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Abstract

DKAL is a new declarative authorization language for
distributed systems. It is based on existential fixed-point
logic and is considerably more expressive than existing
authorization languages in the literature. Yet its query
algorithm is within the same bounds of computational
complexity as e.g. that of SecPAL. DKAL’s communica-
tion is targeted which is beneficial for confidentiality,
security, and liability protection. DKAL enables flexi-
ble use of functions; in particular principals can quote
(to other principals) whatever has been said to them.
DKAL strengthens the trust delegation mechanism of
SecPAL. A novel information order contributes to suc-
cinctness. DKAL introduces a semantic safety condition
that guarantees the termination of the query algorithm.

1. Introduction

In an increasingly interconnected world, the autho-
rization policies grow more involved. Rights assigned
and maintained by an autonomous central authority give
way to rights that depend upon credentials issued by
outside entities that may rely upon credentials issued
by yet other entities. An authorization language should
handle all that in a secure, uniform and comprehensi-
ble way amenable to analysis. It should facilitate poli-
cies that are more modular and thus more stable in the
changing environment.

Logic is a natural foundation for declarative autho-
rization languages. It allows one to write high-level
policy rules in a human-readable form. The resulting
declarative policy serves as a base, a legal manifesto
of sorts, from which specific permissions are derived.
And indeed many logic-based authorization languages
have been proposed. One of the latest is SecPAL [5];
a quick review of preceding languages is found in [5,
§8]. Here we introduce Distributed Knowledge Autho-
rization Language, in short DKAL, conceived in Fall

2006 when SecPAL appeared [4] and Itay Neeman vis-
ited Microsoft Research. Is there a need in another au-
thorization language? We believe so. Here are some of
the reasons.

1. There is a potential information leak problem in
SecPAL and all preceding languages. A naive dramati-
zation in Fig. 1 illustrates the problem in SecPAL terms.
The department of Special Operations of some intelli-
gence agency appoints secret agents by assertions like
S1. Bob, who is just a receptionist, wants to find out
who secret agents are. He does not dare to pose that
query (and suspects that the system would not allow
him to); instead he asserts S2 and S3 where spot 97
is one of the parking spots over which he has the au-
thority, e.g. a visitor spot. It follows from S1 and S2
that Bob says John Doe isSecrAgent. Now,
by posing an “innocent” query about who can park in
spot 97, Bob gets a list of all secret agents. The prob-
lem can be addressed on the level of implementation,
for example by attempting to separate confidential and
non-confidential information (which is easier said than
done; both may be necessary to derive certain permis-
sions), but the right way to address the problem is at the
authorization-language level. DKAL solves the prob-
lem by making communication targeted. The analog of
the naive dramatization does not work in DKAL as as-
sertions like S1 would be targeted to an audience that
excludes Bob. See more on info leak in §4.

2. The expressivity of the existing languages is too
limited. Consider for example nested quotations. They
are expressible in Speaks-For [1], which has expressiv-
ity limitations of its own, but not in SecPAL and other
Datalog based languages. More generally, following
Datalog, these languages do not use functions in argu-
ments of recursively defined relations. In principle, Dat-
alog with constraints can simulate such use of functions
(compare the two programs of §2) but this would vio-
late the feasibility restrictions of the languages in ques-
tion. DKAL enables unrestricted use of functions that
can be nested and mixed while maintaining the compu-
tational time bounds of SecPAL. Avoiding functions (if



SpecialOperations says John Doe isSecrAgent (S1)
Bob says SpecialOperations can say p isSecrAgent (S2)
Bob says p canParkInSpot 97 if p isSecrAgent (S3)

Figure 1. Secret agent information leakage

and when it is possible) can make policies more awk-
ward and less unnatural.

3. One can make authorization rules more succinct
by ordering portions of information independently of
who possesses them. Recursion in the definition of the
information order is very powerful, which is especially
useful in the context of nested expressions. See for ex-
ample rule SaidMon in Fig. 5 which is a part of the def-
inition of the information order on quotations.

4. There is a better logical platform for authoriza-
tion languages than Datalog with or without constraints,
namely existential fixed-point logic (EFPL). We recall
EFPL in §2. We think also that knowledge is so im-
portant in authorization theory that it should be made
explicit.

DKAL addresses all these concerns. It is more ex-
pressive than the languages in the literature. In §11 we
give a natural embedding of SecPAL, one of the most
expressive authorization languages to date, into DKAL.
§9 and §10 are devoted to a query evaluation algorithm
for DKAL, with the same time bounds as SecPAL’s
query evaluation algorithm. Before reaching those sec-
tions, we illustrate DKAL by examples, define it pre-
cisely, and discuss various aspects including targeted
communication, the use of functions, the information
order, and DKAL’s mechanism for ensuring termina-
tion of the query evaluation algorithm in the presence
of functions. We discuss related work in §12, and we
conclude in §13 with a summary and directions for fu-
ture work.
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2. Existential fixed-point logic (EFPL)

We recall EFPL and introduce the sub-
strate/superstrate terminology. EFPL was introduced
in [8] and has attractive model theory. It is obtained
from first-order logic as follows: first restrict first-order
logic to its existential fragment and then extend the

existential fragment by means of the least fixed-point
operator.

The least fixed-point operator enables induction.
For example, given the infinite binary tree where unary
functions left and right are free constructors, a
logic program

T (left(x),right(x))

T (right(x),left(y))← T (x,y)

T (x,z)← (T (x,y)∧T (y,z))

computes a partial order T that is the lexicographical
order at every level of the tree. The structure at which a
given program operates is the substrate structure or just
a substrate, and the relations computed by the program
are superstrate relations. In the example, the binary tree
is the substrate, and T is a superstrate relation.

