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Abstract. We give an inner model theoretic proof of the Kechris–Martin theorem,

stating under determinacy that the pointclass Π1
3 is closed under existential quantifiers

on ordinals below uω , the ωth uniform indiscernible, and of related results, including a

characterization of Π1
3 using Σ1 truth in least admissible structures over T2, the Martin–

Solovay tree for Π1
2. The inner model theoretic proofs rely on approximations for T2 in

models for one Woodin cardinals, and a correctness lemma for these approximations.

§1. Introduction. The Kechris–Martin theorem is a fundamental result in
the study of determinacy, stating that the pointclass Π1

3 is closed under existen-
tial quantification over ordinals below uω, the ωth uniform indiscernible, which
under the full axiom of determinacy is equal to ℵω. There are by now several
approaches to proving the theorem, that range from the purely descriptive set
theoretic, to mixtures of descriptive set theory and inner model theory at the
level of sharps for reals. This paper presents a different proof, that relies purely
on inner model theoretic methods, at the levels of sharps for reals and sharps
for one Woodin cardinal. The hope is that any additional methods for proving
the theorem may help generalize it; generalizations of the theorem to higher lev-
els of the projective hierarchy, with quantification over correspondingly greater
ordinals of course, are still open.
To give a precise statement of the Kechris–Martin theorem we need to say

exactly what we mean by quantification over ordinals below uω. For this, the
ordinals must be coded as reals. Let u0 = ω and let un, 1 ≤ n < ω, enumerate
the first ω uniform indiscernibles in increasing order. (Under the full axiom of
determinacy, un = ωn.) Define a code for an ordinal α ∈ [un, un+1) to be a
pair 〈x♯, t(v1, . . . , vn)〉 so that tL(x)[u1, . . . , un] is equal to α. t(v1, . . . , vn) here
denotes a term in the language of set theory. Precisely it is a formula in variables
v1, . . . , vn and y. In any model M with a canonical wellordering of its elements,
tM [a1, . . . , an] is the least y so that the formula holds of a1, . . . , an and y if such
y exists, and undefined otherwise.
Given a code w = 〈x♯, t(v1, . . . , vn)〉, we write |w| for the ordinal α that it

codes. We use the letter w to range over codes throughout this paper.
A set of ordinals A ⊆ uω belongs to the pointclass Γ if the set {w | |w| ∈ A}

belongs to Γ. Note that since codes are elements of R×ω, the question of whether
{w | |w| ∈ A} is in Γ makes sense.
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An individual ordinal α < uω belongs to the pointclass Γ if it has a code w in
Γ. This concept has non-trivial meaning in case Γ is a lightface pointclass.
We can now phrase the Kechris–Martin theorem precisely. The theorem itself

is a consequence of a basis theorem for Π1
3 sets of ordinals, which in turn is a

consequence of a basis lemma for bounds on Σ1
3 sets. All lemmas and theorems

here are in ZF+ DC+∆1
2 determinacy.

Lemma 1.1 (Kechris–Martin [1]). Let A ⊆ un+1 be Σ1
3 and bounded below

un+1. Then A has a ∆1
3 bound.

Theorem 1.2 (Kechris–Martin [1]). Every non-empty Π1
3 set of ordinals be-

low uω has a ∆1
3 member.

Theorem 1.3 (Kechris–Martin [1]). Π1
3 is closed under existential quantifica-

tion over ordinals below uω.

Theorem 1.3 is an immediate consequence of Theorem 1.2. Indeed, for ev-
ery n < ω, Theorem 1.3 for subsets of un+1 is an immediate consequence of
Theorem 1.2 for subsets of un+1. Theorem 1.2 in turn can be proved using
Lemma 1.1, as follows. Let A ⊆ uω be Π1

3 and non-empty. Let n < ω be
least so that A ∩ un+1 is non-empty. Inductively we may assume that The-
orem 1.2 holds for subsets of un, and hence so does Theorem 1.3. The set
B = {α < un+1 | A has no elements below α} is bounded. From any code for
α ∈ [un, un+1) one can define a surjection of un onto α, and this together with
Theorem 1.3 for subsets of un allows proving that the complement of B is Π1

3.
So B itself is Σ1

3. By Lemma 1.1, it has a ∆1
3 bound, say β = |w| where w is

∆1
3. Since β bounds B, A ∩ β is non-empty. If n = 0, it is easy to see that

from w one can define ∆1
3 codes for all ordinals smaller than β, and this includes

in particular some α ∈ A. If n > 0 then using w one can define a surjection
f : un → β, so that f−1(A∩β) is Π1

3, and for any ∆1
3 ordinal ξ < un, f(ξ) is ∆

1
3.

By induction f−1(A ∩ β) has a ∆1
3 element, and the image of this ordinal under

f is then a ∆1
3 element of A.

The following corollary is an application of the Kechris–Martin theorem. To-
gether with Remark 1.5, it gives a characterization of the pointclass Π1

3 in terms
of definability over T2, the Martin–Solovay tree for Π1

2. (This is a tree on ω×uω
that projects to a universal Π1

2 set.)

Corollary 1.4 (Kechris–Martin [1]). For x ∈ R, let αx > uω be least so that
Lαx

(T2, x) is admissible. Let ψ be Σ1. Then the set {x | Lαx
(T2, x) |= ψ(T2, x)}

is Π1
3.

Remark 1.5. The converse of Corollary 1.4 is also true: every Π1
3 set is of the

form {x | Lαx
(T2, x) |= ψ(T2, x)} for a Σ1 formula ψ. This is easily seen using

the fact that T2 projects to a universal Π1
2 set.

In the following sections we will directly prove the corollary, using inner model
theoretic methods. Using the same methods we will also prove Theorem 1.2
(which subsumes Lemma 1.1) and Theorem 1.3.
The proofs rely on approximations of the structures Lαx

(T2, x) in inner models
for one Woodin cardinal, and a lemma relating the approximations to the original
structures. The approximations themselves are defined in Sections 4 and 5.
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Given a model N , the approximation TN of T2 in N is simply (the transitive
collapse of) the restriction of T2 to ordinals with codes that belong to N . The
approximation of Lαx

(T2, x) is an initial segment of the least admissible structure
LγN

x
(TN , x) in N over TN and x.

Lemma 5.2 gives a certain correctness for approximations in sufficiently it-
erable inner models, showing that there is a Σ1 elementary embedding of the
approximations into the original structures. The key to its proof is Corollary
4.8, that shows that an approximating structure in a sufficiently iterable model
can be elementarily enlarged to absorb a code for any given ordinal below uω.
Using the correctness of the approximating structures, Π1 statements over

Lαx
(T2, x) can be reduced to statements about the existence of sufficiently iter-

able inner models whose approximating structures satisfy the given statements.
The models are countable, hence coded by reals, and the iterability conditions
used are Π1

2. This allows connecting Π1 statements over Lαx
(T2, x) with Σ1

3 con-
ditions on reals, yielding a proof of Corollary 1.4. Similar computations using
the approximations and the complexity of the iteration condition yield Theorems
1.2 and 1.3.

§2. Preliminaries. We assume that the reader is familiar with at least the
basics of extenders and iteration trees. This section describes the results that we
will need from the theory of fine structural inner models. These results mainly
concern models satisfying weak conditions of iterability. The main result in
the section is Lemma 2.2, which shows that a weak iterability condition of Π1

2

complexity is enough to identify H which can form the hereditarily countable
sets of models with a Woodin cardinal that are fully iterable above their ω1.
The weak notion of iterability that we use is due to Martin–Steel [2]. The
lemma is implicit in the results of Section 6 of [2]. Using a stronger notion of
weak iterability (but of the same projective complexity, Π1

2), Woodin proved a
stronger claim that produces fully iterable models, without having to assume
their existence a priori, from the weakly iterable ones. But we will not go into
this argument since it is not necessary for our purposes.
A model throughout the paper is a pair 〈M, EM 〉, where M satisfies ZFC and

EM is an M class of extenders of M . Iterability for M is always relative to EM ,
meaning that it applies only to trees using extenders from EM and its images
along the iteration. Large cardinal properties in M are interpreted relative to
EM . In particular, we say that δ is Woodin in M just in case that this is
witnessed by extenders in EM , or more precisely, just in case that for every
function f : δ → δ in M , there is an extender E ∈ EM which is iME (f)(κ) strong
in M , where κ = crit(E) and iME is the ultrapower embedding of M by E.
A modelM is almost fine structural if it is fine structural above its hereditarily

countable sets. More precisely, M is almost fine structural if it is of the form

M = Lν [ ~E](H), whereH consists of all hereditarily countable sets ofM (together

with some predicate wellordering them in order type ωM
1 ), and ~E is a coherent

sequence of extenders over H . The model is 1-small if there is no δ so that

L[ ~E↾ δ](H) |=“δ is a Woodin cardinal” and ~E includes a sharp above δ. We
work with almost fine structural models below. Iteration trees on such models
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are allowed to use partial extenders on the sequence ~E, leading to fine structural

truncations along the tree. But the trees can only use extenders of ~E, and since
all these extenders are above H , with both extender index and critical point
above ωM

1 , this implies in particular that there are no truncations to countable
initial segments of M . Another way to put this is that iterability in this paper
(of any kind, including full) for almost fine structural models is always restricted
to trees above the hereditarily countable sets of the model.
By an essentially countable model we mean a model M of the form Lν(V

M
δ ),

where ν = ωV
1 , and δ is countable in V . The model is determined completely

by W = VM
δ , and we say that W extends to the essentially countable model M .

