
PROPAGATION OF THE SCALE PROPERTY USING GAMES

ITAY NEEMAN

The aim of this short paper is to introduce the reader to the notion of a scale
and to some of the basic techniques involved in the propagation of the scale
property through the use of infinite games. None of the results presented is due
to the author. For a full history see Moschovakis [2]. We work throughout the
paper with the space ωω. For s ∈ ω<ω we use Ns to denote the set {x ∈ ωω | x
extends s}. The sets Ns, s ∈ ω<ω, form the basic open subsets of ωω. Following
standard abuse we refer to the space ωω, equipped with the topology generated
by these basic open set, as R.

Given a set A ⊂ R let G(A) denote the following game: Players I and II
alternate playing x(n) for n ∈ ω subject to the order displayed in Diagram 1,
with x(n) ∈ ω for each n. If, after ω moves, the real x = 〈x(n) | n < ω〉 belongs
to A then player I wins. Otherwise player II wins. G(A) is determined if one
of the two players has a winning strategy in the game.

I x(0) x(2) . . . . . .

II x(1) x(3) . . . . . .

Diagram 1. The game G(A).

For B ⊂ R × R and x ∈ R let Bx = {y ∈ R | 〈x, y〉 ∈ B}. This is the
x–section of B. Define aB to be the set {x ∈ R | player I has a winning
strategy in G(Bx)}. We sometimes write (ay)B(x, y), or (ay)〈x, y〉 ∈ B, for the
statement x ∈ aB. This is deliberately meant to conjure up the notation used
for statements involving the quantifiers (∀y) and (∃y). (ay) really is a quantifier,
giving precise meaning to the chain (∃y(0))(∀y(1))(∃(y(2)) · · · · · · of quantifiers
over ω.

Let B ⊂ R×R be open. Note that for each 〈x, y〉 ∈ B there exists some n < ω

so that Nx↾n×Ny↾n ⊂ B. Let n(x, y) denote the least such n. We refer to n(x, y)
as the time of entry of 〈x, y〉 into B. For 〈x, y〉 6∈ B we set n(x, y) = ω.

Let A = aB. For x, x∗ ∈ R define H(x∗, x) to be the following game: Players
“first” and “second” (denoted F and S respectively) alternate moves subject to
the format in Diagram 2. The moves are played sequentially from left to right,
and are presented in two separate lines only for future convenience. The letters
F and S indicate which player is responsible for each move. Each of the moves
is a natural number. An infinite run leading to reals y = 〈y(i) | i < ω〉 and
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F y(0) S y(1) F y(2) · · ·
S y∗(0) F y∗(1) S y∗(2) · · ·

Diagram 2. The game H(x∗, x).

y∗ = 〈y∗(i) | i < ω〉 is won by S if

〈x, y〉 6∈ B, or 〈x, y〉 ∈ B ∧ 〈x∗, y∗〉 ∈ B ∧ n(x∗, y∗) ≤ n(x, y).

Otherwise the run is won by F. With our convention that n(x, y) = ω for 〈x, y〉 6∈
B, a run 〈y∗, y〉 of H(x∗, x) is won by S just in case that n(x∗, y∗) ≤ n(x, y).
H(x∗, x) thus involves a simultaneous play of both G(Bx), taking place on the

upper line in Diagram 2, and G(Bx∗), taking place on the lower line. We think
of the former as owned by F, and of the latter as owned by S. Each plays for I
on the line she owns, and for II on the line owned by her opponent.

To win, S must make sure that the play on her line (namely the lower line,
where she plays for I) does not lag behind the play on her opponent’s line: if the
play on her opponent’s line enters B then she has to make sure that the play on
her line enters B, at the same time or earlier.

Define a relation � on R by setting x∗ � x iff S has a winning strategy in
H(x∗, x). This winning strategy should be viewed as a “translation mechanism.”
It translates a strategy for I in G(Bx) into a strategy for I in G(Bx∗), making
sure that the translated strategy never lags behind the original strategy.

Claim 1. The relation � is reflexive.

Proof. S can win H(x, x) simply by copying the moves played by F. More
precisely, the strategy defined by the conditions y∗(n) = y(n) for even n and
y(n) = y∗(n) for odd n is winning for S in H(x, x). ⊣

Claim 2. The relation � is transitive.

Proof. Suppose that x∗∗ � x∗ � x. Let τ1 be a winning strategy for S in
H(x∗, x) and let τ2 be a winning strategy for S in H(x∗∗, x∗). Let τ be the
strategy in H(x∗∗, x) obtained by composing τ1 and τ2. A typical play according
to τ is illustrated in Diagram 3. The play starts in the upper left corner with a
move by F, and proceeds along the arrows obtaining additional moves through
plays by F in H(x∗∗, x), uses of τ1, and uses of τ2, as indicated in the diagram.
Note that a play 〈y∗∗, y〉 is according to τ iff there is a real y∗ so that 〈y∗∗, y∗〉 is
according to τ2 and 〈y∗, y〉 is according to τ1. It is easy using this characterization
to check that τ is winning for S in H(x∗∗, x). ⊣

Lemma 3. For x, x∗ ∈ R set x ≺ x∗ iff x∗ 6� x. Suppose that each of the
games H(x∗, x), x, x∗ ∈ R, is determined. Then the relation ≺ is wellfounded.

