order on ω. For each $l<\omega$ let Left ${ }_{l}$ consist of all $x \in \operatorname{dom}(U)$ so that there is an embedding of U to the right of x in $M_{F_{0} \cup J}$ for some J of size $\leq l$. We refer to any such J as a witness to the membership of x in Left $_{l}$. Let Right $_{l}$ consist of $x \in \operatorname{dom}(U)$ so that there is an embedding of U to the left of x in $M_{F_{0} \cup J}$ for some J of size $\leq l$. Again we refer to any such J as a witness to membership.

It is clear that Left ${ }_{l}$ is closed to the left, and Right_{l} is closed to the right.
Lemma 4.1. Suppose that $l<\omega$ is such that:

1. Each $x \in \operatorname{dom}(U)$ belongs to either Left ${ }_{l}$ or Right $_{l}$.
2. No $x \in \operatorname{dom}(U)$ belongs to both Left $_{2 \cdot l}$ and Right $_{2 \cdot l}$.

Then $\left\langle\right.$ Left $_{l}$, Right $\left._{l}\right\rangle$ is a gap in U, and there is $E \subseteq K$ of size at most $2 \cdot l$ so that Left l_{l} and Right l_{l} belong to $M_{F_{0} \cup E}$.

Proof. If x belongs to both Left ${ }_{l}$ and Right $_{l}$, then letting $J_{\text {Left }}$ and $J_{\text {Right }}$ witness this we get that in $M_{F_{0} \cup J_{L e f t} \cup J_{\text {Right }}}$ there are embeddings of U both to the right of x and to the left of x, contradicting (2) as $J_{\text {Left }} \cup J_{\text {Right }}$ has size at most $2 \cdot l$. So Left $\cap \operatorname{Right}_{l}=\emptyset$. Using (1) we also have Left $\cup \operatorname{Right}_{l}=\operatorname{dom}(U)$, so $\left\langle\right.$ Left $_{l}$, Right $\left._{l}\right\rangle$ partitions $\operatorname{dom}(U)$. From this and the closure of Left ${ }_{l}$ and Right $_{l}$ to the left and right respectively, it follows that $\left\langle\operatorname{Left}_{l}, \operatorname{Right}_{l}\right\rangle$ is a gap in U. We continue to prove that it belongs to $M_{F_{0} \cup E}$ for some E of size at most $2 \cdot l$.

Let $E_{\text {Left }}$ be a set of the largest possible size so that for every $x \in L e f t_{l}$ there is $J_{\text {Left }}$ witnessing the membership, with $E_{\text {Left }} \subseteq J_{\text {Left }}$. Define $E_{\text {Right }}$ similarly. We intend to show that the gap $\left\langle\right.$ Left $_{l}$, Right $\left._{l}\right\rangle$ belongs to $M_{F_{0} \cup E_{\text {Left }} \cup E_{\text {Right }}}$. Since $E_{\text {Left }} \cup E_{\text {Right }}$ has size at most $2 \cdot l$, this will complete the proof of the lemma.

Claim 4.2. For every $x \in$ Left $_{l}$, and any finite $A \subseteq K$, there is J witnessing the membership of x in Leftl with $J \supseteq E_{\text {Left }}$ and $J-E_{\text {Left }}$ disjoint from A. Similarly for Right ${ }_{l}$ and $E_{\text {Right }}$.

Proof. We prove the claim on Left $_{l}$. Suppose it fails for x. Fix $y_{i} \in \operatorname{dom}(U)$, $i<\omega$, all to the right of x, increasing and cofinal in Left ${ }_{l}$. By cofinal we mean that every $z \in$ Left $_{l}$ has some y_{i} to its right. Increasing of course means that $i<j$ implies $y_{i}<_{U} y_{j}$.

Since the claim fails for x, and y_{i} are all to the right of x, the claim also fails for each y_{i}. Thus, fixing J_{i} witnessing the membership of y_{i} in Left ${ }_{l}$ with $E_{\text {Left }} \subseteq J_{i}$, we know that $J_{i}-E_{\text {Left }}$ is not disjoint from A. Fix then for each $i<\omega$ some $b_{i} \in\left(J_{i}-E_{\text {Left }}\right) \cap A$. Since A is finite, there is a fixed $b \in A$ so that $b_{i}=b$ for infinitely many $i<\omega$. By thinning the sequence $y_{i}, i<\omega$, we may assume that in fact $b_{i}=b$ for all $i<\omega$.

Let $E^{*}=E_{\text {Left }} \cup\{b\}$. Then $E^{*} \subseteq J_{i}$ for each i. Using the fact that $y_{i}, i<\omega$, is cofinal in Left $_{l}$, it follows that for each $z \in$ Left $_{l}$, there is a witness J for the membership with $E^{*} \subseteq J$. (One can take $J=J_{i}$ for any i so that y_{i} is to the right of z.) But since E^{*} is larger than $E_{\text {Left }}$, this contradicts the maximality in the definition of $E_{\text {Left }}$.