Abusing notion, we sometimes say that a property holds of W to mean that it
holds of M .
A set A of essentially countable models belongs to a pointclass Γ if the set of

structures x on ω which are isomorphic to VM
δ for M = Lω1

(VM
δ ) ∈ A, belongs

to Γ.
An essentially countable model M is Π1

2 iterable if for every countable, normal
iteration tree T on M and every α < ω1, there is a maximal branch b of T so
that either: (a) Mb = MT

b is wellfounded of ordinal height less than α; or else
(b) the wellfounded part of Mb contains α. (Option (a) can only occur if there
are truncations along b, since otherwise Mb, if wellfounded, has ordinal height
ωV
1 .) Mb =MT

b here is the direct limit of the models of T along b (or a tail-end
of b in case of truncations). The set of Π1

2 iterable essentially countable models
is Π1

2, hence the terminology name.
For ξ < lh(T ), the branch [0, ξ]T of T is called Σ1

2 justified if there exists some
countable α = αξ so that [0, ξ]T is the only cofinal branch of T ↾ ξ satisfying
(a) or (b) of the previous paragraph. The tree T is Σ1

2 justified if all branches
[0, ξ]T for ξ < lh(T ) are Σ1

2 justified. This is a Σ1
2 condition on T , hence

the terminology name. If T is Σ1
2 justified, and M is Π1

2 iterable, then for
α ≥ sup{αξ | ξ < lh(T )}, the maximal branch b given by Π1

2 iterability must be
cofinal in T .
Given a normal iteration tree T onM , we use ∆(T ) to denote the lined-up part

of T , meaning the union
⋃

ξ<lh(T )M
T
ξ ‖ strength(ET

ξ ). δ(T ) denotes On∩∆(T ).

Every strict initial segment of ∆(T ) is an initial segment ofMT
ξ for all sufficiently

large ξ < lh(T ). (Indeed, ∆(T ) is the largest model with this property.) This
implies in particular that ∆(T ) is an initial segment ofMb for any cofinal branch
b of T .

Claim 2.1. Let M be essentially countable. Suppose that M is Π1
2 iterable, T

is a normal iteration tree on M of countable length, T is Σ1
2 justified, and there

is no Σ1
2 justified cofinal branch through T . Then T must have limit length, and

δ(T ) must be a Woodin cardinal in L(∆(T )).

Proof. The case of successor length is easily ruled out, using the Π1
2 iterabil-

ity ofM and Σ1
2 justification of existing branches of T to ensure that the unique

cofinal branch of T is Σ1
2 justified. We work on the limit case.

If δ(T ) fails to be Woodin in L(∆(T )), then there is some countable γ so that
δ(T ) fails to be Woodin already in Lγ(∆(T )). By Martin–Steel [2], this implies
that there can only be one cofinal branch b of T so that Lγ(∆(T )) ⊆Mb. Since
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∆(T ) is contained in all direct limits along cofinal branches of T it follows that
there can only be one cofinal branch b so that γ ⊆Mb.
Using standard fine structural arguments it follows from this that there is at

most one cofinal branch b so that eitherMb is wellfounded of ordinal height < γ,
or γ is contained in the wellfounded part of Mb. (The former can only occur if
there are truncations along b.) It remains to prove that a cofinal branch with
one of these properties exists. Π1

2 iterability of M guarantees the existence of
a maximal branch with one of these properties. Increasing γ if needed we may
assume it witnesses that all branches [0, ξ]T for ξ < lh(T ) are Σ1

2 justified, and
the resulting uniqueness implies that the maximal branch given by Π1

2 iterability
is in fact cofinal. ⊣

Lemma 2.2. Suppose that for every real x, there is a fully iterable inner model
for the sharp of one Woodin cardinal over x. Let M be essentially countable,
almost fine structural, and 1 small. If M is Π1

2 iterable, then there is a fully
iterable model N (essentially countable, almost fine structural, and 1 small) with
exactly the same reals.

Proof. If M itself is fully iterable then there is nothing to prove. Suppose
then that M is not fully iterable.
Let H consists of the hereditarily countable sets of M (together with some

predicate for a wellordering of H that belongs to M and has order type ωM
1 ).

Recall that M ♯
1(H) is the minimal fully iterable fine structural inner model for

the sharp of one Woodin cardinal overH . It exists by assumptions of the lemma,

as H is countable in V . If all the reals in M ♯
1(H) belong to H (in other words to

M), then we can take N to be LωV
1
(M ♯

1(H)‖ δ) where δ is the Woodin cardinal

of M ♯
1(H). The model is fully iterable, and has the same reals as M , namely

the reals in H . (Recall that full iterability for an almost fine structural model
involves only trees above the hereditarily countable sets of the model. This is

the iterability that the claim states for N , and this iterability holds for M ♯
1(H)

in case its hereditarily countable sets are exactly the ones in H .)

Suppose then for contradiction that M ♯
1(H) has reals outside H . Let P be the

first level of M ♯
1(H) so that a real outside H is definable over P . In particular

then P projects to ω.
M and P are both fine structural aboveH , which has exactly their hereditarily

countable sets. We may therefore form a fine structural comparison of the models
above H . Let T on M and U on P be the trees of the comparison. U is formed
using the iteration strategy for P . T is formed by picking unique Σ1

2 justified
branches when possible, ending the comparison at the first stage where there is
no Σ1

2 justified cofinal branch on the M side.
Note that it is impossible for the end iterate of P in the comparison to be a

strict initial segment of the end iterate of M , since P projects to ω. Similarly it
is impossible for the two end iterates to be equal if the M side has a truncation.
It is also impossible for the end iterate of M to be a (possibly non-strict) initial
segment of the end iterate of P if there are no truncations on the M side, since
M is not iterable, while all iterates of P are. Thus the comparison must fail.
As P is fully iterable, there are only two possible reasons for this. One is that
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lh(T ) < ω1 and there is no Σ1
2 justified cofinal branch through T . The other is

that lh(T ) = ω1 and there is no cofinal branch through T .
Consider first the case that lh(T ) < ω1. U leads to a final model, call it P ∗.

P ∗ extends ∆(T ), and since P projects to ω, P ∗ must project below δ(T ). (If
there are no truncations on the P side of the comparison, P ∗ projects to ω.
Otherwise it may project higher, but still below δ(T ) as all extenders used in
the comparison have critical points below δ(T ).)
Since M is Π1

2 iterable, T is Σ1
2 justified, and there is no Σ1

2 justified cofinal
branch through T , by Claim 2.1, δ(T ) is Woodin in LωV

1
(∆(T )). It follows

form this, the fact that P ∗ extends ∆(T ), and the fact that P ∗ is 1 small, that
P ∗ cannot contain a sharp for ∆(T ), and hence P ∗ is an initial segment of
LωV

1
(∆(T )).