Proof. Suppose for contradiction that 〈xi | i < ω〉 is a sequence of reals
so that xi+1 ≺ xi, meaning xi 6� xi+1, for each i. Using the assumption of
determinacy it follows that F has a winning strategy in H(xi, xi+1). Let τi be
such a strategy. Construct reals yi, i < ω, following Diagram 4. The construction
proceeds column by column from left to right, setting y0(k) = 0 for each even
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(a) H(x∗,x)

F y(0)

��

τ1 y(1) // F y(2)

�� //

τ1 y
∗(0)

��

τ2 y
∗(1)

OO

(b) H(x∗∗,x∗)

τ2 y
∗∗(0) // F y∗∗(1)

OO
H(x∗∗,x) (c)

Diagram 3. Composing τ1 and τ2.

k and using the strategies τi, as indicated in the diagram, to produce all other
objects.

For each i < ω, the lines corresponding to yi and yi+1 together form a play of
H(xi, xi+1), according to τi. (For i = 1 the progress of this play is indicated in
the diagram through squiggly arrows, and the play itself is indicated in boldface.)
Using the fact that τi is winning for F in H(xi, xi+1) it follows that 〈xi+1, yi+1〉 ∈
B and that n(xi+1, yi+1) < n(xi, yi) for each i < ω. But this gives an infinite
descending sequence of natural numbers, and hence a contradiction. ⊣

τ2 y3(0) τ3 y3(1) τ2 y3(2)
//

H(x2,x3)

τ1 y2(0)

��
�O

τ2 y2(1) ///o/o/o τ1 y2(2)

��
�O

H(x1,x2)

τ0 y1(0) ///o/o/o τ1 y1(1)

OO
O�

τ0 y1(2) ///o/o/o

H(x0,x1)

y0(0) = 0 τ0 y0(1) y0(2) = 0

Diagram 4. The wellfoundedness of ≺.

Remark 4. It follows from the last lemma that � is total: if x 6� x∗ and x∗ 6�
x then 〈x, x∗, x, x∗, . . . 〉 is an infinite descending sequence in ≺, a contradiction.

We know now that the relation � is a prewellorder, meaning that the relation
x ∼ y iff x � y∧y � x is an equivalence relation and that � induces a wellordering
of the equivalence classes of ∼. Let ϕ : R → ON be the rank function associated
to �. Precisely, ϕ is defined through the condition ϕ(x) = sup{ϕ(x̄)+1 | x̄ ≺ x}
(with the supremum of the empty set taken to be 0). We shall see that the
relationship between A and x 7→ ϕ(x) is analogous to the relationship between
the open set B and the function 〈x, y〉 7→ n(x, y) defined earlier.

Note that

if 〈x, y〉 ∈ B and n(x∗, y∗) ≤ n(x, y) then 〈x∗, y∗〉 ∈ B.(1)

We now establish a similar relationship between the set A = aB and the function
x 7→ ϕ(x):

Lemma 5. Suppose that x ∈ A and ϕ(x∗) ≤ ϕ(x). Then x∗ ∈ A.
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Proof. Since x ∈ A = aB, player I has a winning strategy in G(Bx). Let σ
be such a strategy. Since ϕ(x∗) ≤ ϕ(x), S has a winning strategy in H(x∗, x).
Let τ be such a strategy. σ and τ combine naturally to give rise to a strategy σ∗

for player I in G(Bx∗). σ∗ is characterized by the condition that y∗ is according
to σ∗ iff there is a real y so that y is according to σ and 〈y∗, y〉 is according to τ .

A typical run y∗ of σ∗ is presented on the lower line of Diagram 5, and the
associated real y is presented on the upper line. Since σ is winning for I in G(Bx)
the real y must belong to Bx. In other words 〈x, y〉 ∈ B. Since τ is winning for
S in H(x∗, x), n(x∗, y∗) ≤ n(x, y). By (1) above 〈x∗, y∗〉 ∈ B. This shows that
σ∗ is winning for I in G(Bx∗), and hence x∗ ∈ A. ⊣

G(Bx) σ y(0)

��

τ y(1) // σ y(2)

�� //G(Bx∗ ) τ y∗(0) // II y∗(1)

OO
H(x∗,x)

Diagram 5. Composing σ and τ .

The last lemma shows that A forms an initial segment of R in the prewellorder
given by ϕ, just as B forms an initial segment of R×R in the prewellorder given
by 〈x, y〉 7→ n(x, y). Note that the complement of B is a single equivalence class
at the very top of the prewellorder given by 〈x, y〉 7→ n(x, y). Precisely,

if 〈x, y〉 6∈ B then n(x∗, y∗) ≤ n(x, y) for all 〈x∗, y∗〉 ∈ R × R.(2)

The next claim establishes the same property for ϕ and A.

Claim 6. Suppose that each of the games G(Bx), x ∈ R, is determined. Let
x, x∗ ∈ R, and suppose that x 6∈ A. Then x∗ � x.