Our plan for the rest of the proof of Lemma 4.1 is this: Using standard Steel forcing techniques, for any $I \subseteq K$ we can (approximately) view $M_{F_{0} \cup E_{\text {Leff }} \cup E_{\text {Right }} \cup I}$ as a forcing extension of $M_{F_{0} \cup E_{\text {Left }} \cup E_{\text {Right }}} . M_{F_{0} \cup E_{\text {Left }} \cup E_{\text {Right }}}$ can identify the set of x which can be forced into $L e f t_{l}$ with witness $E_{\text {Left }} \cup I$ so that I misses an arbitrary finite set in K, and similarly with Right $_{l}$. We intend to show that the sets of these x are exactly equal to Left $_{l}$ and Right $_{l}$ respectively, and hence Left $_{l}$ and Right $_{l}$ belong to $M_{F_{0} \cup E_{\text {Left }} \cup E_{\text {Right }}}$. The main part of the argument goes into showing that the sets are disjoint. It is there that we use the fact that the set of branches added to $E_{\text {Left }}$ to produce a witness can be made to avoid arbitrary finite subsets of K, and similarly with $E_{\text {Right }}$. We use particularly the fact that the sets can be made to avoid each other, as this allows combining the two extension, one forcing x into Left l_{l} and the other forcing x into Right ${ }_{l}$, and the combined extension leads to a contradiction.

Recall that we are working with a generic G for Steel's forcing, $T=T^{G}$, and $f=f^{G}$. For each $n<\omega$, there is exactly one branch b_{n} in K whose first coordinate $b_{n}(0)$ has the form (n, j) for some j. b_{n} is equal to $f^{G}\left(i_{n}\right)$ for i_{n} is least so that $f^{G}\left(i_{n}\right)(0)=(n, j)$ for some j. Let S be the function $n \mapsto i_{n}$. Let $C_{\text {Left }}$ be the set of n so that $b_{n}=f^{G}\left(i_{n}\right) \in E_{\text {Left }}$, and define $C_{\text {Right }}$ similarly. (So $E_{\text {Left }}=\left\{f^{G}\left(i_{n}\right) \mid n \in C_{\text {Left }}\right\}=F\left(S^{\prime \prime} C_{\text {Left }}\right)$ and similarly with $E_{\text {Right }}$.) Let C_{0} be such that $F_{0}=\left\{f^{G}\left(i_{n}\right) \mid n \in C_{0}\right\}=F\left(S^{\prime \prime} C_{0}\right)$. Recall that $M_{F(I)}$ for $I \subseteq \omega$ denotes the model M_{F} where $F=\left\{f^{G}(i) \mid i \in I\right\}$.

We know by the previous claim and the conditions of the lemma that:
I. For every $x \in \operatorname{dom}(U)$ and every finite $A \subseteq \omega$, there exists a set $D \subseteq \omega$ of size $\leq l$, so that either: $D \supseteq C_{\text {Left }}, D-C_{\text {Left }}$ avoids A, and in $M_{F\left(S^{\prime \prime}\left(C_{0} \cup D\right)\right)}$ there is an embedding of U to the right of x; or $D \supseteq C_{\text {Right }}, D-C_{\text {Right }}$ avoids A, and in $M_{F\left(S^{\prime \prime}\left(C_{0} \cup D\right)\right)}$ there is an embedding of U to the left of x.
II. There is no x and no D of size $\leq 2 \cdot l$ so that in $M_{F\left(S^{\prime \prime}\left(C_{0} \cup D\right)\right)}$ there are embeddings of U both to the left and to the right of x.

Fix a condition $p_{0} \in G$ forcing these statements to hold. In the forcing languages, these are statements about \dot{U} naming $U \in M_{F_{0}}, \dot{f}$ naming the function f^{G}, \dot{S} naming the function $S=n \mapsto i_{n}, \check{C}_{0}, \check{C}_{\text {Left }}, \check{C}_{\text {Right }}$, and \check{l}.

Claim 4.3. $q \in \mathbb{P}$ forces $\dot{S}(\check{n})=\check{i}$ iff $\operatorname{dom}\left(f_{q}\right) \supseteq i+1, \operatorname{lh}\left(f_{q}(k)\right) \geq 1$ for each $k \leq i$, and i is least so that $f_{q}(i)(0)$ has the form (n, j) for some j.

Proof. Both directions are clear. For the right-to-left direction, note that any q which fails to satisfy the condition on the right can be extended to q^{\prime} forcing $\dot{S}(\check{n})<\check{i}$.

Let $I_{0}=S^{\prime \prime}\left(C_{0}\right)$. We may assume, by strengthening p_{0} if needed, that p_{0} forces a value for $\dot{S}^{\prime \prime}(n)$ for each $n \in C_{0}$. The domain of U is ω, and we may assume that p_{0} forces this. \dot{U} names an element of $M_{F\left(I_{0}\right)}$, and we may therefore assume that it is I_{0}-nice. We work below with $I \supseteq I_{0}$ (even when this is not mentioned explicitly). For such I, there is a natural I-nice name which is forced equal to \dot{U}. Abusing notation we do not distinguish between this name and \dot{U} itself.