But then since P ∗ projects below δ(T ), it follows that δ(T ) is not a cardinal
in LωV

1
(∆(T )), let alone a Woodin cardinal. This contradiction completes the

proof in case lh(T ) < ω1.
The case that lh(T ) = ω1 is similar, but involves working in an extension

V [G] of V by col(ω, ω1). M (or rather its natural lengthening to an essentially
countable model in V [G]) continues to be Π1

2 iterable in the extension. T is
countable in the extension and has no Σ1

2 justified cofinal branch. (If there were
a Σ1

2 justified branch in the extension, then its uniqueness, combined with the
homogeneity of the collapse, would allow proving that the branch belongs to V .)
This leads to a contradiction as in the case lh(T ) < ω1. ⊣

§3. Genericity iterations. The key tool we will use in proving Corollary
4.8 is a genericity iteration. Recall that genericity iterations are iterations of a
model M that allow absorbing an arbitrary real into a generic extension of the
end iterate. The first genericity iteration was discovered by Woodin. Later on a
second form of a genericity iteration was discovered by Neeman [3, 4]. The two
iterations use different posets and give rise to iteration trees of different formats,
a general comparison tree in the case of Woodin’s genericity iterations, and a
tree of length ω in the case of Neeman’s iterations. We will use a combination
of the two methods here, that will produce iteration trees of length ω to make
the given real generic, while producing an additional real, generic for Woodin’s
extender algebra.
Given a cardinal δ in a model of ZFC, let W

M
δ denote Woodin’s extender

algebra built using formulas and extenders of von-Neumann rank less than δ

in the model M . Conditions in Wδ are transfinite formulas ϕ generated by
negations, conjunctions of length < δ, and disjunctions of length < δ, from
atomic formulas ẋ(n) = m (where n,m < ω and ẋ are symbols of the language).
The ordering is a natural implication ordering given certain essential axioms that
refer to and use extenders. We will not go into the exact nature of these axioms,
but mention some of the resulting properties of WM

δ . The first is the following:

Theorem 3.1 (Woodin). Suppose that δ is a Woodin cardinal in M . Then
W

M
δ is δ-c.c. in M .

The definition of the extender algebra can also be made in case δ = On, result-

ing in a class poset. For any model M , the algebra W
M
δ is equal to (WOn)

V M
δ .
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In case δ is a Woodin cardinal of M , the fact that W
M
δ is δ-c.c. in M implies

that every maximal antichain of WM
δ in M belongs to VM

δ . Thus, any filter H

that is generic for (WOn)
V M
δ over VM

δ is also generic for WM
δ over M .

Let y be a real, which we view as a function from ω into ω. Then y generates
a filter on W

M
δ . The filter, call it Hy, consists of all conditions ϕ so that y |= ϕ.

(A real y satisfies an atomic formula ẋ(n) = m iff y(n) = m. Satisfaction
for formulas of greater complexity is defined in the natural way by transfinite
induction.) We say that y is generic for WM

δ over M if Hy is generic, and write
M [y] for M [Hy]. We say that y is generic below a condition ϕ if in addition
ϕ ∈ Hy.
The real y is easily defined from Hy, as y(n) = m iff ẋ(n) = m belongs to

Hy. So y belongs to the generic extension by Hy. We refer to Hy as the filter
generated by y, and to y as the real determined by Hy.
We say that an extender of M is below δ if it belongs to VM

δ .

Theorem 3.2 (Woodin). Suppose that M is fully iterable, δ is a Woodin car-
dinal of M , and VM

δ is countable in V . Then for every real y (in V ) there is a
countable iteration tree T on M using extenders below δ, with a final model M∗

and final embedding j : M → M∗, so that y is generic for W
M∗

j(δ) = j(WM
δ ) over

M∗.

We refer the reader to Steel [5] for a definition of the extender algebra, and
proofs of Theorems 3.1 and 3.2. Let us here only note that Wδ is defined in such
a way that extenders are obstructions to genericity. The proof of Theorem 3.2
is similar to a comparison argument, eliminating obstructions to the genericity
of x in much the same way that comparisons eliminate disagreements.
The genericity iteration in Neeman [3, 4] is of a different nature, constructing

an iteration tree not through a transfinite process of eliminating obstructions,
but through a continuous process of length ω, derived from proofs of determinacy.

Theorem 3.3 (Neeman [3, 4]). Suppose that δ is a Woodin cardinal in M ,
and VM

δ+1 is countable in V . Then there is a continuous function which associates
to every real z, a length ω iteration tree T = T (z) using extenders below δ, with
a distinguished branch called the even branch, so that:

1. The even branch of T leads to an illfounded model.
2. For every odd branch b (meaning a branch b other than the even branch),

there a generic g for col(ω, jb(δ)) over Mb so that z ∈Mb[g].

Moreover, δ is fixed by all cofinal branches through the tree, the extenders used
have strengths cofinal in δ, and given any κ < δ, one can arrange that all critical
points used in T are greater than κ. A code for such a continuous function
z 7→ T (z) exists in any extension of M by col(ω, δ).

The map jb in the theorem is the direct limit embedding of models of T along
b, and Mb is the direct limit model. If M is iterable, then T has a branch b so
thatMb is wellfounded. Since the even branch of T leads to an illfounded model,
b must be odd, and hence by condition (2), z belongs to a generic extension of
Mb.
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For the arguments in this paper we need a certain combination of the two
methods for making reals generic. This combination is given by the next corol-
lary. It uses trees of length ω, as in Theorem 3.3, to make a given real x and
an additional real y generic for the collapse, while at the same time making y
generic for the extender algebra below a given condition ϕ.

Corollary 3.4. Suppose that δ is a Woodin cardinal in M , and VM
δ+1 is

countable in V . Let W = W
M
δ . Let ϕ be a condition in W. Then there is a

continuous function which associates to every real x, a length ω iteration tree
T = T (x) using extenders below δ and a real y = y(x), so that:

1. The even branch of T leads to an illfounded model.
2. For every branch b of T , jb(ϕ) = ϕ and y is generic for jb(W) over Mb,

below the condition ϕ = jb(ϕ).
3. For every odd branch b, there is a generic g for col(ω, jb(δ)) over Mb so

that both x and y belong to Mb[g].

A code for such a continuous function x 7→ T (x), y(x) exists in any extension of
M by col(ω, δ).

Proof. Let κ < δ be large enough that ϕ ∈ VM
κ . Such κ exist since W ⊆ VM

δ .
Let f denote the continuous map given by Theorem 3.3, associating to each

real z an iteration tree T = f(z), with all its critical points greater than κ, fixing
δ, and using extenders of strengths cofinal in δ, to make z generic over direct
limits along the odd branches. We think of z as coding a pair 〈x, y〉 of reals, and
will refer to f(z) as f(x, y).
Given x, construct y, ~ϕ = 〈ϕi | i < ω〉, and T simultaneously, so that:

1. T = f(x, y).
2. ~ϕ is a descending sequence in (WOn)

∆(T ), ϕ0 = ϕ, and ~ϕ meets the down-
ward closure of every maximal antichains of (WOn)

∆(T ) in ∆(T ).
3. y(n) = m iff for some i, ϕi is stronger than ẋ(n) = m.

These objects can be constructed continuously in x, since f is continuous,
and since ∆(T ) is determined continuously from T . (More precisely, the se-
quence of restrictions ∆(T )‖ strength(ET

i ) = MT
i ‖ strength(ET

i ) is determined
continuously from x, and converges to ∆(T ).)
By conditions (2) and (3), the upward closure H of {ϕi | i < ω} is generic for

(WOn)
∆(T ) over ∆(T ), and the real it determines is y. Since δ = jb(δ) is a

Woodin cardinal in Mb for every cofinal branch b of T , and VMb

δ = ∆(T ), this

implies that H , and hence y, is generic for jb(W) = W
Mb

δ over Mb, as required
for condition (2) of the corollary. Conditions (1) and (3) are immediate from the
use of Theorem 3.3. ⊣

§4. The main lemma. We work now in a universe satisfying ZF+DC+ “for
every real x there is a fully iterable inner model for the sharp of one Woodin
cardinal over x”. By a result of Woodin, the inner models assumption is a
consequence of, and indeed equivalent to, ∆1

2 determinacy.
LetM be essentially countable. Note that since the ordinal height ofM is ωV

1 ,
M is correct about being a sharp. Precisely, if z is a real in M and M |= z = r♯,
then z is indeed equal to r♯. It follows from this that being a code for an ordinal
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less than uω reflects from M to V . The correctness of M about being a sharp
also implies correctness about the restriction of T2 to ordinal codes in M . The
following fact phrases this precisely. Its proof relies on the definition of T2. For
our purposes it can be taken as a property of the tree. It is the only property of
the tree that we will use in proving Theorem 1.4.

Fact 4.1. There is a formula ψ so that for every essentially countableM with
the reals of M closed under sharps, every sequence 〈w0, . . . , wi−1〉 ∈M of codes
for ordinals below uω, and every sequence 〈n0, . . . , ni−1〉 of natural numbers,
〈n0, |w0|, . . . , ni−1, |wi−1|〉 is a node in T2 iff M |= ψ(〈n0, w0, . . . , ni−1, wi−1〉).