EFPL reduces to its Prolog-like fragment where the
least-fixed operator is not iterated and every new rela-
tion that is defined as a superstrate relation is given by
a logic program over the substrate structure. EFPL may
be also reduced to a form of Datalog with constraints.
For example the program above can be written in Data-
log with constraints as follows:

T (u,w)← u = left(x)∧w = right(x)

T (u,w)← u = right(x)∧w = left(y)∧T (x,y)

T (x,z)← T (x,y)∧T (y,z)

There are many different forms of Datalog with
constraints, distinguished by the safety restrictions they
place on programs to ensure termination. The form ob-
tained from EFPL with the safety conditions imposed
by DKAL is new. We’ll say more on how DKAL guar-
antees termination in §9.

3. A user centric example

Since SecPAL is naturally translated into DKAL,
all the varied scenarios of [4, Section 5] are expressible
in DKAL. So we give examples of different kinds in this
paper. We start with a user-centric example, partially
because we believe that DKAL is particularly appropri-
ate for the user centric approach to authorization. We



Chux: (Alice canDownload Article) to Alice (A1)
Alice: Best tdOn Alice canDownload Article (A2)
Best: (Chux tdOn p canDownload Article) to p (A3)
a knows x ← a knows p said x, a knows p tdOn x (C1)
a knows p tdOn (q tdOn x) ← a knows p tdOn x, a knows q exists
a knows p tdOn (q tdOn0 x) ← a knows p tdOn x, a knows q exists

(C2)

Alice knows Chux said Alice canDownload Article (K1)
Alice knows Best tdOn Alice canDownload Article (K2)
Alice knows Best said (Chux tdOn Alice canDownload Article) (K3)
Alice knows Chux exists (K4)
Alice knows Best tdOn (Chux tdOn Alice canDownload Article) (K5)
Alice knows Chux tdOn Alice canDownload Article (K6)
Alice knows Alice canDownload Article (K7)

Figure 2. User centric delegation example

also demonstrate the basics of DKAL, in particular how
trust and delegation are expressed.

Alice would like to download Article from Reposi-
tory in course of her work for Fabricam. Repository lets
Fabricam employees download content with no con-
straints. Fabricam in turn requires that its employees
respect intellectual property. Fig. 2 shows how Alice
verified her right to download Article.

Alice bought the right at an online store Chux
(an allusion to Chuck’s). Chux told her that she
can download Article; this is represented by asser-
tion A1 in Fig. 2. In the formal model we com-
pute a superstrate relation knows, and the assertion
A1 leads to the instance K1 of that relation. The ex-
pression Alice canDownload Article denotes
an infon, a piece of information, and so does Chux
said Alice canDownload Article. The re-
lation knows is of type Principal × Info. Note that
from assertion A1 Alice learns only that Chux said
Alice canDownload Article, not that Alice
canDownload Article.

Alice noticed that the copyright for Article belongs
to Best Publishing House; hence the assertion A2
where tdOn stands for is trusted on. The expression
Best tdOn Alice canDownload Article
denotes yet another infon, and assertion A2 leads to
instance K2 of knows in the formal model.

The intended meaning of p tdOn x is given by two
rules. One is C1 which states that a principal a knows x
if she knows that some principal p said x and that p is
trusted on x. We’ll get to the other rule shortly.

Unfortunately Alice does not know whether Chux

can be trusted on Alice canDownload Article,
and Best, who is trusted, did not say that Alice
canDownload Article. So Alice cannot yet con-
clude that she is allowed to download Article. Alice
contacts Best who authorized Chux to sell download
rights to Article and who has in its policy the assertion
A3 (with a free, unconstrained variable p). As a result
Alice learns K3.

The infon p tdOn x expresses not only trust in p
on x, but also a permission for p to delegate the trust.
(There is a way to express non-delegatable trust, us-
ing tdOn0 instead of tdOn. The distinction between
tdOn and tdOn0 is inherited from SecPAL and will
be addressed later.) The right to delegate is captured
by the double rule C2; only the first line is relevant to
the current example. If a knows that p tdOn x and
that q exists then a knows that p is also trusted on
q tdOn x, and this allows p to delegate the trust to q.
The restriction that a knows (the existence) of q is a
safety condition that prevents the knowledge of a from
exploding with irrelevant details. We’ll say more about
the rule that leads to knowledge of infons of the form q
exists in §9; here it suffices to say that the rule ap-
plies to K1 and results in K4.

Applying rules C1 and C2 to K1–K4, Alice obtains
K5–K7. Having deduced K7, Alice approaches Repos-
itory, and downloads Article.

4. Info leak, and targeted communication

Recall the naive dramatization of the information
leakage problem in §1. Let’s consider a slightly less



Chux: (a canDownload s) to a ← (A4)
a authorized $k to Chux for s, a hasPayRate Perfect, price(s)=k.

accounts.Chux: (Alice hasPayRate Perfect) to Chux (A5)
Chux: accounts.Chux tdOn a hasPayRate e (A6)
Chux: a tdOn0 a authorized $k to Chux for s (A7)
Alice: (Alice authorized $40 to Chux for Article) to Chux (A8)

Figure 3. Confidentiality example

naive example. Modify the scenario of §3 by replacing
assertion A1 with the assertions in Fig. 3. Chux com-
piles payment statistics of customers and rates them.
Customers rated “perfect” get the download authoriza-
tion immediately upon authorizing a proper payment to
Chux, even before the funds are received. The rating
is managed by accounts.Chux. It is intended that cus-
tomers know nothing about the rating system or their
ratings or other customers’ ratings. Chux makes as-
sertion A4 with three conditions. A condition is an
expression of type Info or a substrate constraint. In
this case the first two conditions are infon expressions,
and the third is a constraint using a substrate function
price. Implicitly the assertion has also safety condi-
tions, addressed in §8.3 and §9, that restrict the ranges
of variables; the safety constraints apply also to as-
sertions A6 and A7. According to assertion A5, ac-
counts.Chux rated Alice “perfect”; note that the asser-
tion is targeted only to Chux. According to assertions
A6 and A7, Chux trusts accounts.Chux on payment rat-
ings and trusts the customers on payment authorization.
The price of Article is $40. When Alice decides to pur-
chase Article, she makes the assertion A8. Assertions
A4–A8 lead Chux to communicate the infon Alice
canDownload Article to Alice; as above Alice
can proceed to verify her right to download Article.