Proof. Since x 6∈ A = aB, and G(Bx) is determined, player II must have
a winning strategy in G(Bx). Let σ be such a strategy. Let τ be the strategy
for S in H(x∗, x) which follows σ on the upper line, and plays 0s on the lower
line. Plays 〈y∗, y〉 according to τ are characterized by the condition that y is
according to σ and y∗(k) = 0 for each even k. From the first clause and the fact
that σ is winning for II in G(Bx) is follows that 〈x, y〉 6∈ B, so that 〈y∗, y〉 is won
by S in H(x∗, x). ⊣

Recall that B ⊂ R2 is open, that is Σ0
1, and n(x, y) is equal to the least n

so that Nx↾n × Ny↾n ⊂ B if 〈x, y〉 ∈ B, and to ω if 〈x, y〉 ∈ R2 − B. Define
⊑ by setting 〈x∗, y∗〉 ⊑ 〈x, y〉 iff n(x∗, y∗) ≤ n(x, y), and define ⊏ by setting
〈x∗, y∗〉 ⊏ 〈x, y〉 iff n(x∗, y∗) < n(x, y). Both are relations on R2, equivalently
subsets of R2 × R2. It is easy to see that

both ⊏ and ⊑ ∩(B × R2) are Σ0
1.(3)

By ⊑ ∩(B × R2) we mean the set {〈x̄, ȳ, x, y〉 | n(x̄, ȳ) ≤ n(x, y) ∧ 〈x̄, ȳ〉 ∈ B}.
The restriction to 〈x̄, ȳ〉 ∈ B is important. The full relation ⊑ is not Σ0

1. (We
could, for symmetry, also restrict ⊏ to B × R2 in (3). But this would not make
any difference: 〈x̄, ȳ〉 ⊏ 〈x, y〉 already implies that 〈x̄, ȳ〉 ∈ B.)
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For a pointclass1 Γ let aΓ be the pointclass {aD | D ∈ Γ}. The set A = aB

is aΣ0
1. The next lemma establishes the parallel of property (3) for A and ϕ.

Lemma 7. Suppose that all length ω games with Σ0
1 payoff are determined.

Then ≺ and � ∩(A× R) are both aΣ0
1.

Proof. Using determinacy, x̄ ≺ x iff F has a winning strategy in H(x, x̄). A
run 〈y, ȳ〉 of H(x, x̄) is won by F iff n(x̄, ȳ) < n(x, y), and this is a Σ0

1 condition
by property (3). Hence the set {〈x̄, x〉 | F has a winning strategy in H(x, x̄)} is
aΣ0

1.
It remains to prove that � ∩(A× R) is aΣ0

1.
Define H ′(x∗, x) to be played according to the rules of H(x∗, x) but with

the modified payoff condition that S wins just in case that 〈x∗, y∗〉 ∈ B and
n(x∗, y∗) ≤ n(x, y). Note that this modified condition is Σ0

1 by property (3).
Hence:

(i) The set {〈x∗, x〉 | S has a winning strategy in H ′(x∗, x)} is aΣ0
1.

Note further that the modified condition is harder for S than the original condi-
tion. Hence:

(ii) If S has a winning strategy in H ′(x∗, x) then she also has a winning strat-
egy in H(x∗, x).

We intend to show that for x∗ ∈ A the games are in fact equivalent.

Claim 8. Let x∗ ∈ A. Then S has a winning strategy in H ′(x∗, x∗).

Proof. Suppose for contradiction that S does not have a winning strategy
in H ′(x∗, x∗). By determinacy then F has a winning strategy. Let τ be such a
strategy.

Let σ be a winning strategy for I in G(Bx∗). Player I has a winning strategy
in this game since x∗ is assumed to be in A.

Diagram 6 shows how to compose σ and infinitely many copies of τ to produce
a sequence of reals yi, i < ω, with the property that y0 is according to σ, and
for each i, 〈yi, yi+1〉 is according to τ . (Each copy of H ′(x∗, x∗) in the diagram
is labelled by a roman letter, and the copies of τ have superscripts indicating
which of the copies of H ′(x∗, x∗) they belong to. The copy of H ′(x∗, x∗) labelled
(b) is highlighted in squiggly arrows in the diagram, and the moves by F in this
game, made by the copy of τ labelled (b), are indicated in boldface.)

Since σ is winning for I in G(Bx∗), 〈x∗, y0〉 ∈ B. Since τ is winning for F
in H ′(x∗, x∗), either 〈x∗, yi〉 6∈ B or n(x∗, yi) 6≤ n(x∗, yi+1), for each i < ω.
Notice that the latter disjunct implies that 〈x∗, yi+1〉 ∈ B, by property (2). It
therefore follows by induction that 〈x∗, yi〉 ∈ B and n(x∗, yi+1) < n(x∗, yi) for
each i < ω. But this gives an infinite descending sequence of natural numbers,
a contradiction. ⊣

Claim 9. Suppose that S has a winning strategy in H(x∗, x) and that x∗ ∈ A.
Then S has a winning strategy in H ′(x∗, x).

1By a pointclass we always mean a class of sets closed under recursive substitutions,
conjunctions, disjunctions, and bounded number quantifications.
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τ (c) y3(0) τ (d) y3(1) τ (c) y3(2)

//

(c) H′(x∗,x∗)

τ
(b) y2(0)

��
�O

τ (c) y2(1) ///o/o/o
τ

(b)
y2(2)

��
�O

(b) H′(x∗,x∗)

τ (a) y1(0) ///o/o/o
τ

(b)
y1(1)

OO
O�

τ (a) y1(2) ///o/o/o

(a) H′(x∗,x∗)

σ y0(0) τ (a) y0(1) σ y0(2)

Diagram 6. F cannot have a winning strategy in H ′(x∗, x∗) for
x∗ ∈ A.