Define ZM to be the set of ordinals below uω with codes inM . Let XM be the
transitive collapse of ZM , and let c = cM : ZM → XM be the transitive collapse
embedding. Since M is correct about codes for ordinals below uω, the function
w 7→ c(|w|), on w ∈ M which are codes for ordinals below uω, belongs to M .
Let TM be the image of T2↾ (ω ×ZM ) under c. TM is a tree on ω ×XM , and by
Fact 4.1 it belongs to M .
For each real x ∈M let γx = γMx be the least ordinal above sup(XM ) so that

Lγx
(TM , x) is admissible. Let γM = sup{γx | x ∈M}. Let AM be the structure

LγM
(RM , TM ). Since AM has all the reals of M , it can identify which w ∈ M

are codes, and compute the map w 7→ c(|w|).

Remark 4.2. The important properties of AM that we will use later on are:

1. AM belongs to M , and depends only on the reals of M .
2. If σ : M →M∗ is elementary, then the restriction of σ to AM is an elemen-

tary embedding of AM into AM∗ .
3. If σ : AM → AM∗ is elementary, then for every real x ∈ M , the restriction
π of σ to LγM

x
(TM , x) is elementary from LγM

x
(TM , x) into LγM∗

x
(TM∗ , x),

with the property that for each code w ∈M , π(cM (|w|)) = cM∗(|w|).
4. If σ : AM → AM∗ is elementary, a ∈ AM , and there is a real y ∈ M∗ so

that LγM∗ (TM∗ , σ(a), y) |= θ(TM∗ , σ(a), y), then there is a real y ∈ M so
that LγM

(TM , a, y) |= θ(TM , a, y).

These properties are immediate from the definition. The fact that π(cM (|w|)) =
cM∗(|w|) in condition (3) relies on the observation that AM can compute the
map w 7→ c(|w|).

For a real v let v+ denote the first admissible above ωV
1 in L(v). Let v+

α denote
the first admissible in L(v) above α.
Call y a putative sharp for r if y codes a complete, consistent theory of ω

indiscernible ordinals, with the sentence V = L(ṙ), the sentences ṙ(n) = m for
all m,n < ω so that r(n) = m, and the sentences ṙ(n) 6= m for m,n < ω so that
r(n) 6= m. We refer to r as ry . Given an ordinal ρ, we use y[ρ] to denote the
theory of ρ (increasing) indiscernibles, satisfying the sentences of y. Precisely
this means that the restriction of y[ρ] to any finite set of indiscernibles is equal
to the restriction of y to any set of indiscernibles of the same size. Then y[ρ]
is complete and consistent. Since it includes the sentence V = L(ṙ), it has a
minimal model up to isomorphism. This is the model where every element is
definable from finitely many indiscernibles. We use S(y, ρ) to denote this model.
The putative sharp y is ρ iterable if S(y, ρ) is wellfounded, and y is a true sharp
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if for every ρ (equivalently every ρ < ω1), S(y, ρ) is wellfounded. In this case y
is equal to r♯.
The set of putative sharps is Borel. The set of true sharps is Π1

2. We will work
with putative sharps that are partially iterable. Let α < ω1. A putative sharp
y reaches α if there exists some ρ so that α+ 1 is contained in the wellfounded
part of S(y, ρ). Note that the least ρ witnessing this is smaller than or equal to
α + 1. It follows that the set of putative sharps which reach α is Σ1

1 in a code
for α.
For a putative sharp y that reaches α, let t(y, α) be the order type of the

ordinals in S(y, ρ), where ρ ≤ α + 1 is the least witness that y reaches α. From
y and any linear order on ω of order type ρ, one can recursively obtain a linear
order on ω of order type t(y, α). It follows that there is a Σ1

1 function U so that:
(a) the domain of U contains the set of pairs 〈y, a〉 where a is a wellorder on ω,
y is a putative sharp, and y reaches the order type of a, call it α; and (b) U(y, a)
is a linear order on ω of order type t(y, α). We will use this function in the proof
of the next lemma. For now, let us just note that if t(y, α) = o.t.(U(y, a)) is
wellfounded, then it is greater than r+α (where r = ry), since S(y, ρ) is a model
of ZFC and hence certainly admissible.

Lemma 4.3. Let M be essentially countable, almost fine structural, and fully
iterable. Suppose that δ = δM is a Woodin cardinal of M , and VM

δ+1 is countable
in V . Let r be a given real. Then there is an essentially countable, almost fine
structural, Π1

2 iterable model N , with a Woodin cardinal δN , so that:

1. There is an elementary embedding from AM into AN .
2. There is a real v ∈ N with v+ > r+.

Proof. Call a model N pre-nice if it is essentially countable, almost fine
structural, and has a Woodin cardinal δN .
Suppose the lemma fails. Let M∗ be the result of iterating M to make the

real r♯ generic for Woodin’s extender algebra, let j : M → M∗ be the iteration
embedding, and let δ∗ = j(δ). Let W

∗ = j(WM
δ ) = W

M∗

δ∗ . Since M and M∗

have the same reals, AM∗ = AM . The following statement (†) is then true of r♯

in M∗[r♯]: r♯ is a true sharp and for every pre-nice N added by col(ω, δ∗), either

1. there is no elementary embedding from AM∗ into AN , or
2. N is not Π1

2 iterable, or
3. for every v ∈ N , there is an ordinal α so that v+

α ≤ r+α.

This statement follows immediately from our assumption for contradiction that
the lemma fails, noting that M∗[r♯] has ordinal height ωV

1 , hence Π1
2 iterability

reflects from M∗[r♯] to V , and if v+

α > r+α for all α ∈M∗[r♯], then v+ > r+.
Let ϕ∗ be a condition in W

∗ that forces (†) over M∗. By reflection in M∗,
there is some initial segment P ∗ of M∗ (large enough that δ∗,W∗ ∈ P ∗) so that
ϕ∗ forces (†) over P ∗. Let P be the transitive collapse of the Skolem hull of
δ∗ and ϕ∗ in P ∗. Let ϕ be the collapsed image of ϕ∗. Then P is a countable
transitive model inside M∗, and therefore belongs to M . The condition ϕ forces
(†) over P .
P is fully iterable, since it embeds into an initial segment P ∗ of M∗. Again

since P embeds into P ∗, AP embeds elementarily into AP∗ , which in turn is equal
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to AM∗ = AM as P ∗ and M∗ have the same reals. So AP embeds elementarily
into AM .
Let T (x) and y(x) be given by Corollary 3.4, iterating P below δp to make

a real x generic for the collapse of δP , and getting y(x) to be generic for the
extender algebra below the condition ϕ.
Let b be an odd branch of T (x), and let g be generic for col(ω, jb(δP )) so that

x and y(x) belong to Pb[g].
We will later use these assignments with x equal to a real that codes VM

δ and
an elementary embedding of AP = APb

into AM . For now let us just assume that
x codes some structure W which extends to an essentially countable model in
Pb[g], and an elementary embedding of AP into AW . Under these assumptions,
it follows from the fact that y(x) is generic for the extender algebra of Pb below
the condition ϕ = jb(ϕ) which forces (†) over P , that:

(i) In Pb[g], y(x) is the sharp of a real r(x) = ry(x).

(ii) In Pb[g], either W is not Π1
2 iterable, or else for every v ∈ W there is an

ordinal α so that v+

α ≤ r(x)+α.

The reference to the iterability of W is an abuse of notation. Precisely we mean
that the essentially countable model thatW extends to in Pb[g] is not Π

1
2 iterable

in Pb[g].
Condition (i) does not imply that y(x) is a true sharp, since Pb need not

be wellfounded, and in any case even if it is wellfounded, its height is smaller
than ωV

1 . However the condition implies some amount of iterability for y(x), as
follows. Let b(x) be a wellfounded branch through T (x). Such a branch exists
since P is iterable, and by Corollary 3.4, the branch must be odd. Then, since
condition (i) holds with b = b(x), and since Pb(x) is wellfounded, we have:

(iii) For every ρ ∈ Pb(x), y(x) is ρ iterable.

Using the observations preceding Lemma 4.3 it follows that:

(iv) For every α̂ ∈ Pb(x), and every linear order a on ω of order type α̂, y(x)
reaches α̂, and t(y, α̂) = o.t.(U(y, a)) is wellfounded and greater than r(x)+α̂.