No infon of the form p hasPayRate R is com-
municated to Alice, and a probing attack such as the one
in Fig. 1 does not work. The DKAL parallel of S2 here
is assertion Alice: accounts.Chux tdOn p
hasPayRate Perfect. The assertion is harmless,
since A5 makes the infon accounts.Chux said
Alice hasPayRate Perfect known only to
Chux, not to Alice. The confidentiality of pay ratings
of other principals is similarly protected.

The targeting of communication is beneficial also
with respect to liability. Suppose that an agency A of
state S1 issues David a document, addressed to S1 wine
shops, that allows them to sell wine to David. If David
buys alcohol from a wine shop in state S2 and if this
violates the law of S2, agency A is not liable because it

addressed the documents to wine shops in S1, not in S2.
Audience restrictions can be communicated by

means of SAML [25], see specifically [11, §2.5.1.4].
(The issue is addressed in the SecPAL implementation
as well.) While the audience restriction may be help-
ful with respect to liability, the SAML audience field
does not solve the problem on Fig. 1. Indeed, if the fact
John Doe isSecrAgent is modified with an audi-
ence restriction then all that Bob has to do is to use the
modified fact in S2.

In probing attacks of the kind illustrated in Fig. 1,
principals that are allowed to authorize some permis-
sions leverage the authority to learn information they
are not meant to know. One way to thwart such prob-
ing attacks is to disallow conditional assertions by “out-
siders” (like Bob), as in Cassandra [6, 7], but this is too
restrictive. One may filter out some conditional asser-
tions on a case by case basis at the implementation level,
but this ad-hoc approach makes it hard to reason about
security. Yet another way is to compartmentalize facts
to the extent possible and handle requests using pri-
marily the relevant compartment policy. But there are
limits to compartmentalization (unless you really have
a union of essentially disjoint policies), principals still
can probe facts in their compartments, and the approach
does not make reasoning about security easy.

By targeting communication and separating know-
ing from saying, DKAL solves the problem at the level
of the authorization language, so that information does
not have to be compartmentalized a priori, and condi-
tional assertions do not have to be filtered out. Of course
DKAL does not prevent information from leaking as a
result of negligence. For example, in the pay rate sce-
nario, Chux may accidentally target Bertha’s pay rating
to Alice. But that is a very different story.

5. Use of functions

In Datalog, with or without constraints, the sym-
bols of recursively defined relations are applied only to



Chux: Crypto tdOn r said q is an employee of r (A9)
Chux: Fabricam tdOn q is an employee of Fabricam (A10)
Chux: q can take discount 5X4302 ← q is an employee of Fabricam (A11)
Chux: a tdOn augm(a authorized $k to Chux for s, c) (A12)
Chux: a authorized $k to Chux for s ← (A13)

augm(a authorized $k to Chux for s, c),

authentic(a, a authorized $k to Chux for s, c)

Alice: augm(Alice authorized $40 to Chux for Article, C) to Chux (A14)
Chux: Crypto tdOn0 r said q is an employee of r (A15)
Crypto:0 (Fabricam said Chris is an employee of Fabricam) to Chux (A16)
a knows x ← a knows p said0 x, a knows p tdOn0 x (C3)
Chux knows Crypto said0 Fabricam said Chris is an employee of Fabricam (K8)
Chux knows Fabricam said Chris is an employee of Fabricam (K9)
Crypto:0 (r said q is an employee of r) to Chux ← (A17)

Crypto2 said r said q is an employee of r

Figure 4. Use of functions, and restricted delegation

(tuples of) variables and individual constants, and the
(Constraint) Datalog based authorization languages in-
herit the restriction on the use of functions. In contrast,
existential fixed-point logic allows free use of function
symbols, and EFPL based DKAL makes intensive use
of functions, both user-specific and built-in. Function
symbols routinely appear in the heads of rules, and typ-
ically our functions are free constructors. The flexible
use of functions comes for a price. The proof of pro-
gram termination, let alone complexity proofs, becomes
much harder.

The built-in free-constructor functions include
said and tdOn. Function said enables (possibly
nested) quotations in authorization policies, which leads
to greater flexibility in designing more modular poli-
cies. Suppose for example that Chux (which appeared
in Figures 1 and 2) has several discount plans, and
that employees of Fabricam participate in discount plan
5X4302. To obtain the discount, they must present
a signed certificate from Fabricam stating that they
are employees. Chux relies on a cryptographic server
Crypto to verify that the signed statements are authen-
tic. The system should be designed so that Crypto just
verifies authenticity. Crypto’s actions should not de-
pend on Chux’s policy on discounts, so that Chux’s
policy could be changed without requiring a change in
Crypto’s behavior.

Chux makes a quotation assertion A9 in Fig. 4.
Crypto acts as a “dumb” server, merely decrypting the

statements it receives, and passing them on to Chux.
Policy, for example assertions A10 and A11, is the pre-
rogative of Chux. In this case, the end effect (of au-
thorizing the discount to Fabricam employees) could
be achieved without quotations. Chux could trust
Crypto on q is an employee of Fabricam,
and Crypto in its own policy could trust Fabricam on
this. The issue here is not just achieving the end effect,
but the flexibility to concentrate the policy at one place.