Proof. Let τ1 be a winning strategy for S in H(x∗, x), and using the previous
claim let τ2 be a winning strategy for S in H ′(x∗, x∗). Let τ be obtained by
composing τ1 and τ2 in the manner of Diagram 3. (But here the games labelled
(b) and (c) in the diagram are H ′(x∗, x∗) and H ′(x∗, x) respectively.) Then τ is
winning for S in H ′(x∗, x). ⊣

From the last claim and condition (ii) above it follows that for x∗ ∈ A, S has
a winning strategy in H(x∗, x) iff she has a winning strategy in H ′(x∗, x). From
this and condition (i) it follows that the set {〈x∗, x〉 | x∗ ∈ A and S has a winning
strategy in H(x∗, x)} is aΣ0

1. 2 (Lemma 7)

List 10. The following list summarizes the properties of ϕ and A obtained so
far (with Γ standing for aΣ0

1):

(1) If x ∈ A and ϕ(x̄) ≤ ϕ(x) then x̄ ∈ A.
(2) If x 6∈ A and x̄ 6∈ A then ϕ(x) = ϕ(x̄).
(3) Both the sets {〈x̄, x〉 | ϕ(x̄) < ϕ(x)} and {〈x̄, x〉 | x̄ ∈ A ∧ ϕ(x̄) ≤ ϕ(x)}

are in Γ.

Conditions (1) and (2) merely note that R − A forms a single equivalence
class of the prewellorder induced by ϕ, located above all elements of A in this
prewellorder. Notice that any function ϕ : A→ ON can be extended to a function
on R satisfying conditions (1) and (2) simply by setting ϕ(x) = sup{ϕ(x̄) + 1 |
x̄ ∈ A} for x ∈ R − A. We use the same letter to refer both to the function
defined on A and to an extension of the function to R subject to conditions (1)
and (2).

Condition (3) in List 10 is the crucial one, connecting ϕ to the pointclass Γ.
The next definition abstracts an equivalent condition, that refers only to the
restriction of ϕ to A. The equivalence is proved in Claim 12.

Definition 11. A function ϕ : A → ON is a Γ norm on A just in case that
there are sets U and V in Γ and ¬Γ respectively, so that, for every x ∈ A,

{x̄ | ϕ(x̄) ≤ ϕ(x)} = {x̄ | 〈x̄, x〉 ∈ U} = {x̄ | 〈x̄, x〉 ∈ V }.

Claim 12. Let ϕ : A→ ON and extend ϕ to R in line with conditions (1) and
(2) in List 10. Then ϕ is a Γ norm iff it satisfies condition (3) in the list.
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Proof. Assuming condition (3), let U = {〈x̄, x〉 | x̄ ∈ A ∧ ϕ(x̄) ≤ ϕ(x)},
and let V = {〈x̄, x〉 | ϕ(x) 6< ϕ(x̄)}. Assuming the condition in Definition 11
note that ϕ(x̄) < ϕ(x) iff x̄ ∈ A ∧ 〈x, x̄〉 6∈ V , and that x̄ ∈ A ∧ ϕ(x̄) ≤ ϕ(x) iff
(x ∈ A ∧ 〈x̄, x〉 ∈ U) ∨ (x̄ ∈ A ∧ 〈x, x̄〉 6∈ V ). ⊣

The condition in Definition 11 states that for each x ∈ A, the initial segment
{x̄ | ϕ(x̄) ≤ ϕ(x)} belongs to both Γ(x) and ¬Γ(x), and that this holds uniformly
in x. Working with norms in this paper it is more convenient to use the equiv-
alent characterization in List 10, and we shall do this without further comment
throughout the paper.

A pointclass Γ is said to have the prewellordering property if every set in
Γ admits a Γ norm. The prewellordering property has various applications to
questions in descriptive set theory, see for example the theorem on reduction in
[1, §2].

The sequence of results given above shows how to produce a aΣ0
1 norm on a

given aΣ0
1 set, starting from Σ0

1 norms on Σ0
1 sets. But there is nothing specific

to Σ0
1 sets in any of the proofs. They generalize routinely to yield the following

theorem:

Theorem 13. Let Γ be a pointclass. Suppose that every length ω game with
payoff in Γ is determined. Suppose that Γ has the prewellordering property. Then
aΓ has the prewellordering property.

Proof. Let B ⊂ R2 belong to Γ and let θ : R → ON be a Γ norm on B.
Follow the sequence of definitions and claims above, only replacing the uses of
n(x, y) by uses of θ(x, y). It is easy to check that the proofs adapt, showing that
the resulting function ϕ is a aΓ norm on A = aB. Let us only note that the
definability expressed by condition (3) in List 10, for the norm θ, is such that
all the games that come up in the adapted proofs have payoff sets in Γ, and are
therefore determined. (Their determinacy is needed in the proofs.) ⊣

There is one crucial property of the norm 〈x, y〉 7→ n(x, y) that was not con-
sidered in the discussion so far. It is easy to check that this norm and the Σ0

1

set B satisfy

let 〈xi, yi〉, i < ω, be elements of B. Suppose that limi−→∞ xi

and limi−→∞ yi exist and let x∞ and y∞ respectively denote the
limits. Suppose that n(xi, yi) is eventually constant as i−→∞.
Then 〈x∞, y∞〉 ∈ B and n(x∞, y∞) ≤ eventual value of n(xi, yi).