Claim 4.4. For every condition $p \leq p_{0}$ in \mathbb{P}, every finite $A \subseteq \omega$, and every $x \in \omega$, there exists a condition $q \leq p$, a set $D \subseteq \omega$ of size $\leq l$, a finite set $I \subseteq \omega$, and an I-nice name $\dot{\sigma}$ so that:

1. q forces $\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{D}\right)=\check{I}$.
2. Either $D \supseteq C_{\text {Left }}, D-C_{\text {Left }}$ avoids A, and q forces $\dot{\sigma}$ to be an embedding of \dot{U} to the right of \check{x}, or $D \supseteq C_{\text {Right }}, D-C_{\text {Right }}$ avoids A, and q forces $\dot{\sigma}$ to be an embedding of \dot{U} to the left of \check{x}.

Proof. This is immediate from the fact that p_{0} forces (I) above. Let us only recall that the elements of $M_{F(I)}$ are precisely those that have I-nice names. \dashv

The claim holds in the ground model $M=M_{\omega_{1}^{c k}}$. Its clauses are Δ_{1} over the model. (The first condition involves only hereditarily finite sets by Claim 4.3. The statement being forced in the second clause involves only quantifiers over ω, and using the local definability of the forcing relation, the clause can be checked in L_{α} for any sufficiently closed α with $\dot{U}, \dot{\sigma} \in L_{\alpha}$.) Since M is admissible, it follows that there is $\theta<\omega_{1}^{c k}$, so that:
III. For every $p \leq p_{0}$ in \mathbb{P}, every finite $A \subseteq \omega$, and every $x \in \omega$, there are witnesses q, D, I, and $\dot{\sigma}$ for Claim 4.4, with $\dot{\sigma} \in L_{\theta}$.
We work with such an ordinal θ fixed for the rest of the proof. Increasing θ if needed, we may assume that $\dot{U} \in L_{\theta}$ and that θ is closed under ordinal addition and multiplication. It follows that, for an I-nice name $\dot{\sigma}$ in L_{θ}, the forcing formulas " $\dot{\sigma}$ is an embedding of \dot{U} to the right of \check{x} " and " $\dot{\sigma}$ is an embedding of \dot{U} to the left of $\check{x} "$ are ranked, and have rank less than θ. Thus:

Claim 4.5. Let $\dot{\sigma}$ be an I-nice name in L_{θ}. Let $q, q^{\prime} \in \mathbb{P}$ with q^{\prime} a θ-absolute I-reduct of q. Then " $\dot{\sigma}$ is an embedding of \dot{U} to the right of \check{x} " is forced by q iff it is forced by q^{\prime}, and similarly with embeddings to the left.

Claim 4.6. Let $C \subseteq \omega$ be finite, and let $S_{1}, S_{2}: C \rightarrow \omega$ both be one-to-one. Let $q \in \mathbb{P}$, and suppose that there is $i_{0} \in \operatorname{dom}\left(f_{q}\right)$ so that $f_{q}\left(i_{0}\right)$ has first coordinate
of the form $\left(n_{0}, j\right)$ with $n_{0} \notin C$. Suppose that q forces $\dot{S}(\check{n})=\check{S}_{1}(\check{n})$ for each $n \in C$. Suppose that $q \Vdash \varphi\left(\tau_{1}, \ldots, \tau_{k}\right)$, where each τ_{j} is $S_{1}{ }^{\prime \prime} D_{j}$-nice for some $D_{j} \subseteq C$. Then there is a condition $q^{*} \in \mathbb{P}$, and names $\tau_{1}^{*}, \ldots, \tau_{k}^{*}$, so that:

- $T_{q^{*}}=T_{q}$ and $h_{q^{*}}=h_{q}$. If S_{1} and S_{2} agree on n then $f_{q^{*}}$ and f_{q} agree on $i=S_{1}(n)=S_{2}(n)$. If S_{1} and S_{2} agree on D_{j} then $\tau_{j}^{*}=\tau_{j}$.
- q^{*} forces $\dot{S}(\check{n})=\check{S}_{2}(\check{n})$ for each $n \in C$.
- $q^{*} \Vdash \varphi\left(\tau_{1}^{*}, \ldots, \tau_{k}^{*}\right)$.
- If τ_{j} belongs to L_{θ} then so does τ_{j}^{*}.
- τ_{j}^{*} is $S_{2}{ }^{\prime \prime} D_{j}$-nice.

Proof. Let $\pi: \operatorname{dom}\left(f_{q}\right) \rightarrow \omega$ be an injection chosen so that $\pi\left(S_{1}(n)\right)=S_{2}(n)$ for each $n \in C$, and $\pi(i)>\max \left(S_{2}{ }^{\prime \prime} C\right)$ for all other $i \in \operatorname{dom}\left(f_{q}\right)$. Define q^{\prime} setting $T_{q^{\prime}}=T_{q}, h_{q^{\prime}}=h_{q}$, and $f_{q^{\prime}}(\pi(i))=f_{q}(i)$ for each $i \in \operatorname{dom}\left(f_{q}\right)$. Note that by choice of π, the only elements in $\operatorname{dom}\left(f_{q^{\prime}}\right)$ below $\max \left(S_{2}{ }^{\prime \prime} C\right)$ are those in $S_{2}{ }^{\prime \prime} C$. Define τ_{j}^{*} to be the name resulting from τ_{j} by replacing references to \dot{f}_{i} with references to $\dot{f}(\pi(i))$.