Claim 4.4. Suppose α̂ is an ordinal so that W is Π1
2 iterable in Lα̂(W ), and

there exists v ∈W so that v+

α > r(x)+α for all α < α̂. Then α̂ belongs to Pb(x).

Proof. If α̂ does not belong to Pb(x), then the ordinal height of Pb(x) is at

most α̂. By the assumptions of the claim it follows that, in Pb(x)[g], W is Π1
2

iterable, and v+

α > r(x)+α for all α. (The latter assertion is immediate from the
assumptions of the claim and the fact that Pb(x) has ordinal height at most α̂.

The former uses also the fact that failure of Π1
2 iterability is a Σ1

2 statement and
therefore reflects from Pb(x)[g] to any wellfounded model of the same or greater
ordinal height.)
But this contradicts condition (ii) for b = b(x). ⊣

Claim 4.5. Suppose that the structure W coded by x is equal to VM
δ . Let

v = P ♯. Then v ∈ W , and there exists an ordinal α so that v+

α ≤ r(x)+α and W
is Π1

2 iterable in Lα(W ).
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Proof. Note to begin with that P belongs to M by definition, and since M
is closed under sharps for reals, so does v = P ♯. Since W = VM

δ and M have
the same reals, v ∈ W .
Let b = b(x). M is fully iterable, hence certainly Π1

2 iterable. Since Pb

is wellfounded, Π1
2 iterability reflects to Pb[g]. So W is Π1

2 iterable in Pb[g].
Similarly W is Π1

2 iterable in Lα(W ) for all ordinals α.
Since W is Π1

2 iterable in Pb[g], it follows by condition (ii) that in Pb[g], there
is an ordinal α so that v+

α ≤ r(x)+α. Since Pb is wellfounded, α is an ordinal of
V , and v+

α ≤ r(x)+α holds in V . ⊣

Let α̂ be the smallest ordinal witnessing Claim 4.5. Let a be a linear order on
ω, of order type α̂, and let p be a real coding V P

δP +1. Let Z be the set of tuples
〈x, T , y, b, g〉 so that:

• T = T (x); y = y(x); b is an odd branch of T ; g is generic for col(ω, jb(δP ))
over Pb, with x, y ∈ Pb[g]; x codes a structure W which extends to an
essentially countable model in Pb[g], and an elementary embedding of AP

into AW .
• W is Π1

2 iterable in Lα̂(W ).
• For every α < α̂, r(x)+α ≤ α̂.
• There exists v ∈ W so that for every α < α̂, v+

α > r(x)+α.

(The first item in the definition of Z simply summarizes the assumptions we
have been working under so far. The remaining items are new.)
It is clear that Z is Σ1

1 in a and p. Let us just note that the continuous
map of Corollary 3.4 can be recovered from p since p allows defining a generic
for col(ω, δP ) over P , that the references to Pb only involve its restriction to
jb(δP ) + 1, which can be determined from p, and that the final clauses, on Π1

2

iterability of W , r(x)+α, and v, only involve quantification over ordinals up to
α̂ = o.t.(a). (It is possible that for some α < α̂, v+

α > α̂. But r(x)+α is at most
α̂, and for the final clause in the definition of Z one need only express the fact
that no ordinal in the interval (α, r(x)+α] is admissible relative to v.)

Claim 4.6. For every tuple 〈x, T , y, b, g〉 in Z, y reaches α̂, and t(y, α̂) =
o.t.(U(y, a)) is wellfounded and greater than r(x)+α̂.

Proof. Fix 〈x, T , y, b, g〉 in Z. By definition of Z,W is Π1
2 iterable in Lα̂(W ),

and there exists v ∈ W so that v+

α > r(x)+α for all α < α̂. It follows by Claim
4.4 that α̂ belongs to Pb(x). By condition (iv) it follows that y(x) reaches α̂, and
t(y, α̂) = o.t.(U(y, a)) is wellfounded and greater than r(x)+α̂. ⊣

Let γ = sup {o.t.(U(y, a)) | 〈x, T , y, b, g〉 ∈ Z}. The order types are well-
founded by the previous claim. The function U is Σ1

1, and Z is Σ1
1 in a and

p. It follows using Σ1
1 boundedness that γ is smaller than the first admissible of

L(P ) above α̂. (The use of Σ1
1 boundedness requires appropriate choices of the

codes a and p for α̂ and V P
δP+1. Any codes resulting from enumerations that are

generic over L(P ) will do.) This, together with the final part of the previous
claim, implies that for every tuple 〈x, T , y, b, g〉 in Z, r(x)+α̂ is smaller than the
first admissible of L(P ) above α̂.
But consider the case that x is taken to code the structure W equal to VM

δ ,
and an embedding of AP into AM . By Claim 4.5, and since α̂ was taken to
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be a witness for the claim, W is Π1
2 iterable in Lα̂(W ), and v+

α̂ ≤ r(x)+α̂ where

v = P ♯ ∈ W . Moreover, since α̂ was taken to be the least witness for the claim,
v+

α > r(x)+α for all α < α̂. The minimality of α̂ also implies that α̂ itself is
admissible or a limit of admissible ordinals relative to r(x). Combining all these
facts it follows that the tuple 〈x, T , y, b, g〉 (for x so that W = V δ

M ) belongs to
Z, that the element v ∈ W witnessing the final clause in the definition of Z is
v = P ♯, and that v+

α̂ ≤ r(x)+α̂. Applying the boundedness proved in the previous
paragraph we get as a consequence that v+

α̂ is smaller than the first admissible

of L(P ) above α̂. In other words, as v = P ♯, the first admissible of L(P ♯)
above α̂ is smaller than the first admissible of L(P ) above α̂. This of course is a
contradiction. It completes the proof of Lemma 4.3. ⊣

Lemma 4.7. Let M be essentially countable, almost fine structural, and fully
iterable. Suppose that δ = δM is a Woodin cardinal of M , and VM

δ+1 is countable
in V . Let α be a countable ordinal of V . Then there is an essentially countable,
almost fine structural, Π1

2 iterable model N , with a Woodin cardinal δN , so that:

1. There is an elementary embedding from AM into AN .
2. α belongs to N and is countable in N .

Proof. This is similar to Lemma 4.3, but substantially simpler, since we are
dealing here with countable ordinals, while Lemma 4.3 involved ordinals r+ and
v+ above ω1.
Fix α, and suppose the lemma fails. Let M∗ be obtained from M by iterating

ultrapowers by the first measure α + 1 times, so that M∗ is still essentially
countable with a Woodin cardinal that is countable in V , and α is smaller than
the first measurable cardinal of M∗. Since the lemma is assumed to fail, M∗

satisfies the following statement (†)(α): it is forced in col(ω, δM∗) that for every
pre-nice N in the extension, either N is not Π1

2 iterable, or there is no elementary
embedding of AM∗ into AN , or α is not a countable ordinal inN . (As in the proof
of Lemma 4.3, N is pre-nice iff it is essentially countable, almost fine structural,
with a Woodin cardinal δN which is countable in V .)
By reflection there is an initial segment P ∗ of M∗ which satisfies (†)(α). Let

X be the Skolem hull of δM∗ and α in P ∗, let P be the transitive collapse of
X , and let ᾱ and δP be the images of α and δM∗ under the collapse embedding.
Note that ᾱ is then countable in M∗, and hence also countable in M .
Since P embeds into P ∗, AP embeds elementarily into AP∗ = AM∗ = AM . By

elementarity of the collapse embedding, P satisfies (†)(ᾱ).
P is fully iterable since it embeds into an initial segment of an iterate of M .