(4)

As stated this additional property is not true at the level of aΣ0
1 sets, but we

can obtain a parallel property at that level by using countably many norms.
Given x, x∗ ∈ R, p ∈ ω<ω of even length, say 2k, and h, h∗ ∈ ω, define

Hp(x
∗, h∗, x, h) to be played as follows: Players F and S alternate moves subject

to the format in Diagram 7. The moves are played sequentially from left to
right, starting from the vertical line, and each of the moves is a natural number.
At the end of an infinite run we set y = p⌢〈h〉⌢〈y(i) | 2k < i < ω〉 and
y∗ = p⌢〈h∗〉⌢〈y∗(i) | 2k < i < ω〉. The run is won by S if

〈x, y〉 6∈ B, or 〈x, y〉 ∈ B ∧ 〈x∗, y∗〉 ∈ B ∧ n(x∗, y∗) ≤ n(x, y),
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and otherwise the run is won by F.

p(0) · · · p(2k − 1) h S y(2k + 1) F y(2k + 2)
p(0) · · · p(2k − 1) h∗ F y∗(2k + 1) · · ·

Diagram 7. The game Hp(x
∗, h∗, x, h).

Hp(x
∗, h∗, x, h) may thus be viewed as a version of H(x∗, x) with y↾2k + 1

set equal to p⌢〈h〉 and y∗↾2k + 1 set equal to p⌢〈h∗〉. For reason of notational
convenience we refer to 〈y∗, y〉, rather than the sequence of actual moves, as a
run of Hp(x

∗, h∗, x, h).
Define �p by setting 〈x∗, h∗〉 �p 〈x, h〉 iff S has a winning strategy in the game

Hp(x
∗, h∗, x, h). The previous proofs adapt to show that �p is a prewellorder.

Let ϕp : R × ω → ON be the associated rank function, defined by ϕp(x, h) =

sup{ϕp(x̄, h̄) + 1 | 〈x̄, h̄〉 ≺p 〈x, h〉}. ϕp is then a aΣ0
1 norm on the set {〈x, h〉 |

p⌢〈h〉 is a winning position for I in G(Bx)}.
For p ∈ ω<ω of even length and x ∈ R let ψp(x) = min{ϕp(x, h) | h ∈ ω}

and let hp(x) be the smallest number h realizing the minimum, that is hp(x) =
min{h | ϕp(x, h) = ψp(x)}.

Exercise 14. Let x ∈ A. Let p ∈ ω<ω be a node of even length, say 2k.
Suppose that p(2i) = hp↾2i(x) for each i < k. Show that p is a winning position
for I in G(Bx).

Hint for the case k = 1. Let σ be a winning strategy for I in G(Bx). Let
h be the first move played by σ. By assumption p(0) = h∅(x), and it follows from
the definition of h∅(x) that ϕ∅(x, p(0)) ≤ ϕ(x, h). So S has a winning strategy,
τ say, in the game H∅(x, p(0), x, h). Diagram 8 shows how to win G(Bx) from
p, against an opponent who plays for II, using a composition of σ and τ . ⊣

G(Bx) σ h τ y(1) // σ y(2)

��

τ y(3) //

G(Bx) from p p(0) p(1)

OO

τ y∗(2) // II y∗(3)

OO
H(x,p(0),x,h)

Diagram 8. Hint for Exercise 14.

Claim 15. The norm ψ∅ is equivalent to the earlier norm ϕ on A, in the sense
that ψ∅(x

∗) ≤ ψ∅(x) iff ϕ(x∗) ≤ ϕ(x).

Proof. ψ∅(x
∗) ≤ ψ∅(x) iff (∀n) (∃n∗) so that S has a winning strategy

in H∅(x
∗, n∗, x, n). Prepending moves corresponding to the quantifier string

(∀n)(∃n∗) to the game H∅(x
∗, n∗, x, n) we obtain precisely the game H(x∗, x).

So ψ∅(x
∗) ≤ ψ∅(x) iff S has a winning strategy in H(x∗, x) iff ϕ(x∗) ≤ ϕ(x). ⊣

Exercise 16. Let Ap = {x | p is a winning position for I in G(Bx)}. Show

that ψp is a aΣ0
1 norm on Ap. In fact, show that the sets {〈p, x̄, x〉 | ψp(x̄) <

ψp(x)} and {〈p, x̄, x〉 | x̄ ∈ Ap ∧ ψp(x̄) ≤ ψp(x)} are in aΣ0
1.
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Hint. That {〈p, x̄, x〉 | ψp(x̄) < ψp(x)} is aΣ0
1 follows directly from (deter-

minacy and) the definitions. For {〈p, x̄, x〉 | x̄ ∈ Ap ∧ ψp(x̄) ≤ ψp(x)} use an
argument similar to that in the proof of Lemma 7. ⊣

We now approach the parallel of property (4):

Theorem 17. Let 〈xi | i < ω〉 be a sequence of reals in the set A = aB.
Suppose that limi−→∞ xi exists and let x∞ denote this limit. Suppose that for
each p, both ψp(xi) and hp(xi) are eventually constant as i−→∞. Let λp and
hp respectively be their eventual values. Then:

(1) x∞ belongs to A.
(2) For each p, 〈ψp(x∞), hp(x∞)〉 ≤Lex 〈λp, hp〉.