It is easy to check that the last three conditions in the claim hold for $q^{*}=q^{\prime}$; this is just a symmetry argument. It is clear also that the first condition holds. We now extend q^{\prime} to a condition q^{*} in such a way that the second condition holds.

Define $T_{q^{*}}=T_{q^{\prime}}, h_{q^{*}}=h_{q^{\prime}}$, and $f_{q^{*}}(i)=f_{q^{\prime}}(i)$ for $i \in \operatorname{dom}\left(f_{q^{\prime}}\right)$. By assumption of the claim, there is $i_{0} \in \operatorname{dom}\left(f_{q}\right)$ so that $f_{q}\left(i_{0}\right)$ has first coordinate of the form $\left(n_{0}, j\right)$ with $n_{0} \notin C$. For all $i<\max \left(S_{2}{ }^{\prime \prime} C\right)$ which are not in $S_{2}{ }^{\prime \prime} C$, and hence not in $\operatorname{dom}\left(f_{q^{\prime}}\right)$, define $f_{q^{*}}(i)=f_{q}\left(i_{0}\right)$. It is now easy to check that q^{*} forces $\dot{S}(\check{n})=\check{S}_{2}(\check{n})$ for each $n \in C$. That $f_{q^{*}}\left(S_{2}(n)\right)$ has first coordinate of the form (n, j) follows from the definitions using the fact that $S_{2}(n)=\pi\left(S_{1}(n)\right)$ and that the first coordinate of $f_{q}\left(S_{1}(n)\right)$ has this form. That $S_{2}(n)$ is least with this property-indeed unique with this property up to $\max \left(S_{2}{ }^{\prime \prime} C\right)$-follows from the definitions and the fact that $n_{0} \neq n$.

Let $\bar{C}=C_{0} \cup C_{\text {Left }} \cup C_{\text {Right }}$, and let $\bar{I}=S^{\prime \prime}(\bar{C})$. We work inside $M_{F(\bar{I})}$, and aim to show that Left ${ }_{l}$ and Right $_{l}$ belong to the model. The model has the tree $T=T^{G}$, and the branches $f^{G}\left(i_{n}\right)$ for $n \in \bar{C}=C_{0} \cup C_{\text {Left }} \cup C_{\text {Right }}$. It does not have any other branches, nor does it have the rank function h^{G}. But it does have the restriction of this function to nodes of ranks $<\theta$, since this restriction is hyperarithmetic in T.

Define \bar{G} to be the set of conditions $p \in \mathbb{P}$ extending p_{0} and so that:

- For each $n \in \bar{C}, p$ forces $\dot{S}(\check{n})=S(n)^{\sim}$.
- $T_{p} \subseteq T=T^{G}$.
- $f_{p}(i) \subseteq f^{G}(i)$ for each $i \in \bar{I}$.
- If $h^{G}(t)<\theta$, then $h_{p}(t)=h^{G}(t)$. If $h^{G}(t) \geq \theta$ then $h_{p}(t) \geq \theta$.

In the last condition, as usual, we adopt the convention that $h_{p}(t)=\infty>\theta$ for $t \in \operatorname{Dc}\left(f_{p}\right)$, and similarly with G.

Note that \bar{G} belongs to $M_{F(\bar{I})}$. It serves as an approximation in the model to the actual generic G.

CLAIM 4.7. Let q_{1} and q_{2} belong to \bar{G}, with $T_{q_{1}}=T_{q_{2}}$. Let $I \subseteq \operatorname{dom}\left(f_{q_{2}}\right)$. Then there is $q^{*} \in \bar{G}$ so that:

- $T_{q^{*}}=T_{q_{1}}=T_{q_{2}}$.
- $f_{q^{*}}(i)=f_{q_{1}}(i)$ for $i \in \operatorname{dom}\left(f_{q_{1}}\right)-I$.
- $f_{q^{*}}(i)=f_{q_{2}}(i)$ for $i \in I$.
- $h_{q^{*}}$ agrees with $h_{q_{1}}$ on nodes where either one is smaller than θ. Similarly with $h_{q_{2}}$.

Proof. Define $T_{q^{*}}$ and $f_{q^{*}}$ subject to the first three conditions. Since q_{1} and q_{2} both belong to $\bar{G}, h_{q_{1}}$ and $h_{q_{2}}$ both agree with h^{G} on nodes where any of them is smaller than θ. Let $h_{q^{*}}$ take their common value on these nodes. On other nodes define $h_{q^{*}}$ in any arbitrary way that makes $q^{*}=\left\langle T_{q^{*}}, h_{q^{*}}, f_{q^{*}}\right\rangle$ a condition.

Let $*_{\text {Left }}(x, A, q)$ denote the statement that there is a set $D \subseteq \omega$ of size $\leq l$, a finite set $I \subseteq \omega$, and an I-nice name $\dot{\sigma}$ in L_{θ}, so that q forces $\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{D}\right)=\check{I}$, $D \supseteq C_{\text {Left }}, D-C_{\text {Left }}$ avoids A, and q forces $\dot{\sigma}$ to be an embedding of \dot{U} to the right of \check{x}. Let $*_{\text {Right }}(x, A, q)$ denote the corresponding statement with embedding to the left.