Iterate P to make a real codingM and an elementary embedding of AP into AM

generic. Let Q be the end iterate, and let j : P → Q be the iteration embedding.
Since ᾱ is below the smallest measurable cardinal of P , it is not moved by j.
By elementarity of j then, Q satisfies (†)(ᾱ). In other words, it is forced in
col(ω, δQ) over Q that for every pre-nice N that belongs to the extension, either
N is not Π1

2 iterable, or there is no elementary embedding of AQ into AN , or
ᾱ is not a countable ordinal in N . But M is a counterexample to this: M and
an elementary embedding of AQ = AP into AM belong to an extension of Q by
col(ω, δQ), M is fully iterable hence certainly Π1

2 iterable in the extension, and
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ᾱ is a countable ordinal in M . This contradiction completes the proof of the
lemma. ⊣

Corollary 4.8. (Assuming that for every real x, there is a fully iterable
model for the sharp of one Woodin cardinal over x.) Let N be essentially
countable, almost fine structural, Π1

2 iterable model with a Woodin cardinal. Let
α < uω. Then there is an essentially countable, almost fine structural, Π1

2 iter-
able model N∗ with a Woodin cardinal, so that:

1. There is a code w for α that belongs to N∗.
2. AN embeds elementarily into AN∗.

Proof. The case α < ω is trivial, so suppose α ≥ ω. Let n be least so that
α belongs to [un, un+1). We prove the corollary by induction on n.
The assumption in the corollary that over every real there is a fully iterable

model for the sharp of a Woodin cardinal, allows us to use Lemma 2.2. By the
lemma, there is a fully iterable, essentially countable and almost fine structural
M with a Woodin cardinal, so that N and M have the same reals. In particular
then AM = AN .
The assumption in the corollary certainly implies that every real has a sharp,

and from this and the fact that M is essentially countable, it follows that VM
δ+1

is countable in V (indeed, ωV
1 is a inaccessible in L(VM

δ ) which contains VM
δ+1).

This allows us to use Lemmas 4.3 and 4.7.
If n = 0, then using Lemma 4.7 we obtain an essentially countable, almost

fine structural, Π1
2 iterable model N∗ with a Woodin cardinal, so that AN = AM

embeds elementarily into AN∗ , and so that α is a countable ordinal in N∗. The
fact that α is countable in N∗ allows constructing a code w for α inside N∗, and
this establishes the corollary.
Suppose n ≥ 1. Using Lemma 4.3 we obtain an essentially countable, almost

fine structural, Π1
2 iterable model N∗ with a Woodin cardinal, so that AN = AM

embeds elementarily into AN∗ , and so that there is a real v ∈ N∗ with v+

un
> α.

(If n = 1 this is a direct application of the lemma. If n > 1, we use also the
fact that un, for 1 ≤ n < ω, are the uniform indiscernibles, and therefore there
is some ᾱ ∈ [u1, u2) so that v+

ω1
> ᾱ implies v+

un
> α. We then apply the lemma

to ᾱ.)
Since v+

un
> α, there is some ordinal β < un so that α is Σ1 definable in L(v)

from β and un. By induction, there is N∗∗ so that AN∗ embeds elementarily
into AN∗∗ , and β has a code w in N∗∗. The fact that AN∗ embeds elementarily
into AN∗∗ implies that v ∈ N∗∗. From v and the code w for β one can create a
code for α. This code belongs to N∗∗. ⊣

§5. The theorems. Recall that αx, for x ∈ R, is the least ordinal so that
Lαx

(T2, x) is admissible. For an essentially countable model N and a real x ∈ N ,
LγN

x
(TN , x) is an initial approximation of Lαx

(T2, x) in N . TN is defined by
letting ZN be the set of ordinals below uω with codes inN , letting cN : ZN → XN

be the collapse embedding, and setting TN to be the image of T2 under cN . Let
ηN denote sup(XN ), so that TN is a tree on ω × ηN .
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γNx is the least ordinal so that LγN
x
(TN , x) is admissible. This ordinal may be

too large for the purpose of approximating Lαx
(T2, x). The correct ordinal is

given by the next definition.

Definition 5.1. Define δNx to be the least ordinal δ < γNx for which there is
~a ∈ η<ω

N and a Σ1 formula ψ so that Lδ+1(TN , x) |= ψ(TN , x,~a) but Lαx
(T2, x) 6|=

ψ(T2, x, c
−1
N (~a)), if such an ordinal exists. If there is no such ordinal, set δNx = γNx .

We will use the structure LδNx
(TN , x) as an approximation for Lαx

(T2, x). We
show, in Lemma 5.2, that there is a Σ1 elementary embedding of the approxi-
mation into the original structure. We then use the approximation to prove the
Kechris–Martin theorem and its corollary.
We work throughout the section in a universe satisfying ZF + DC plus the

existence of M ♯
1(x), the fully iterable inner model with the sharp of one Woodin

cardinal over x, for each real x, or equivalently ∆1
2 determinacy.

Throughout this section, a model is called nice if it is essentially countable,
almost fine structural, Π1

2 iterable, with a Woodin cardinal. In other words a
model is nice if it is pre-nice in the sense of Section 4 and Π1

2 iterable.

Lemma 5.2. Let N be nice. Then there is a Σ1 elementary embedding π of
LδNx

(TN , x) into Lαx
(T2, x).

Moreover π is determined completely by the following conditions:

1. For ξ < ηN , π(ξ) = c−1
N (ξ).

2. For every ξ ∈ [ηN , δ
N
x ), every ~a ∈ η<ω

N , and every Σ1 formula ψ so that ξ is
least for which Lξ+1(TN , x) |= ψ(TN , x,~a), π(ξ) is the least ordinal so that
Lπ(ξ)+1(T2, x) |= ψ(T2, x, π(~a)).

(These conditions determine the restriction of π to ordinals, and this in turn
trivially determines all other values of π.)

Proof. Let g : ω → R be generic for col(ω,R) over V . Working in V [g], using
repeated applications of Corollary 4.8 in V , construct a sequence of models Ni,
i < ω, all in V , and all nice in V , so that:

1. N0 = N .
2. ANi

embeds elementarily into ANi+1
.

3. If g(i) is a code for an ordinal below uω, then there is a code for the same
ordinal, inside Ni+1.

Using condition (2), fix for each i an elementary embedding σi : ANi
→ ANi+1

.
Let πi,i+1 be the restriction of σi to L

γ
Ni
x
(TNi

, x). Then using the properties

of the structures ANi
in Remark 4.2, πi,i+1 : Lγ

Ni
x
(TNi

, x) → L
γ
Ni+1
x

(TNi+1
, x) is

elementary, and for each code w ∈ Ni, πi,i+1(cNi
(|w|)) = cNi+1

(|w|).
Let Q be the direct limit of the structures L

γ
Ni
x
(TNi

, x) under the embeddings

πi,i+1 and their compositions. Let πi,∞ : L
γ
Ni
x
(TNi

, x) → Q be the direct limit

embeddings.
By condition (3) and the genericity of g, all ordinals below uω have codes in⋃
i<ω Ni. Using this and the fact that πi,j(cNi

(|w|)) = cNj
(|w|), it is easy to

check that πi,∞(cNi
(|w|)) = |w| for each code w in Ni. It follows from this and

the definition of the trees TNi
that πi,∞(TNi

) is the tree T2, and hence Q satisfies
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“V is the least admissible structure containing T2 and x”. This implies that Q is
an end extension of the model Lαx

(T2, x). Q can be a proper end extension, but
only if it is illfounded, in which case its wellfounded part is equal to Lαx

(T2, x).
Since γNx is least so that LγN

x
(TN , x) is admissible, for every ordinal ξ ∈

[ηN , γ
N
x ) there is some ~a ∈ η<ω

N and some Σ1 formula ψ so that ξ is least for
which Lξ+1(TN , x) |= ψ(TN , x,~a). If ξ < δNx , then by definition of δNx there must
exist some ξ∗ below αx, so that Lξ∗+1(T2, x) |= ψ(T2, x, π0,∞(~a)), and the least
such ξ∗ must be equal to π0,∞(ξ), by elementarity of π0,∞. If follows that the
restriction of π0,∞ to LδNx

(TN , x) is an embedding of LδNx
(TN , x) into Lαx

(T2, x),
and that it is determined in the manner specified in the lemma. It remains to
show that the embedding is Σ1 elementary.
Let θ be a Σ1 formula in parameters a∗1, . . . , a

∗
k that belong to the range of

π0,∞↾LδNx
(TN , x). We may without loss of generality assume that a∗1, . . . , a

∗
k are

ordinals. We may also assume that they belong to the image of η<ω
N , since we have

seen in the previous paragraph that all ordinals in the range of π0,∞↾LδNx
(TN , x)

are Σ1 definable from ordinals in the image of η<ω
N and that π0,∞ respects these

definitions. Fix a1, . . . , ak ∈ ηN so that a∗i = π0,∞(ai).
Suppose that θ(T2, x, a

∗
1, . . . , a

∗
k) holds in Lαx

(T2, x). We have to prove that
θ(TN , x, a1, . . . , ak) holds in LδNx

(TN , x).

Suppose first that δNx = γNx . Since Q extends Lαx
(T2, x), and θ is Σ1,

θ(T2, x, a
∗
1, . . . , a

∗
k) holds in Q. Hence by elementarity of π0,∞, LγN

x
(TN , x) =

LδNx
(TN , x) satisfies θ(TN , x, a1, . . . , ak).