Proof. We show that ϕ∅(x∞, h∅) ≤ λ∅. A similar proof establishes that
ϕp(x∞, hp) ≤ λp for each p. Condition (2) of the theorem follows directly from
this. Condition (1) follows from the instance ψ∅(x∞) ≤ ψ∅(xi) (for all sufficiently
large i) using Lemma 5 and Claim 15.

For each p let k(p) < ω be large enough that ψp(xi) = λp and hp(xi) = hp for
all i ≥ k(p). Choose k(p) inductively so that k(p) > k(p̄) whenever p̄ is a strict
initial segment of p.

Let p0 = ∅ and let k0 = k(∅).
Suppose for contradiction that ϕ∅(x∞, h∅) 6≤ λ∅. Since λ∅ = ψ∅(xk0

) =
min{ϕ∅(xk0

, h) | h ∈ ω} this means that there is some h ∈ ω so that ϕ∅(x∞, h∅) 6≤
ϕ∅(xk0

, h). Fix such an h.
Using determinacy the fact that ϕ∅(x∞, h∅) 6≤ ϕ∅(xk0

, h) implies that F has
a winning strategy in the game H∅(x∞, h∅, xk0

, h) which we denote H(∞). Fix
such a winning strategy σ.

Now construct sequences {kn}, {pn}, {τ (n)}, and {yn} so that:

(a) p0 ⊂ p1 ⊂ p2 · · · and lh(pn) = 2n for each n. Let y∞ =
⋃

n<ω pn.

(b) y0(0) = h, y1(0) = h∅, and the pair 〈y∞, y0〉 is a run of H(∞) played
according to σ.

(c) pn+1 = pn
⌢〈hpn

, yn+1(2n+ 1)〉.
(d) kn+1 = k(pn+1).
(e) τ (n) is a winning strategy for S in the game Hpn

(xkn+1
, hpn

, xkn
, yn(2n))

which we denote H(n).
(f) The pair 〈yn+1, yn〉 is a run of H(n) played according to τ (n).

Diagram 9 illustrates the construction. The construction begins on the upper
left corner, with the assignments y0(0) = h and y1(0) = h∅. The construction
continues following the arrows in the diagram, assigning to each entry a value
either by setting it equal to hpn

for some n or by using one of the strategies,
as indicated. The symbol ′′ in an entry indicates copying the value of the entry
above it.

Note that the values of yn+1(2n) (set equal to hpn
) and yn+1(2n+ 1) (deter-

mined using σ) can be determined before kn+1 is known. (They do not depend on
τ (n).) Once these assignments are made we set pn+1 = pn

⌢〈yn+1(2n), yn+1(2n+
1)〉, and set kn+1 = k(pn+1). Since yn+1(2n) = hpn

, and since both kn and kn+1
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are greater than or equal to k(pn),

ϕpn
(xkn+1

, yn+1(2n)) = λpn

= ϕpn
(xkn

, hpn
)

≤ ϕpn
(xkn

, yn(2n)).

Thus S has a winning strategy in H(n) = Hpn
(xkn+1

, yn+1(2n), xkn
, yn(2n)),

allowing us to pick τ (n) subject to condition (e) above and continue with the
construction, following the arrows.
y∞ (whose entries are indicated in boldface in Diagram 9) and y0 together

form a run of H∅(x∞, h∅, xk0
, h), played according to σ. Since σ is winning for

F in the game,

(i) n(xk0
, y0) < n(x∞, y∞).

yn+1 and yn together form a run of H(n) according to τ (n). Since τ (n) is winning
for S in the game,

(ii) n(xkn+1
, yn+1) ≤ n(xkn

, yn).

It follows from this, and the wellfoundedness of ω, that n(xkn
, yn) is eventu-

ally constant as n−→∞. Now limn−→∞ xkn
= x∞ by the assumptions of the

theorem, and limn−→∞ yn = y∞ by construction. Using property (4) above it
follows that

(iii) n(x∞, y∞) ≤ the eventual value of n(xkn
, yn).

But from this and condition (ii) it follows that n(x∞, y∞) ≤ n(xk0
, y0), and this

contradicts condition (i). ⊣

k0

H
(0)

h

��

τ(0) y0(1)
// σ y0(2)

��

τ(0) y0(3)
// σ y0(4)

��

y0

k1

H
(1)

hp0
// σ y1(1)

OO

τ(0) y1(2)

��

τ(1) y1(3)

OO

τ(0) y1(4)

��

y1

k2

H
(2)

′′ ′′ hp1
// σ y2(3)

OO

τ(1) y2(4)

��

y2

k3
′′ ′′ ′′ ′′ hp2

//

y∞

H
(∞)

Diagram 9. The proof of Theorem 17

Definition 18. Let A ⊂ R. A countable sequence {θl} of norms on A is
called a scale on A if it satisfies the following limit condition:

(∗) Let xi for i < ω belong to A. Suppose that limi−→∞ xi exists and let x∞
denote the limit. Suppose that for each l, θl(xi) is eventually constant as
i−→∞, and let λl denote the eventual value. Then: x∞ ∈ A; and for
each l, θl(x∞) ≤ λl.