DKAL’s vocabulary may be extended by user-
introduced functions and relations. We already saw
function price in §4. Other typical user-introduced
functions and relations relate to time, various directory
structures, basic arithmetical operations, etc. DKAL
also permits user-introduced functions that take at-
tribute or infon values. To demonstrate this, modify
the confidentiality example above by replacing asser-
tions A7 and A8 with assertions A12–A14 in Fig. 4.
Chux does not simply accept infon a authorized
$k to Chux for s from customer a, but requires
that the infon comes with a certificate, signed using a’s
private key. (Chux will need the certificate to obtain the
funds from a bank.)

We assume here a given (that is substrate) relation
authentic(a,x,c) meaning that c is a certificate of
infon x signed with the private key of a. Given an infon
x and string c, function augm(x,c) (an allusion to ”aug-
ment”) produces a new infon. When Alice wishes to
purchase Article, she makes assertion A14, where C is



a certificate of the infon Alice authorized $40
to Chux for Article, which Alice produced
and signed using her private key. Then, due to assertions
A12 and A13, Chux knows Alice authorized
$40 to Chux for Article, and then, as in §4,
Alice receives an authorization to download Article.

6. Restricted delegation

One of the major advances of SecPAL [4] is the
mechanism of restricted delegation. We adapted that
mechanism to DKAL. DKAL has two kinds of infons
expressing trust, p tdOn x, and p tdOn0 x. The trust
given by the former is delegatable; the trust given by
the latter is not. To illustrate the use of non-delegatable
trust, replace assertion A9 in Fig. 4 with assertion A15
in Fig. 4. The new assertion expresses non-delegatable
trust in Crypto on r said q is an employee
of r. Suppose that Crypto is given a signed certifi-
cate from Fabricam attesting that Chris is a Fabricam
employee. After authenticating the certificate, Crypto
produces assertion A16. The subscript 0 in A16 signi-
fies restricted communication; more on this in the next
paragraph. Assertion A16 leads to knowledge K8, with
the subscript 0 on the first said. K8 and assertion A15
give K9 by means of rule C3.

The delegation rule C2 has delegatable trust as-
sumed in its body and cannot be applied to A16, so
Crypto cannot directly delegate the trust to others. He
may attempt to circumvent the prohibition, for exam-
ple by placing assertion A17. It seems that by saying
the appropriate thing, Crypto2 enables A16. But the
attempt fails because assertion A17 is restricted. The
precise meaning of restricted assertion involves relation
knows0, read knows internally. p knows x internally if
this follows from assertions placed by p himself, with
no dependence on assertions placed by other princi-
pals. Restricted assertions can be conditioned only upon
internal knowledge (see the final paragraph on §8.3)
while A17 is based on communication from Crypto2 to
Crypto.

We sometimes write knows∞, said∞, and tdOn∞
for knows, said, and tdOn. The distinction between
knows∞ and said∞ on one side and knows0 and
said0 on the other side is similar to SecPAL distinc-
tion between AC,∞ |= A says x and AC,0 |= A says
x, and is used here to the same effect, namely preventing
principals from circumventing non-delegatability. Del-
egations of arbitrary bounded depth can be obtained by
nesting tdOn0 in the head of the assertion delegating
the right. SecPAL examples on bounded depth delega-
tion, see e.g. [5, §5] become DKAL examples via the
embedding of SecPAL into DKAL explained in §11.

7. Information order

Rules C1–C3 have a common aspect: a principal a
knows some infon x because a knows some other infons
y1, . . . ,yk. The information order x ensues y (sym-
bolically x ≤ y) on infons extracts the common aspect.
(We resurrect the obsolete transitive meaning of ensue
[26].) Ideally, the meaning of x ≤ y would be that all
information of x is present in y but this leads to unde-
cidability. The actual order is a constructive approxi-
mation of the ideal one. The mediating rules KMon and
KSum on Fig. 5 express the common aspect of C1–C3
and their counterparts for knows0. Rule KMon states
that knowledge of x is a consequence of knowledge of
y if x ensues y. Rule KSum introduces infon addition
operation of type Info×Info→ Info, and the rule states
that knowledge of x1 + x2 is a consequence of knowl-
edge of both x1 and x2. Each of KMon and KSum is a
double rule, with d ∈ {0,∞}. We use double rule nota-
tion similarly below.

The content of rules C1 and C3 is now expressed
succinctly by ensue double rule TrustApp. Similarly
the content of rule C2 is expressed by ensue double rule
Del. Rules KMon–Del are house rules of DKAL. Rules
C1–C3 are not house rules; they are consequences of
house rules.

The inclusion of the information order allows cre-
ating a rich structure of information with easily under-
stood rules. For example rule Trust0∞ expresses the fact
that non-delegatable trust is a consequence of delegat-
able trust. The inclusion of the information order also
allows for easily expressing strong quotation semantics.
The deceptively simple rule SaidMon incorporates con-
sequences of speeches into the calculation of knowl-
edge, so that, for example p said q tdOn0 x ensues
p said q tdOn x. DKAL thus has very strong se-
mantics for quotations, computing not only principals’
speeches, but also their implied consequences. The rule
could not be expressed as a single rule without the in-
formation order .