Define LeftAp, intended to be an approximation to Left t_{l} inside $M_{F(\bar{C})}$, to be the set of x so that for every finite $A \subseteq \omega$, there is a condition $q<p_{0}$ in \bar{G} so that $*_{\text {Left }}(x, A, q)$ holds. Define RightAp similarly using $*_{\text {Right }}$.

Both LeftAp and RightAp belong to $M_{F(\bar{C})}$, since they can be obtained from \bar{G} and the restriction of the forcing relation to θ ranked statements. To complete the proof of the lemma, it is enough to show that they are equal to $L_{e f t}$ and Right ${ }_{l}$ respectively.

CLAIM 4.8. Left $l_{l} \subseteq$ LeftAp. Similarly, Right $_{l} \subseteq$ RightAp .
Proof. We prove only the first claim. Fix $x \in$ Left $_{l}$. Fix a finite $A \subseteq \omega$. We have to find a condition $q<p_{0} \in \bar{G}$ so that $*_{\text {Left }}(x, A, q)$ holds. Since every condition $<p_{0}$ that belongs to G, and forces sufficient information about \dot{S}, belongs also to \bar{G}, it is enough to find $q \in G$.

Let R be the set of conditions $q<p_{0}$ for which there is a set $D \subseteq \omega$ of size $\leq l$, a finite set $I \subseteq \omega$, and an I-nice name $\dot{\sigma}$ in L_{θ}, so that q forces $\dot{S^{\prime \prime}}\left(\check{C}_{0} \cup \check{D}\right)=\check{I}$ and either:
(i) $D \supseteq C_{L e f t}, D-C_{\text {Left }}$ avoids A, and q forces $\dot{\sigma}$ to be an embedding of \dot{U} to the right of \check{x}; or
(ii) $D \supseteq C_{\text {Right }}, D-C_{\text {Right }}$ avoids A, and q forces $\dot{\sigma}$ to be an embedding of \dot{U} to the left of \check{x}.

By condition (III) the set R is dense in \mathbb{P} below p_{0}. Since G is generic it follows that there is $q \in G \cap R$. Fix such q, and let D, I, and $\dot{\sigma}$ witness that $q \in R$. We are done if we can show that the membership of q in R holds through (i) above, rather than (ii), because D, I, and $\dot{\sigma}$ then witness $*_{\text {Left }}(x, A, q)$.

Suppose for contradiction that (ii) holds. Then since $q \in G$, it follows that in $M_{F\left(S^{\prime \prime}\left(C_{0} \cup D\right)\right)}$ there is an embedding of U to the left of x and therefore $x \in$ Right $_{l}$. This is a contradiction, since x was assumed to be in Left l_{l}, and we saw at the start of the proof of Lemma 4.1 that Left $_{l}$ and Right ${ }_{l}$ are disjoint.

Claim 4.9. LeftAp and RightAp are disjoint.

Proof. Suppose not. Fix x which belongs to both LeftAp and RightAp. Let $q_{\text {Left }}<p_{0}$ in \bar{G} be such that $*_{\text {Left }}\left(x, A, q_{\text {Left }}\right)$ holds with $A=\bar{C}=C_{0} \cup C_{\text {Left }} \cup$ $C_{\text {Right }}$. Let $D_{\text {Left }}, I_{\text {Left }}$, and $\dot{\sigma}_{\text {Left }}$ witness this, and let $H_{\text {Left }}=D_{\text {Left }}-C_{\text {Left }}$. Let $q_{\text {Right }}<p_{0}$ in \bar{G} be such that $*_{\text {Right }}\left(x, A, q_{\text {Right }}\right)$ holds with $A=\bar{C} \cup H_{\text {Left }}$. Let $D_{\text {Right }}, I_{\text {Right }}$, and $\dot{\sigma}_{\text {Right }}$ witness this, and let $H_{\text {Right }}=D_{\text {Right }}-C_{\text {Right }}$. We then have:

1. $q_{\text {Left }}$ forces " $\dot{\sigma}_{\text {Left }}$ is an embedding of \dot{U} to the right of \check{x}."
2. $q_{\text {Right }}$ forces " $\dot{\sigma}_{\text {Right }}$ is an embedding of \dot{U} to the left of \check{x}."
3. $\dot{\sigma}_{\text {Left }}$ is $I_{\text {Left }}$-nice, and $q_{\text {Left }}$ forces $\check{I}_{\text {Left }}=\dot{S}\left(\check{C}_{0} \cup \check{C}_{\text {Left }} \cup \check{H}_{\text {Left }}\right)$.
4. $\dot{\sigma}_{\text {Right }}$ is $I_{\text {Right }}$-nice, and $q_{\text {Right }}$ forces $\check{I}_{\text {Right }}=\dot{S}\left(\check{C}_{0} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Right }}\right)$.
5. $H_{\text {Left }}$ and $H_{\text {Right }}$ are disjoint, and both are disjoint from $\bar{C}=C_{0} \cup C_{\text {Left }} \cup$ $C_{\text {Right }}$.
Using condition (5) we work to combine $q_{\text {Left }}$ and $q_{\text {Right }}$ into a single condition $q^{*}<p_{0}$, that forces there to be embeddings of \dot{U} both to the right of \check{x} and to its left, in $M_{F\left(\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Left }} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Left }} \cup \check{H}_{\text {Right }}\right)\right)}$. Since $C_{\text {Left }} \cup C_{\text {Right }} \cup H_{\text {Left }} \cup H_{\text {Right }}$ has size at most $2 \cdot l$, this will contradict the fact that p_{0} forces condition (II) above.