{θl} is called a Γ scale if both the sets {〈l, x̄, x〉 | θl(x̄) < θl(x)} and {〈l, x̄, x〉 |
x̄ ∈ A∧ θl(x̄) ≤ θl(x)} belong to Γ, or, equivalently, if there are sets U and V in
Γ and ¬Γ respectively so that

{x̄ | θl(x̄) ≤ θl(x)} = {x̄ | 〈x̄, x, l〉 ∈ U} = {x̄ | 〈x̄, x, l〉 ∈ V }
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for all l < ω and all x ∈ A.
Γ has the scale property if each set in Γ admits a Γ scale.

Remark 19. Many applications involve scales {θl} so that {〈x̄, x〉 | θl(x̄) <
θl(x)} and {〈x̄, x〉 | x̄ ∈ E ∧ θl(x̄) ≤ θl(x)} belong to Γ for each individual l,
meaning that each θl is a Γ norm, but the joins {〈l, x̄, x〉 | θl(x̄) < θl(x)} and
{〈l, x̄, x〉 | x̄ ∈ A∧θl(x̄) ≤ θl(x)} do not belong to Γ. We call such scales weakly
Γ, and say that Γ is weakly scaled if every set in Γ admits a weakly Γ scale.

Theorem 17 shows that {ψp, hp} is a scale on A = aB. But it need not be a

aΣ0
1 scale. The problem is with the shift from A to Ap in the definability of the

norms ψp in Exercise 16. We now solve this problem by restricting to p which
are winning for I in G(Bx), through a use of Exercise 14.

Call p ∈ ω<ω of even length 2k correct for x ∈ A just in case that (∀i < k)
p(2i) = hp↾2i(x).

Remark 20. The assumption in Theorem 17, that ψp(xi) and hp(xi) are even-
tually constant as i−→∞ for each p, can be weakened to apply only to p which
are correct for xi for almost all i (meaning all but finitely many i), as these are
the only p which come up during the proof of the theorem.

Note that for every r ∈ ω<ω of length k there is a unique p which is correct
for x and so that (∀i < k)p(2i+ 1) = r(i). Let

~αr(x) = 〈ψp↾0(x), hp↾0(x), ψp↾2(x), hp↾2(x), . . . , ψp(x), hp(x)〉

for this unique p.
Set x̄ Er x iff x 6∈ A or x̄ ∈ A ∧ x ∈ A ∧ ~αr(x̄) ≤Lex ~αr(x). It is clear that Er

is a prewellorder on R. Let ψ′
r : R → ON be its rank function.

Claim 21. The relations {〈r, x̄, x〉 | ψ′
r(x̄) < ψ′

r(x)} and {〈r, x̄, x〉 | x̄ ∈ A ∧
ψ′

r(x̄) ≤ ψ′
r(x)} are both aΣ0

1.

Proof. This is a simple calculation using Exercise 16, a parallel of the same
exercise for the norm ϕp, and the fact that if p is correct for x then x ∈ Ap,
given by Exercise 14. ⊣

Claim 22. Let xi be a sequence of reals in A and suppose that for each r,
ψ′

r(xi) is eventually constant as i−→∞. Suppose that p is correct for xi for
almost all i. Then ψp(xi) and hp(xi) are eventually constant as i−→∞.

Proof. Let k be such that lh(p) = 2k. Let r = 〈p(1), . . . , p(2k − 1)〉. Let
n be large enough that p is correct for xi for all i > n. Then ~αr(xi) =
〈ψp↾0(xi), hp↾0(xi), ψp↾2(xi), hp↾2(xi), . . . , ψp(xi), hp(xi)〉 for all i > n, and the
fact that ψp(xi) and hp(xi) are eventually constant follows from the fact that
~αr(xi) is eventually constant. ⊣

Corollary 23. The sequence {ψ′
r}r∈ω<ω is a aΣ0

1 scale on A = aB.

Proof. The definability required by Definition 18 is given by Claim 21. The
limit condition is given by Theorem 17 using Remark 20 and Claim 22. ⊣

Our work so far produced a aΣ0
1 scale on a given aΣ0

1 set, starting from a
norm satisfying property (4) above. But in fact the argument can be adapted to
start with a scale, rather than a single norm, and to use the limit condition in
Definition 18, rather than property (4). The result is the following theorem:
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Theorem 24. Let Γ be a pointclass. Let B ⊂ R2 belong to Γ. Let {θl}l<ω

be a Γ scale (respectively weakly Γ scale) on B. Suppose that Γ determinacy
holds. Define Hp, �p, ϕp, hp, ψp, and ψ′

r as above, but replacing the condition
“n(x∗, y∗) ≤ n(x, y)” with the condition

〈θ0(x
∗), . . . , θlh(p)/2(x

∗)〉 ≤Lex 〈θ0(x), . . . , θlh(p)/2(x)〉

throughout.
Then {ψ′

r}r∈ω<ω is a aΓ scale (respectively weakly aΓ scale) on the set aB.

Proof. The proofs given above generalize routinely to these settings. Let us
only make the following comments:

First, note that all the games that come up during the proofs have payoff sets
in Γ, since the norms θl are all Γ norms. The games are therefore determined.
This is important since the proofs require their determinacy.

Second, condition (i) in the proof of Theorem 17 is revised in the general
settings to state that

(i)′ θ0(xk0
, y0) < θ0(x∞, y∞).