8. The nuts and bolts

8.1. Substrate

Substrate and superstrate were mentioned already
§2. In DKAL, a substrate is a many-sorted structure X
satisfying certain requirements that we describe in this
section. The basic functions and relations of X are sub-
strate functions and substrate relations. The structure
X can be partial in the sense that substrate functions
can be partial. The possible partiality results in some
details that one has to be cautious about. In this expo-



a knowsd x ← a knowsd y, x≤ y (KMon)
a knowsd x1 + x2 ← a knowsd x1, a knowsd x2 (KSum)

x≤ p saidd x + p tdOnd x (TrustApp)
p tdOn (q tdOnd x)≤ p tdOn x + q exists (Del)

p tdOn0 x≤ p tdOn x (Trust0∞)
p saidd x ≤ p saidd y ← x≤ y (SaidMon)

Figure 5. House Rules, part I

sition, for simplicity, we ignore those details; none of
our results is compromised by that. The vocabulary of
X , the substrate vocabulary, does not contain any of the
five superstrate relation symbols described in the next
subsection.

We assume that substrate functions and relations
are computable. More precisely, we assume that sub-
strate elements are (represented by) strings in a fixed
alphabet and that there is an algorithm Eval that evalu-
ates substrate functions and relations. Given a function
name F of arity h and elements a1, . . . ,a j, Eval com-
putes F(a1, . . . ,a j). We treat constants as nullary func-
tions. Given a relation name R of arity j and elements
a1, . . . ,a j, Eval determines whether R(a1, . . . ,a j) is true
or false.

The universe of X splits into two sorts. One is Reg-
ular, with a subsort Principal and possibly other, user
defined, subsorts. Regular elements may be principals,
time moments, time intervals, files, directories, domain
names, etc. The other is Synthetic, with subsorts At-
tribute, Speech, and Info. Functions with regular (resp.
synthetic) values are regular (resp. synthetic), and the
same convention applies to variables and expressions in
general. Every synthetic function is a free constructor,
and every synthetic element is constructed, in a unique
way, from regular elements by means of synthetic func-
tions. The semantic tree of a substrate element b is the
unique ordered finite tree rooted at b and such that

• if b is regular than semtree(b) has no other nodes,

• if b = F(b1, . . . ,bn) and function F is synthetic
then there are exactly n subtrees under the root:
semtree(b1), . . . ,semtree(bn).

A substrate relation a regcomp b holds if and only if
a is regular, b is synthetic, and a is a leaf of semtree(b).
A syntactic tree of an expression t is the unique ordered
finite tree rooted at t and such that

• if t is regular, then syntree(t) has no other nodes,

• if t = F(t1, . . . , tn) and function symbol F is syn-
thetic, then there are exactly n subtrees under the
root: syntree(t1), . . . ,syntree(tn).

A subexpression s of t is a regular component of t if s is
regular, t is synthetic, and s is a leaf of syntree(t).

The substrate has the following synthetic functions
called house constructors:

• said and said0 of type Info→ Speech,

• tdOn and tdOn0 of type Info→ Attribute,

• function I of type [(Principal × Speech) ∪
(Regular×Attribute)]→ Info,

• function + of type Info× Info→ Info,

• functions canActAs and canSpeakAs of type
Principal→ Attribute,

• constant exists of type Attribute.

Convention 8.1. Function symbols said and tdOn
can be written as said∞ and tdOn∞ respectively.
Thus saidd denotes said when d = ∞ and denotes
said0 when d = 0, and similarly for tdOnd. In
the case of functions saidd, tdOnd , canActAs and
canSpeakAs, we write the function name of the house
constructor followed by the argument, with no paren-
theses. For example, canActAs Bob is the attribute
obtained by applying the function canActAs to the
constant Bob. In the case of the function I we gener-
ally omit the function name altogether writing just Bob
is a user rather than I (Bob, is a user).

The functions canActAs and canSpeakAsmay
be used for assignment of roles; their precise mean-
ing is given by house rule Role in Fig. 6. To give
a quick example, if it is known that p canActAs
Director, and Director canRead foo, then it
follows that p canRead foo. In the other direction,
if it is known that p canSpeakAs Director, and
p said A isHired, then it follows that Director



said A isHired. Uses of the other house functions
have been demonstrated in earlier sections.

The substrate may have user-introduced regular
functions and relations. It may have user-introduced
synthetic functions with values of type Attribute or Info.
The only functions with values of type Speech are house
constructors said and said0.

8.2. Superstrate

There are five superstrate relations: knows and
knows0 of type Principal × Info, saysto and
saysto0 of type Principal × Info × Principal, and
ensues of type Info× Info. knows and saysto can
also be written knows∞ and saysto∞. We write p
knowsd x instead of knowsd(p,x), and p saysd x to
q instead of saystod(p,x,q). We write x ensues y or
x≤ y instead of ensue(x,y). (This use of the ≤ sym-
bol is a mere convenience and does not preclude the use
of the symbol in the substrate.)
Remark 8.2. One can develop DKAL without relations
knowsd, representing p knowsd x with p saysd x to
p. We choose to make knowledge explicit because of
the fundamental role of knowledge and because the sep-
aration of knowing and saying is convenient technically
as well.

The superstrate relations are computed over the
substrate by the logic program that consists of the house
rules in Figures 5 and 6 as well as of the rules given by
assertions placed by principals. Assertions forms and
the rules that assertions give rise to are described in the
next subsection.

8.3. Assertions

There are two forms of DKAL assertions:

1. A :d x ← x1, . . . ,xn, con,

2. A :d x to p ← x1, . . . ,xn,con.

Here A in both forms is a ground principal expression
denoting the owner of the assertion; d is either ∞ or
0, and ∞ is typically omitted; x,x1, . . . ,xn are infon ex-
pressions; and con is a substrate constraint, that is a
conjunction of possibly-negated atomic formulas in the
substrate vocabulary. All variables are regular, that is of
type Regular; p is a principal variable called the target
variable. Assertion 1 is a knowledge assertion. It does
not have a target variable, and it gives rise to rule

A knowsd x←

A knowsd x1,...,A knowsd xn,

A knowsd t1 exists,...,

A knowsd tk exists, con

where the list t1, . . . , tk consists of the variables in
x,x1, . . . ,xn, con and of the non-ground regular com-
ponents of assertion head x. We say that t1, . . . , tk are
A-bounded. Assertion 2 is a speech assertion and gives
rise to rule

A saysd x to p←

A knowsd x1, ..., A knowsd xn,

A knowsd t1 exists, . . . ,

A knowsd tk exists, con

where the list t1, . . . , tk consists of the variables of the
assertion and the non-ground regular components of the
assertion head x, with the exception of the target vari-
able p.