Suppose next that δNx < γNx . Then since π0,∞ is elementary into Q, it follows
from the definition of δNx that π0,∞(δNx ) cannot belong to Lαx

(T2, x), and must
belong instead to the illfounded part of Q. Since θ is Σ1, this in turn implies that
θ(T2, x, a

∗
1, . . . , a

∗
k) holds in (Lπ0,∞(δNx )(T2, x))

Q. (This model is an end extension
of Lαx

(T2, x).) By elementarity of π0,∞, it follows that θ(TN , x, a1, . . . , ak) holds
in LδNx

(TN , x). ⊣

The proof of Lemma 5.2 yields the following additional claims that help char-
acterize δNx .

Claim 5.3. Let N be nice, and let x, y be reals in N . Suppose that δNx < γNx .
Then δNy ≤ δNx .

Proof. Suppose for contradiction that δNx < δNy . Let ψx and ~a be as in

the definition of δNx . Let z be a real in N that codes the pair 〈x, y〉. Then
γNz ≥ max{γNx , γ

N
y }, hence δNx < γNz .

Let π : LγN
z
(TN , z) → Q be the map π0,∞ defined in the proof of Lemma 5.2,

applied for the real z.
Since δNx < δNy ≤ γNy , there is some Σ1 formula θ, with parameters in η<ω

N ,

which without loss of generality we may assume are contained in ~a, so that δNx is
least so that LδNx +1(TN , y) |= θ(TN , y,~a). The model LδNx +1(TN , z) then satisfies

“L(TN , x) is a model of ψx(TN , x,~a), L(TN , x) is not admissible and has no
admissible initial segments containing TN and x, and no strict initial segment of
L(TN , y) is a model of θ(TN , y,~a)”.
By elementarity of π, (Lπ(δNx +1)(T2, z))

Q satisfies the same formula with TN

replaced by T2 and ~a replaced by π(~a) = c−1
N (~a). From the final clause in
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this formula, the fact that Q is an end extension of Lαz
(T2, z) which contains

Lαy
(T2, y), and the assumption that δNx < δNy , which by definition of δNy implies

that θ holds at some level of Lαy
(T2, y), it follows that π(δ

N
x +1) must be smaller

than αy.
But then π(δNx + 1) is smaller than αz , and in particular it belongs to the

wellfounded part of Q. From this and the other parts of the formula above, it
follows that Lπ(δNx +1)(T2, x) is a strict initial segment of Lαx

(T2, x), and satisfies

ψx(T2, x, c
−1
N (~a)). This contradicts the definition of δNx . ⊣

Recall that γN = sup{γNx | x ∈ N}. If there exists some x ∈ N so that
δNx < γNx , define δN to be min{δNx | x ∈ N and δNx < γNx }. If no such x exists,
set δN = γN . By Claim 5.3 we then immediately get:

Claim 5.4. For every real y ∈ N , δNy = min{γNy , δN}.

Proof. If δN = γN then δNy = γNy for all y and there is nothing further to
prove. Suppose δN < γN and let x realize the minimum in the definition of δN .
By Claim 5.3, δNy ≤ δNx . Since δNy ≤ γNy by definition, it follows that δNy ≤

min{γNy , δN}. If δNy < γNy , then applying the Claim 5.3 with x and y reversed it

follows that δN = δNx ≤ δNy . Hence δNy < min{γNy , δN} is impossible. ⊣

Claim 5.5. δN < γN iff there exists a sequence 〈Ni, αi, σi | i < ω〉 so that:

1. N0 = N .
2. Each Ni is nice (meaning essentially countable, almost fine structural, with

a Woodin cardinal, and Π1
2 iterable).

3. αi < γNi
.

4. σi is an elementary embedding of ANi
into ANi+1

.
5. αi+1 < σi(αi).

Moreover, δN is the least α0 for which such a sequence exists.

Proof. Suppose first that there is a sequence 〈Ni, αi, σi | i < ω〉 satisfying
conditions (1)–(5). Fix x ∈ N so that α0 < γNx . Such an x exists since α0 < γN .
Note that condition (4) implies in particular that x ∈ Ni for each i.
Since Ni is nice, Lemma 5.2 applies to it. Let πi : Lδ

Ni
x
(TNi

, x) → Lαx
(T2, x)

be the embedding given by the lemma.
By conditions (2), the elementarity of σi, and the properties of ANi

in Remark
4.2, σi(cNi

(|w|)) = cNi+1
(|w|) for each code w in Ni. From this, the elementarity

of the maps σi, and the characterization of the embedding in Lemma 5.2, it
follows that the maps πi and σi commute. Precisely, πi(ξ) = (πi+1 ◦ σi)(ξ) for
every ξ < δNi

x .
If α0 belongs to the domain of π0, then by condition (5) together with the

commutativity in the previous paragraph, 〈πi(αi) | i < ω〉 forms an infinite
descending chain in Lαx

(T2, x). Since this is impossible, α0 must be outside the
domain of π0. This implies by definitions that δNx ≤ α0. In particular δNx < γNx ,
hence δN < γN , and indeed δN ≤ α0.
We have seen so far that the existence of a sequence satisfying conditions (1)–

(5) implies that δN < γN and δN ≤ α0. It remains to show that, assuming
δN < γN , there is a sequence satisfying these conditions, with α0 = δN .
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Suppose δN < γN , and let x be a real realizing the minimum in the definition
of δN , meaning that δNx < γNx and δN = δNx . Let R be the tree of attempts
to construct a sequence satisfying conditions (1)–(5), with α0 = δN = δNx . We
must show that R is not wellfounded. By absoluteness of wellfoundedness it is
enough to show that there is a branch through R in some generic extension of
the universe.
Let g be generic for col(ω,R). Let 〈Ni, σi | i < ω〉 ∈ V [g] be the sequence

constructed in the proof of Lemma 5.2. This sequence satisfies conditions (1),
(2), and (4). Since δN = δNx < γNx , the last paragraph in the proof of Lemma
5.2 shows that π0,∞(δNx ) belongs to the illfounded part of Q. Hence there is
a sequence of ordinals αi, i < ω, so that α0 = δN = δNx and so that αi+1 <

πi,i+1(αi) = σ(αi) for each i. The combined sequence 〈Ni, αi, σi | i < ω〉 then
satisfies conditions (1)–(5). ⊣

We have now accumulated enough information to identify pairs 〈N,µ〉 so that
N is nice and µ ∈ [δN , γN ], in a Σ1

3 manner. Let Z be the set of pairs 〈N,µ〉 so
that:

1. N is essentially countable, almost fine structural, with a Woodin cardinal.
2. N is Π1

2 iterable.
3. µ ≤ γN .
4. Either µ = γN , or else there exists a sequence satisfying conditions (1)–(5)

of Claim 5.5, with α0 ≤ µ.

Claim 5.6. The set Z is Σ1
3, and 〈N,µ〉 ∈ Z iff N is nice and µ ∈ [δN , γN ].

Proof. The fact that 〈N,µ〉 ∈ Z iff N is nice and µ ∈ [δN , γN ] is immedi-
ate from the definitions and Claim 5.5. The definition of Z involves quantifiers
asserting the existence of models, ordinals, and embeddings with certain proper-
ties. These properties are all first order, except for being an essentially countable
model with a Woodin cardinal and Π1

2 iterability, which are both Π1
2. It follows

that Z is Σ1
3. ⊣

Theorem 5.7. Let ϕ be a Π1 formula. Then the set {x | Lαx
(T2, x) |=

ϕ(T2, x)} is Σ1
3.

Proof. By Lemma 5.2 and since ϕ is Π1, for every nice N with x ∈ N ,
Lαx

(T2, x) |= ϕ(T2, x) iff LδNx
(TN , x) |= ϕ(TN , x). By Claim 5.4, and again

using the fact that ϕ is Π1, LδNx
(TN , x) |= ϕ(TN , x) in turn is equivalent to the

existence of µ ≥ δN so that Lmin{γN
x ,µ}(TN , x) |= ϕ(TN , x).