We begin with some cosmetic modifications to $q_{\text {Left }}$ and $q_{\text {Right }}$. Since both $q_{\text {Left }}$ and $q_{\text {Right }}$ belong to \bar{G}, we may by extending the conditions assume that $T_{q_{\text {Left }}}=T_{q_{\text {Right }}}$, and that $f_{q_{\text {Left }}}(i)=f_{q_{\text {Right }}}(i)$ for all $i \in \bar{I}$. Again by extending the conditions we may assume that there is $i \in \operatorname{dom}\left(f_{q_{\text {Left }}}\right)$ so that $f_{q_{\text {Left }}}(i)$ has first coordinate (n, j) for $n \notin \bar{C} \cup H_{\text {Left }} \cup H_{\text {Right }}$, and similarly with $f_{q_{\text {Right }}}$. (This is needed for the application of Claim 4.6, which we use next.)

Let $S_{\text {Left }}$ be the partial function defined by $S_{\text {Left }}(n)=i$ iff $q_{\text {Left }}$ forces $\dot{S}(\check{n})=\check{i}$, and define $S_{\text {Right }}$ similarly. Note that $S_{\text {Left }}$ and $S_{\text {Right }}$ agree on \bar{C}, since both $q_{\text {Left }}$ and $q_{\text {Right }}$ belong to \bar{G}. Modifying $q_{\text {Left }}$ and $\sigma_{\text {Left }}$ through applications of Claim 4.6, we may assume that:
(i) $\min \left(S_{\text {Left }}{ }^{\prime \prime} H_{\text {Left }}\right)>\max \left(S_{\text {Left }}{ }^{\prime \prime} \bar{C}\right)=\max \left(S_{\text {Right }}{ }^{\prime \prime} \bar{C}\right)$.

Modifying $q_{\text {Right }}$ and $\sigma_{\text {Right }}$ we may assume further that:
(ii) $\min \left(S_{\text {Right }}{ }^{\prime \prime}\left(H_{\text {Right }} \cup H_{\text {Left }}\right)\right)>\max \left(S_{\text {Left }}{ }^{\prime \prime} H_{\text {Left }}\right)$.

We are of course using the fact that $H_{\text {Left }}$ and $H_{\text {Right }}$ are disjoint from \bar{C} in making the modifications. The applications of Claim 4.6 preserve membership of the conditions in \bar{G}, because no changes are made to $S_{\text {Left }}$ and $S_{\text {Right }}$ on \bar{C}. They also preserve conditions (1)-(4) for the modified objects, with (modified) $I_{\text {Left }}=S_{\text {Left }}{ }^{\prime \prime}\left(C_{0} \cup C_{\text {Left }} \cup H_{\text {Left }}\right)$ and $I_{\text {Right }}=S_{\text {Right }}{ }^{\prime \prime}\left(C_{0} \cup C_{\text {Right }} \cup H_{\text {Right }}\right)$.

Let $q^{*} \in \bar{G}$ be obtained through an application of Claim 4.7 to $q_{\text {Left }}$ and $q_{\text {Right }}$, with $f_{q^{*}}(i)=f_{q_{\text {Left }}}(i)$ for $i \in S_{\text {Left }}{ }^{\prime \prime} H_{\text {Left }}$, and $f_{q^{*}}(i)=f_{q_{\text {Right }}}(i)$ for all other i.

Then q^{*} is a θ-absolute $S_{\text {Right }}{ }^{\prime \prime}\left(\bar{C} \cup H_{\text {Right }}\right)$ reduct of $q_{\text {Right }}$, and a θ-absolute $S_{\text {Left }}{ }^{\prime \prime}\left(\bar{C} \cup H_{\text {Left }}\right)$ reduct of $q_{\text {Left }}$. It follows by Claim 4.5 that:
(iii) q^{*} forces both $\dot{\sigma}_{\text {Left }}$ is an embedding of \dot{U} to the right of \check{x}, and $\dot{\sigma}_{\text {Right }}$ is an embedding of \dot{U} to the left of \check{x}.
Let $S^{*}(n)$ be the partial function defined by $S^{*}(n)=i$ iff q^{*} forces $\dot{S}(\check{n})=\check{i}$. By (i), all i on which $f_{q^{*}}$ differ from $f_{q_{\text {Right }}}$ are greater than $\max \left(S_{\text {Left }}{ }^{\prime \prime} \bar{C}\right)=$ $\max \left(S_{\text {Right }}{ }^{\prime \prime} \bar{C}\right)$. It follows that:
(iv) $S^{*}(n)=S_{\text {Right }}(n)=S_{\text {Left }}(n)$ for all $n \in \bar{C}$.