Note that any assertion rule conditions its head only
on the knowledge of the assertion owner possibly aug-
mented with a substrate constraint; this is key in deal-
ing with the information leakage problem in §4. In case
d = 0, the knowledge is internal; that property, inherited
from SecPAL, is key in delegation restriction §6.

8.4. Queries

Fix a substrate X and let ϒ be the vocabulary of
X extended with the superstrate relation names. Fur-
ther, consider an authorization policy (that is a set of
assertions) A in the vocabulary ϒ. Let Π be the logic
program that consists of the house rules and the asser-
tions in A . And let Π(X) be the state of knowledge
determined by X and Π, that is the enrichment of X by
means of superstrate relations computed by Π over X .

A basic query in vocabulary ϒ is a formula
p knowsd t(v1, . . . ,vk) where p is a ground principal
expression in the substrate vocabulary, t is an infon ex-
pression with variables v1, . . . ,vk, the variables are all
regular, and d is 0 or ∞. The query is evaluated over
the state of knowledge Π(X). The answer is the set of
tuples 〈b1, . . . ,bk〉 of regular elements of X such that the
type of bi is that of vi and

Π(X) |= p knowsd t(b1, . . . ,bk) ∧

p knowsd b1 exists ∧ ·· · ∧

p knowsd bk exists.

For any ground principal expression p, a p-centric
query is a first-order formula. We define p-centric
queries inductively.

1. Every substrate constraint is a p-centric query.

2. Every basic query p knowsd t(v1, . . . ,vk) is p-
centric.



p knows q saidd x ← q saysd x to p (Say2know)
p knows x ← p knows0 x (K0∞)

x≤ x (EOrder)
x≤ z ← x≤ y,y≤ z

x≤ x+ y (ESum)
y≤ x+ y

x+ y≤ z ← x≤ z,y≤ z

t exists ≤ x ← t regcomp x (Exists)
p said x≤ p said0 x (Said0∞)

p saidd (x+ y) ≤ p saidd x + p saidd y (SaidSum)
p saidd x ≤ p saidd p saidd x (SelfQuote)
p tdOnd x ≤ p tdOnd p tdOnd x (Del−)

p attribute ≤ q attribute + p canActAs q (Role)
q speech ≤ p speech + p canSpeakAs q

Figure 6. House Rules, part II

3. If Q1 and Q2 are p-centric queries then so are
¬Q1, Q1∧Q2 and Q1∨Q2.

4. If Q(v) is a p-centric query then so are formulas
∃v

(

(p knows v exists) ∧ Q(v)
)

,
∀v

(

(p knows v exists) −→ Q(v)
)

.

It follows that all quantifications in a p-centric query
are restricted to elements known to p. The answer to a
p-centric query is defined by induction, in the obvious
way.

In particular, a Boolean combination of substrate
constraints and p-centric basic queries is a p-centric
query. The availability of negations in queries can be
used for conflict resolution at the decision point. For ex-
ample, in a deny-override system, with read guard RG,
read access to File 13 would be given to the users in the
answer to the query:
RG knows p hasReadAccessTo File 13 ∧
¬

(

RG knows p deniedAccessTo File 13
)

.
In this paper, a query, that is DKAL query, is a p-

centric query for some p.

9. Query evaluation

The flexible use of functions makes DKAL closer
to Prolog than to Datalog. It is of course only too easy to
write a non-terminating program in Prolog. But DKAL
is carefully calibrated to ensure the termination of an
algorithm that computes answers to queries.

Recall that state elements split into regular and syn-
thetic. In policy assertions, variables range over regular

elements only. Further, consider any assertion α , and
let A be the owner of α and t be a variable in α or a
non-ground regular component of α’s head. Unless α
is a speech assertion and t is the target variable, we re-
quire that α contains condition A knowsd t exists
for the appropriate d; see 8.3. In particular all non-
target variables of α’s head occur in the body. Also,
for the purpose of evaluating the substrate constraint of
α , the relevant values of non-target variables are those
whose existence is known to A. The requirement is a se-
mantic safety condition that prevents the knowledge of
A from exploding.

The infon t exists carries no information about
t except that t exists. See rule Exists in Fig. 6 in this
connection. Relation regcomp was defined in §8.1.
The intuitive meaning of relation t regcomp x is that t
appears in x in an essential way. By rule Exists, infon
t exists is the least informative among infons that
mention t in an essential way.

The semantic safety condition allows us to show
that only the regular elements that are explicitly men-
tioned in the policy are relevant and need to be consid-
ered as possible values for variables when evaluating
the policy. Since the policy is finite, the number of rel-
evant regular elements is finite.

Things are much more involved with synthetic el-
ements. While assertions have only regular variables,
many house rules of DKAL have variables ranging over
synthetic elements, in particular over infons. We prove
that the number of synthetic elements needed to eval-
uate a given query under a given policy is finite. The



proof is elaborate and uses the nature of the DKAL
house rules; it is written in full details in the technical
report [15].

We construct a query evaluation algorithm that
takes advantage of the fact that only finitely many regu-
lar and synthetic elements are relevant.

Theorem 9.1. For any substrate X, given an authoriza-
tion policy A over X and a query Q, the DKAL query
evaluation algorithm computes the answer to Q under
A and X.