Third, condition (ii) in the proof of Theorem 17 is revised in the general
settings to state that

(ii)′ 〈θ0(xkn+1
, yn+1), . . . , θn(xkn+1

, yn+1)〉 ≤Lex 〈θ0(xkn
, yn), . . . , θn(xkn

, yn)〉.

It follows from the revised condition, and from the wellfoundedness of the ordi-
nals, that θl(xkn

, yn) is eventually constant as n−→∞, for each l < ω. Using
the limit condition in Definition 18 then

(iii)′ θl(x∞, y∞) ≤ eventual value of θl(xkn
, yn) as n−→∞, for each l.

From this and condition (ii)′ it certainly follows that θ0(x∞, y∞) ≤ θ0(xk0
, y0),

contradicting condition (i)′. ⊣

Theorems 24 and 13 are propagation theorems. They show that some desirable
properties, the prewellordering property in the case of Theorem 13 and scale
properties in the case of Theorem 24, propagate from a pointclass Γ to the
pointclass aΓ. Infinite games are central to the proofs of both theorems, and
both theorems require determinacy.

We noted above that the prewellordering property can be used to settle the
classical problem of reduction. The scale property too has applications to clas-
sical problems, specifically to the problem of uniformization. Roughly speaking
the problem involves definably selecting elements from non-empty sets of reals.
The following claim is an indication of how scales connect with such selections.

Claim 25. Let E ⊂ R be non-empty and let {θl}l<ω be a scale on E. For
x ∈ R set ~α(x) = 〈θ0(x), x(0), θ1(x), x(1), . . . 〉. Let 〈λ0, h0, λ1, h1, . . . 〉 be the
lexicographic infimum of the set {~α(x) | x ∈ E}. (The infimum is character-
ized precisely by the condition that for each n, 〈λ0, h0, . . . , λn−1, hn−1〉 is the
lexicographically smallest element of {~α(x)↾n | x ∈ E}.)

Then the real y = 〈hn | n < ω〉 belongs to E.

Proof. For each n pick xn ∈ E so that ~α(xn)↾n = 〈λ0, h0, . . . , λn−1, hn−1〉.
Note that xn −→

n−→∞
y and that θl(xn) is equal to λl for all n > l. By the limit

condition in Definition 18 it follows that y ∈ E. ⊣
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p(0) · · · p(2k − 1) h S y(2k + 1) F y(2k + 2)
p(0) · · · p(2k − 1) h∗ F y∗(2k + 1) · · ·

Diagram 10. The game Hp(h
∗, h).

Thus there is a canonical way to select an element of E given a scale on E.
This canonical selection process can be turned into a solution for the problem of
uniformization, see Kechris–Moschovakis [1, §3.1].

In a similar fashion, scales can be used to select canonical winning strategies,
producing aΓ winning strategies in Γ games won by the player aiming to enter
the Γ set:

Exercise 26. Let E ⊂ R belong to a pointclass Γ and let {θl}l<ω be a Γ scale
on E. Suppose that every length ω game with payoff in Γ is determined. Suppose
that player I wins the game Gω(E). Prove that player I has a winning strategy
σ which belongs to the pointclass aΓ, meaning that the relation (p is winning for
I) ∧ σ(p) = h is aΓ.

Hint. Given p ∈ ω<ω of even length, say 2k, and h, h∗ ∈ ω, define Hp(h
∗, h)

to be played according to Diagram 10, with the moves played sequentially from
left to right, starting from the vertical line. At the end of an infinite run set
y = p⌢〈h〉⌢〈y(i) | 2k < i < ω〉 and y∗ = p⌢〈h∗〉⌢〈y∗(i) | 2k < i < ω〉. The run
is won by S if

y 6∈ E, or

y ∈ E ∧ y∗ ∈ E ∧ 〈θ0(y
∗), . . . , θlh(p)/2(y

∗)〉 ≤Lex 〈θ0(y), . . . , θlh(p)/2(y)〉,

and otherwise the run is won by F.
Let Q be the set of positions p ∈ ω<ω of even length from which player I can

continue to win Gω(E). For p ∈ Q and h, h∗ ∈ ω set h∗ �p h iff S has a winning
strategy in the gameHp(h

∗, h). Notice the similarity between the definitions here
and the ones preceding Exercise 14 (with the modification indicated in Theorem
24). Adapting the proofs connected to the exercise show that:

(i) �p is a prewellorder on ω.

Let σ(p) be the smallest number in the set {h | h is �p minimal}. Show that:

(ii) The relation p ∈ Q ∧ σ(p) = h is aΓ.
(iii) If p is consistent with σ then p is a winning position for I in Gω(E).
(iv) σ is a winning strategy for I in Gω(E).

Items (i) and (ii) involve adaptations of proofs preceding Exercise 14. Item (iii),
which precisely parallels Exercise 14, is a warm-up for item (iv). ⊣

Claim 25 and Exercise 26 are examples of basic applications of norms and
scales in descriptive set theory. The papers in Part II of this volume contain
many more applications, demonstrating the fundamental importance of scales in
the study of consequences of determinacy.

The papers in Part I for the most part concentrate on establishing the scale
property for various pointclasses. In many cases this is done through propaga-
tion, building on and expanding the introductory methods presented here.
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