Let $n \in H_{\text {Left }}$. By (ii), the least i such that the first coordinate of $f_{q_{\text {Right }}}(i)$ has the form (n, j) is greater than $S_{\text {Left }}(n)$. $f_{q^{*}}$ is equal to $f_{q_{\text {Right }}}$ except on $i \in S_{\text {Left }}{ }^{\prime \prime} H_{\text {Left }}$, where it is equal to $f_{q_{\text {Left }}}$. And of course the first coordinate of $f_{q_{\text {Left }}}\left(S_{\text {Left }}(n)\right)$ has the form (n, j), as $q_{\text {Left }}$ forces $\dot{S}(\check{n})=\check{S}_{\text {Left }}(\check{n})$. It follows that:
(v) For $n \in H_{\text {Left }}, S^{*}(n)=S_{\text {Left }}(n)$.

By definition of q^{*}, the only i on which $f_{q^{*}}$ differs from $f_{q_{\text {Right }}}$ are those in $S_{\text {Left }}{ }^{\prime \prime} H_{\text {Left }}$. For these i, the first coordinate of $f_{q^{*}}(i)$ is of the form (n, j) with $n \in H_{\text {Left }}$. Since $H_{\text {Left }}$ and $H_{\text {Right }}$ are disjoint, it is therefore not of the form (n, j) with $n \in H_{\text {Right }}$. It follows from this that:
(vi) $S^{*}(n)=S_{\text {Right }}(n)$ for $n \in H_{\text {Right }}$.

It is important to note here that we made crucial use of the fact that $H_{\text {Left }}$ and $H_{\text {Right }}$ are disjoint. Ultimately it is through Claim 4.2 that we are able to get to a situation where $H_{\text {Left }}$ and $H_{\text {Right }}$ are indeed disjoint.

By conditions (iv) and (v), q^{*} forces $\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Left }} \cup \check{H}_{\text {Left }}\right)=\check{S}_{\text {Left }}^{\prime \prime}\left(\check{C}_{0} \cup\right.$ $\left.\check{C}_{\text {Left }} \cup \check{H}_{\text {Left }}\right)=\check{I}_{\text {Left }}$. From this, condition (3), and condition (iii), it follows that q^{*} forces that there exists an embedding of \dot{U} to the right of \check{x} in $M_{F\left(\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Left }} \cup \check{H}_{\text {Left }}\right)\right)}$.

Similarly q^{*} forces $\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Right }}\right)=\check{S}_{\text {Right }}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Right }}\right)=$ $\check{I}_{\text {Right }}$ by conditions (iv) and (vi), and using conditions (4) and (iii) it follows that q^{*} forces that there exists an embedding of \dot{U} to the left of \check{x} in $M_{F\left(\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Right }}\right)\right)}$.

Thus, q^{*} forces that in the model $M_{F\left(\dot{S}^{\prime \prime}\left(\check{C}_{0} \cup \check{C}_{\text {Left }} \cup \check{H}_{\text {Left }} \cup \check{C}_{\text {Right }} \cup \check{H}_{\text {Right }}\right)\right)}$ there are embeddings of \dot{U} both to the right of \check{x} and to its left. But since $C_{\text {Left }} \cup H_{\text {Left }} \cup$ $C_{\text {Right }} \cup H_{\text {Right }}$ has size at most $2 \cdot l$, and since q^{*} extends p_{0}, this is a contradiction to the fact that p_{0} forces (II).

Since $\left\langle L^{L e f t} t_{l}\right.$, Right $\left._{l}\right\rangle$ partition the domain of U, the last two claims establish that LeftAp $=$ Left $_{l}$ and RightAp $=$ Right $_{l}$. LeftAp and RightAp belong to the model $M_{F\left(S^{\prime \prime} \bar{C}\right)}=M_{F\left(S^{\prime \prime}\left(C_{0} \cup C_{L e f t} \cup C_{\text {Right }}\right)\right)}=M_{F_{0} \cup E_{\text {Left }} \cup E_{\text {Right }}}$, and therefore so do Left $_{l}$ and Right $_{l}$. Since $E_{\text {Left }} \cup E_{\text {Right }}$ has size at most $2 \cdot l$, this completes the proof of the lemma.
$\dashv($ Lemma 4.1)
With Lemma 4.1 at hand, we can proceed to prove that INDEC holds in N. In the proof we will use the shift of the lemma to \mathfrak{H}^{*}.

Lemma 4.10. INDEC holds in N.
Proof. Suppose not. Then there is $F_{0} \in \mathcal{F}^{*}$ of standard size, and a linear order $U \in M_{F_{0}}^{*}$ on ω^{*}, so that U is scattered in N, indecomposable in N, yet not indecomposable to the left and not indecomposable to the right in N.

For each $l \in \omega^{*}$ let Left l_{l}^{*} consist of all $x \in \operatorname{dom}(U)$ so that there is an embedding of U to the right of x in $M_{F_{0} \cup J}^{*}$ for some $J \in \mathcal{F}^{*}$ with $|J| \leq l$. Define Right l_{l}^{*} similarly with embeddings to the left. Note that the functions Left $^{*}=\left(l \mapsto\right.$ Left $\left._{l}^{*}\right)$ and Right * are defined from F_{0} in \mathfrak{H}^{*} in exactly the way that Left and Right were define in \mathfrak{H} at the start of the section.