The proof is elaborate and long, even for an ap-
pendix of an extended abstract. It is written in full de-
tails in the technical report [15]. Fortunately one does
not need to know the proof in order to use the algorithm.
Note that the answer is always finite.

10. Worst case complexity

Fix a substrate X . To simplify the complexity anal-
ysis of the query evaluation algorithm, we assume that
the algorithm Eval of §8.1 works in constant time: given
a function or relation symbol S and the appropriate tu-
ple ā of the elements of X , Eval evaluates S(ā) in con-
stant time. Essentially we count only the number of
Eval calls and ignore Eval’s computation time. Alter-
natively we could make a natural assumption that Eval
works in time bounded by a polynomial of the maximal
length of an input string. That polynomial would have
to be taken into account in the following theorem but
would not affect our results in any essential way. The
analysis of Eval is orthogonal to the main issue of this
theorem.

If β is an assertion or a query, then the quotation
depth of β is the depth to which said and said0 (pos-
sibly mixed) are nested in β , and the width of β is the
number of variables in β . Note that the width is zero in
the ubiquitous case of basic yes/no queries.

Theorem 10.1. The time that the query evaluation al-
gorithm needs to answer a query Q under an authoriza-
tion policy A is bounded by a polynomial in

(length(A )+ length(Q))δ+1+w
,

where δ (resp. w) bounds the quotation depth (resp. the
width) of the policy assertions and of the query. In the
important case where δ and w are fixed, the computa-
tion time is polynomial in length(A )+ length(Q).

A detailed proof is found in the technical report
[15]. The time bound can be sharpened but the impor-
tance of the worst case need not be exaggerated. Typical
cases seem to be much different.

11. SecPAL to DKAL translation

In this section, SecPAL is the language defined in
[4, 5] and not an implementation of the language. We
presume, without loss of generality, that the names of
sorts, functions and relations introduced explicitly in §8
do not occur in SecPAL.

We describe a natural translation τ of SecPAL into
a version of DKAL, called Open DKAL, obtained by
augmenting DKAL with double rules

p saysd x← p knowsd x (O1)
p knowsd x← p saysd x (O2)

Here p saysd x is an Open DKAL abbreviation for
p saysd x to q where q is any fresh variable. O1
reflects the all-knowledge-is-common nature of Sec-
PAL. O2 is a mere convenience; it allows us to trans-
late SecPAL’s says by DKAL’s says rather than by
DKAL’s knows. In the rest of this section, by default,
DKAL is Open DKAL.

Let CD be a constraint domain of SecPAL. We view
CD as a first-order structure. We turn CD into a DKAL
substrate X whose regular elements are precisely the el-
ements of CD. X extends CD in two ways, by expanding
the vocabulary and adding synthetic elements. We de-
fine τN = N for every name in the CD vocabulary. X
has the built-in DKAL functions. In addition, for each
SecPAL predicate pred, X has a synthetic function, also
denoted pred, taking attribute values; the domain of the
new function pred is the domain of the original SecPAL
predicate pred. X has no other sorts, functions or rela-
tions.

Fig. 7 completes the definition of the translation
τ . The lines in the figure correspond to the SecPAL
grammar [4]. In the final line, tagged Assertion, all is a
fresh variable not occurring in the assertion, and d takes
values 0,∞. SecPAL verbphrases become DKAL at-
tributes, SecPAL facts become DKAL infons, and each
SecPAL assertion gives rise to two DKAL assertions,
one with d = 0 and the other with d = ∞. In SecPAL, an
assertion context AC is a set of assertions. Accordingly
an assertion context AC composed of n SecPAL asser-
tions gives rise to a DKAL policy τ(AC) composed of
2n assertions.

Theorem 11.1 (Embedding Theorem). Let AC be a
safe SecPAL assertion context, and let Π be the logic
program composed of the policy τ(AC) and the Open
DKAL house rules. If

AC,d ` A says f

in SecPAL, where A is a principal constant, f is a



τ(e) = e (Variable, constant)
τ(con) = con (Constraint)

τ(pred) = pred (Predicate)
τ(pred e1 . . . en) = pred(e1, . . . ,en) (Verbphrase)
τ(can sayd fact) = tdOnd τ(fact)

τ(can act as e) = canActAs e

τ(e verbphrase) = I (e,τ(verbphrase)) = e τ(verbphrase) (Fact)
τ(A says fact if fact1, . . . , factn,con) = A :d τ(fact) to all← τ(fact1), . . . ,τ(factn),con (Assertion)

Figure 7. The SecPAL-2-DKAL translation map τ

ground flat fact expression, and d ∈ {0,∞}, then

Π(Sub) |= A saysd τ f

in Open DKAL

Remark 11.2. It is possible to translate SecPAL to the
original DKAL rather than Open DKAL. We mentioned
already that double rule O2 is not essential for transla-
tion. The necessary instances of double rule O1 can be
incorporated into the translation of SecPAL assertions.
In SecPAL, a fact is flat when it does not contain can
say, and every fact f has the form e1 can sayd1 . . .

en can saydn g where n ≥ 0 and g is flat. We refer
to g as the flat seed of f . We refer to each of the facts
ek+1 can saydk+1 . . . en can saydn g, 0≤ k ≤ n, as
a subfact of f . To translate into the original DKAL, de-
fine τ(A says f if f1, . . . , fn,con) to be the set of
the following DKAL assertions, instead of the ones at
Assertion in Fig. 7:

Ad : τ( f ) ← τ( f1), . . . ,τ( fn),con

Ad : τ( f ′) to all ← τ( f ′)

where f ′ ranges over the subfacts of f . The obvious
analog of the embedding theorem holds but the proof is
a bit more involved.