We are assuming throughout the section that over every real x there is a fully
iterable model for the sharp of a Woodin cardinal, and this implies in particular
that there exist nice N with x ∈ N . Hence, by the previous paragraph and Claim
5.6, Lαx

(T2, x) |= ϕ(T2, x) iff there is 〈N,µ〉 ∈ Z so that Lmin{γN
x ,µ}(TN , x) |=

ϕ(TN , x). Since Z is Σ1
3, and the clause Lmin{γN

x ,µ}(TN , x) |= ϕ(TN , x) is first

order over N , this is a Σ1
3 statement. ⊣

We phrased Theorem 5.7 for Π1 formulas and Σ1
3 sets, but of course it is

equivalent to the assertion that {x | Lαx
(T2, x) |= ϕ(T2, x)} is Π1

3 when ϕ is Σ1,
in other words to Corollary 1.4.
The Kechris–Martin theorem itself can also be proved using inner models, as

follows. Again for convenience we phrase it for Σ1
3 rather than Π1

3.



AN INNER MODELS PROOF OF THE KECHRIS–MARTIN THEOREM 19

Theorem 5.8. Σ1
3 is closed under universal quantification over ordinals below

uω.

Proof. The only property of T2 that we have used so far is Fact 4.1. This
was sufficient for the proof of Theorem 5.7. But now we use also the fact that
T2 projects to a universal Π1

2 set. This immediately implies the converse of
Theorem 5.7, namely that for every Σ1

3 set A, there is a Π1 formula ϕ so that
A = {x | Lαx

(T2, x) |= ϕ(T2, x)}. (The formula states that there is no embedding
of the tree of attempts to witness x ∈ A, into the ordinals. A witness for x ∈ A

includes a real and a branch through T2, together certifying a Σ1
3 statement.)

Let A be Σ1
3, with elements of the form 〈x,w〉 where x is a real and w a

code for an ordinal below uω. Suppose that for every x, if |w1| = |w2| then
〈x,w1〉 ∈ A ⇐⇒ 〈x,w2〉 ∈ A. We prove that the set B = {x | (∀w)〈x,w〉 ∈ A}
is Σ1

3.
Fix a Π1 formula ϕ so that 〈x,w〉 ∈ A iff Lα〈x,w〉

(T2, x, w) |= ϕ(T2, x, w). It

is enough to prove that x ∈ B iff there exists 〈N,µ〉 ∈ Z so that for every code
w ∈ N , Lmin{γN

x,w,µ}(TN , x, w) |= ϕ(TN , x, w). This is a Σ1
3 statement, since Z is

Σ1
3, and since all other quantifiers in the statement are over elements of N .
The left-to-right direction of the equivalence is clear, using the existence of a

nice (in fact fully iterable) model N with x ∈ N , Theorem 5.2, Claim 5.6, and
Claim 5.4. We prove the right-to-left direction.
Suppose 〈N,µ〉 ∈ Z, and for every code w ∈ N , Lmin{γN

x,w,µ}(TN , x, w) |=

ϕ(TN , x, w). Fix an ordinal α < uω. By Corollary 4.8, there is a nice N∗ so that
there is a code w∗ for α inN∗, and so that AN embeds elementarily into AN∗ . Let
σ be the embedding. By elementarity of σ then, and using the properties of AN

and AN∗ given by condition (4) of Remark 4.2, Lmin{γN∗

x,w∗ ,σ(µ)}
(TN∗ , x, w∗) |=

ϕ(TN∗ , x, w∗) (where σ(µ) is understood to mean γN∗ if µ = γN ).
It is enough now to show that σ(µ) ≥ δN∗ , since then by Theorem 5.2 and

Claim 5.4 it follows that Lαx,w∗ (T2, x, w
∗) |= ϕ(T2, x, w

∗)}, so 〈x,w∗〉 ∈ A as
required.
If δN = γN then µ = γN , σ(µ) = γN∗ ≥ δN∗ , and there is nothing further to

prove. Suppose δN < γN . Let y ∈ N realize the minimum in the definition of
δN , so that δN = δNy < γNy . Let ψ and ~a be as in the definition of δNy , so that
in particular LδN+1(TN , y) |= ψ(TN , y,~a). By the elementarity of σ and Remark
4.2, Lσ(δN )+1(TN∗ , y) |= ψ(TN∗ , y, σ(~a)). If σ(δN ) < δN∗ then using Lemma 5.2

it follows that Lαy
(T2, y) |= ψ(T2, y, c

−1
N (~a)), which contradicts the definition of

ψy. So σ(δN ) ≥ δN∗ . Now since µ ≥ δN , σ(µ) ≥ δN∗ . ⊣

Theorem 5.9. Every non-empty Π1
3 set of ordinals below uω has a ∆1

3 ele-
ment.

Proof. Let B be a non-empty Π1
3 set of ordinals below uω. Let ψ be a

Σ1 formula so that |w| ∈ B iff Lαw
(T2, w) |= ψ(T2, w). Strengthening ψ if

necessary we may assume that ψ(T2, w) implies that there are no admissible sets
containing T2 and w. Let β be least so that Lβ+1(T2, w) |= ψ(T2, w) for some w.
Then Lβ+1(T2, w) |= ψ(T2, w) implies β < αw and |w| ∈ B.
Let A be the complement of B. The proof of Theorem 5.8, applied to the Σ1

3

set {0} × A, shows that for any nice N , if all ordinals with codes in N belong
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to A, then in fact all ordinals below uω belong to A. Rephrasing, if B has no
elements with codes in N , then it is empty. Since B is non-empty it follows that
every nice N has codes for elements of B. In other words, every nice N must
have codes w so that Lαw

(T2, w) |= ψ(T2, w).
For each nice N which is fully fine structural (including below ωN

1 ), let βN
be least so that LβN+1(TN , w) |= ψ(TN , w) for some w in N , and let wN be the
least (in the canonical enumeration of the reals in N) code w witnessing this.
By Lemma 5.2 and since there is w ∈ N so that Lαw

(T2, w) |= ψ(T2, w), an
ordinal βN satisfying this definition exists in N , and moreover it is smaller than
δN . Since ψ(TN , w) cannot hold in levels containing an admissible set over TN
and w, βN must also be smaller than γNwN

, and hence smaller than γNx for every
real x ∈ N which computes wN .
It follows that for every such x, βN < δNx , and Lπ(βN)+1(T2, wN ) |= ψ(T2, wN ),

where π : LδNx
(TN , x) → Lαx

(T2, x) is the embedding given by Lemma 5.2. In

particular, by the minimality of β, π(βN ) ≥ β.
Let B′ be the set of codes w for which (∃η < α〈w,wN 〉) so that Lη+1(T2, w) |=

ψ(T2, w) and Lη+1(T2, wN ) 6|= ψ(T2, wN ). The minimality of βN implies that
B′ has no elements in N . Since B′ is Π1

3 in wN , a relativized version of the
argument in the first two paragraph of this proof shows that B′ has no elements
at all. This in turn implies that π(βN ) ≤ β, and hence π(βN ) = β.
Taking x = wN it follows that Lβ+1(T2, wN ) |= ψ(T2, wN ). Moreover, wN is

the least code w ∈ N (least in the order of the reals of N) so that Lβ+1(T2, w) |=
ψ(T2, w). For if there is a smaller w ∈ N with this property, taking x which com-
putes both w and wN and using the fact that π(βN ) = β we get LβN+1(TN , w) |=
ψ(TN , w), contradicting the minimality in the definition of wN .
A comparison argument similar to that in the proof of Lemma 2.2 shows that

the reals of M ♯
1, the minimal fully iterable model for the sharp of one Woodin

cardinal, form an initial segment of the reals of any fully fine structural nice N ,
where in the context of a fully fine structural model, the Π1

2 iterability given
by niceness applies to iteration trees using any extenders on the sequence of the
model, including also extenders indexed below ωN

1 . Since wN is the least code

w ∈ N so that Lβ+1(T2, w) |= ψ(T2, w), and since such a code exists in M ♯
1 (as it

does in every nice model), wN must be equal to w
M

♯
1

. This holds for every fully

fine structural nice N , and allows characterizing w
M

♯
1

, which codes an element

of B, in a ∆1
3 way. Precisely, w = w

M
♯
1

iff the following equivalent conditions

hold:

1. There exists a fully fine structural, essentially countable, Π1
2 iterable N

with a Woodin cardinal, so that letting βN ∈ N be least so that (∃v ∈
N)LβN+1 |= ψ(TN , v), w is equal to the least witness v for this, in the
ordering of the reals of N .

2. For everyN as in (1), and every βN which is least so that (∃v ∈ N)LβN+1 |=
ψ(TN , v), w is equal to the least witness v for this, in the ordering of the
reals of N .

Condition (1) is Σ1
3, and condition (2) is Π1

3. ⊣
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