Claim 4.11. There is a standard l so that each x in $\operatorname{dom}(U)$ belongs to either Left ${ }_{l}^{*}$ or Right* ${ }_{l}^{*}$.

Proof. Working in \mathfrak{H}^{*} define L to be the set of all $l \in \omega^{*}$ so that every x in $\operatorname{dom}(U)$ belongs to either Left $_{l}^{*}$ or Right $_{l}^{*}$. From the fact that U is indecomposable in N, and the definition that $N=\bigcup_{J \in \mathcal{F}^{*},|J| \in \omega} M_{F_{0} \cup J}^{*}$, it follows that every non-standard l belongs to L. Since L belongs to \mathfrak{H}^{*}, it has a minimal element in \mathfrak{H}^{*}. Since L contains all non-standard l, this minimal element must be standard.

We continue to work with l given by the last claim.
Claim 4.12. No x in $\operatorname{dom}(U)$ belongs to both Left $t_{2 \cdot l}^{*}$ and Right ${ }_{2 \cdot l}^{*}$.
Proof. Suppose for contradiction that x belongs to both Left $t_{2 \cdot l}^{*}$ and Right $t_{2 \cdot l}^{*}$. Then in $\bigcup_{J \in \mathcal{F}^{*},|J| \leq 2 \cdot l} M_{F_{0} \cup J}^{*}$ there are embeddings of U both to the right of x and to the left. Since l is standard, $2 \cdot l$ is standard, and therefore $\bigcup_{J \in \mathcal{F} *},|J| \leq 2 \cdot l$. $M_{F_{0} \cup J}^{*}$ is contained in N. Hence in N there are embeddings of U both to the right of x and to the left. But from this, it follows by standard arguments (see [4, Lemma 1.17] or the last paragraph in the proof of [6, Claim 2.9]) that U is not scattered in N, contradiction.

Lemma 4.1, which we proved above, holds in the standard structure \mathfrak{H}. By elementarity of $j: \mathfrak{H} \rightarrow \mathfrak{H}^{*}$, a parallel lemma holds in \mathfrak{H}^{*}. The last two claims establish the assumptions of the parallel lemma, applied to U and l. It follows by the lemma that $\left\langle L e f t_{l}^{*}\right.$, Right $\left._{l}^{*}\right\rangle$ is a gap in U, and belongs to $\bigcup_{J \in \mathcal{F}^{*},|J| \leq 2 \cdot l} M_{F_{0} \cup J}^{*}$. In particular the gap belongs to N. Now standard arguments lead to a contradiction: Since U is indecomposable in N, it must embed into either Left l_{l}^{*} or Right $_{l}^{*}$, in N. Suppose for definitiveness that σ is an embedding of U into Left $_{l}^{*}$ in N. Let x belong to Right l_{l}^{*}, so that the range of σ is to the left of x. Then σ^{2} embeds U to the left of $\sigma(x)$, and since $\sigma(x)$ belongs to Leftl ${ }_{l}^{*}$, there is also an embedding of U to the right of $\sigma(x)$ in N. From embeddings of U both to the left and right of $\sigma(x)$ it follows that U is not scattered. $\quad \dashv$ (Lemma 4.10)

REFERENCES

[1] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey's theorem for pairs, J. Symbolic Logic, vol. 72 (2007), no. 1, pp. 171-206.
[2] Pierre Jullien, Contribution à l'étude des types d'ordre dispersés, Ph.D. thesis, Marseille, 1969.
[3] MedYahya Ould MedSalem and Kazuyuki Tanaka, Δ_{3}^{0}-determinacy, comprehension and induction, J. Symbolic Logic, vol. 72 (2007), no. 2, pp. 452-462.
[4] Antonio Montalbán, Indecomposable linear orderings and hyperarithmetic analysis, J. Math. Log., vol. 6 (2006), no. 1, pp. 89-120.
[5] -_, On the equimorphism types of linear orderings, Bull. Symbolic Logic, vol. 13 (2007), no. 1, pp. 71-99.
[6] Itay Neeman, The strength of jullien's indecomposability theorem, J. Math. Log., vol. 8 (2009), no. 1, pp. 93-119.
[7] Takako Nemoto, Determinacy of Wadge classes and subsystems of second order arithmetic, MLQ Math. Log. Q., vol. 55 (2009), no. 2, pp. 154-176.
[8] Stephen G. Simpson, Σ_{1}^{1} and Π_{1}^{1} transfinite induction, Logic Colloquium '80 (Prague, 1980), Stud. Logic Foundations Math., vol. 108, North-Holland, Amsterdam, 1982, pp. 239253.
[9] ——, Subsystems of second order arithmetic, second ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
[10] John R. Steel, Determinateness and subsystems of analysis, Ph.D. thesis, University of California, Berkeley, 1977.
[11] ——, Forcing with tagged trees, Ann. Math. Logic, vol. 15 (1978), no. 1, pp. 55-74.
[12] Robert Van Wesep, Subsystems of second-order arithmetic, and descriptive set theory under the axiom of determinateness, Ph.D. thesis, University of California, Berkeley, 1977.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA LOS ANGELES LOS ANGELES, CA 90095-1555
E-mail: ineeman@math.ucla.edu

[^0]: This material is based upon work supported by the National Science Foundation under Grant No. DMS-0556223