Proposition 11.3. The converse of the embedding the-
orem is not true. There is an assertion context AC
and a SecPAL query A says f such that Π(Sub) |=
A says τ( f ) but AC,∞ 6` A says f .

If one weakens DKAL by removing rules Del and
Del−, then the embedding theorem survives and its con-
verse holds too. We see Proposition 11.3 as an advan-
tage of DKAL: more justified requests get positive an-
swers.

12. Related work

The literature on the use of logic in authorization
policies for decentralized system is too rich to be fairly
reviewed in few paragraphs. We concentrate mostly on
recent work that is more closely related to this paper.

Speaks-For Calculus [1] pioneered the use of logic
(a form of modal logic in the Speaks-For case). In par-
ticular Speaks-For addressed delegation and represen-
tation, and introduced the says construct that, in one
form or another, has been popular in authorization liter-
ature ever since. Datalog possibly with constraints [19]
was the foundation for many later logic-based autho-
rization languages. DKAL resurrected an attraction of
Speaks-For absent in the existing Datalog based litera-
ture (as far as we know): nested quotations.

The term “trust management” was coined in [9].
The article introduced PolicyMaker that later evolved
into KeyNote [10]. KeyNote expresses involved sce-
narios. In particular, it allows a principal to delegate
a subset of his rights to another principal, and it has
thresholds. But there are common authorization scenar-
ios that cannot be expressed in KeyNote. Typically they
involve a right granted on the basis of an attribute that
originates from a lateral source; see the introduction to
[18] in this connection.

Our late genealogy consists primarily of Data-
log based languages Binder [12], Delegation Logic
[17, 18] and SecPAL [5, 13]. Binder [12] extends Dat-
alog with an import/export construct says that con-
nects Datalog programs maintained by different prin-
cipals and makes the issuer of an imported assertion
explicit. A principal A may for example condition a
Datalog rule on B says employee(C,E). The rule
will fire when principal B exports employee(C,E).
A may express his trust in B on employee(x,y)
by means of a Datalog rule employee(x,y) :- B
says employee(x,y). Recently the import and ex-



port aspects of Binder’s sayswere separated in SeND-
log [2]. This useful advance, inspired by a database
query language NDlog [22], and DKAL’s targeted com-
munication attend to the same concern but were inde-
pendent.

Delegation Logic features vocabulary specifically
designed for authorization policies. Contrary to Binder,
it does not have explicit issuers for all assertions. But
it has a number of useful, authorization specific con-
structs, including ones for delegations, representations,
and thresholds. For the purpose of execution, Delega-
tion Logic is reduced to Datalog.

SecPAL has both explicit issuers of assertions and
specific constructs designed with distributed systems
authorization policy in mind. The number of constructs
is deliberately kept low, but the language is expres-
sive and captures many standard authorization scenar-
ios, including discretionary and mandatory access con-
trol, role hierarchies, separation of duties, threshold-
constrained trust, attribute-based delegation, and dele-
gation controlled by constraints, depth, and width, see
[5, Section 5]. The semantics of the language is de-
fined directly, using a few very condensed deduction
rules. For the purpose of execution, SecPAL is reduced
to Datalog with constraints. Nested can say0 facts
are used for bounded depth delegation, and the SecPAL
deduction laws give rise to semantics that prevents any
circumventing of the delegation bound.

While its authors see SecPAL as Datalog based [3],
we find it more illuminating to see SecPAL from the
point of view of existential fixed-point logic sketched
in §2. From that point of view, can say (a.k.a.
can say∞) and can say0 are fact-valued functions
that can be nested in SecPAL. SecPAL policies are re-
duced to safe Constraint Datalog programs by convert-
ing nested can sayd facts to relations of arity depen-
dent on the nesting depth, which is finite in any given
policy and can only decrease in deductions.

The RT family languages [20] are also Datalog
based. The languages have roles instead of attributes,
and principals may condition membership in a role they
control on membership in roles controlled by other prin-
cipals. Both RT and SecPAL extend Datalog with con-
straints. In RT tractability with constraints is obtained
by assuming that the constraint domain satisfies quanti-
fier elimination. SecPAL uses instead a syntactic safety
condition that guarantees that constraint variables are
instantiated at the time of evaluation.

13. Conclusion and future work

We designed an authorization language DKAL
which exceeds the expressivity of previous languages

in the literature in a number of ways and yet maintains
feasible complexity bounds for answering authorization
queries. The language has several innovative features
including these: targeted communication and a distinc-
tion between knowing and saying; quotations that can
be nested and, more generally, flexible formation of ex-
pressions with unrestricted use of functions that can be
nested and mixed; extended use of an underlying sub-
strate structure that may be very rich; stronger delega-
tion semantics; and an information order that makes the
language more succinct and comprehensible.

Policies written in SecPAL [5], a recent expressive
authorization language, can be translated into DKAL,
and so all SecPAL expressible authorization scenarios
are also expressible in DKAL. We attempted to illus-
trate the usefulness of the new features of DKAL for
user-centric scenarios, prevention of information leak-
age, abstraction of cryptographic protocols, and design
of more modular distributed authorization policies. Our
algorithm for answering DKAL queries has worst-time
complexity within the SecPAL time complexity bounds.

The DKAL query answering algorithm is cur-
rently implemented in Prolog. We work toward more
substantial implementation and future deployment of
DKAL. There are several appetizing directions to ex-
pand DKAL. One is to develop syntax and semantics
for targeting assertions. Currently only targeting of in-
fons is expressible in DKAL. Another direction is re-
lated to house rules. One may want to enrich them with
additional ensue rules. The problem is to understand
which ensue rules can be added without violating the
time complexity results. Yet another direction is to al-
low the policies to use negation in a stratified way.
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