Determinacy and Large Cardinals

Itay Neeman
Department of Mathematics
University of California Los Angeles
Los Angeles, CA 90095-1555

25 August 2006
Determinacy:
Determinacy:

ω^ω is the set of infinite sequences of natural numbers.
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$.
Determinacy:

\(\omega^\omega\) is the set of infinite sequences of natural numbers. Let \(A \subset \omega^\omega\). Define \(G_\omega(A)\) to be the following game:
Determinacy:

\(\omega^\omega \) is the set of infinite sequences of natural numbers. Let \(A \subset \omega^\omega \). Define \(G_\omega(A) \) to be the following game:

\[
\begin{array}{c|c}
 I & II \\
 \hline
 I & II \\
\end{array}
\]

If \(z \in A \) then player I wins. If \(z \notin A \) then player II wins.
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

$$
\begin{array}{c|c}
I & \\
\hline
II & \\
\end{array}
$$
Determinacy:

\(\omega^\omega\) is the set of infinite sequences of natural numbers. Let \(A \subseteq \omega^\omega\). Define \(G_\omega(A)\) to be the following game:

\[
\begin{array}{c|c|c}
 & I & II \\
\hline
I & & \\
\hline
II & & \\
\end{array}
\]

Players I and II alternate playing numbers \(a_n \in \omega\),

Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,
Determinacy:

\(\omega^\omega \) is the set of infinite sequences of natural numbers. Let \(A \subseteq \omega^\omega \). Define \(G_\omega(A) \) to be the following game:

\[
\begin{array}{c|c}
I & a_0 \\
\hline
II & a_1 \\
\end{array}
\]

Players \(I \) and \(II \) alternate playing numbers \(a_n \in \omega \),
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td></td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

\[
\begin{array}{c|cc}
I & a_0 & a_2 \\
II & a_1 & a_3 \\
\end{array}
\]

Players I and II alternate playing numbers $a_n \in \omega$,

Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

\[
\begin{array}{c|ccc}
I & a_0 & a_2 & a_4 \\
II & a_1 & a_3 & \\
\end{array}
\]

Players I and II alternate playing numbers $a_n \in \omega$,
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$.
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td></td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,
Determinacy:

ω^ω is the set of infinite sequences of natural numbers.
Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
<td></td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,

Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
<td>a_9</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,

Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
<th>a_8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
<td>a_9</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$,

Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
<th>a_8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
<td>a_9</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$, forming together an infinite sequence $z = \langle a_0, a_1, a_2, \cdots \cdots \rangle \in \omega^\omega$.
Determinacy:

ω^ω is the set of infinite sequences of natural numbers. Let $A \subset \omega^\omega$. Define $G_\omega(A)$ to be the following game:

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>a_6</th>
<th>a_8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td>a_7</td>
<td>a_9</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers $a_n \in \omega$, forming together an infinite sequence $z = \langle a_0, a_1, a_2, \cdots \cdots \rangle \in \omega^\omega$.

If z belongs to A then player I wins.
Determinacy:

\(\omega^\omega\) is the set of infinite sequences of natural numbers. Let \(A \subset \omega^\omega\). Define \(G_\omega(A)\) to be the following game:

\[
\begin{array}{c|cccccc}
I & a_0 & a_2 & a_4 & a_6 & a_8 & \cdots \\
\hline
II & a_1 & a_3 & a_5 & a_7 & a_9 & \cdots \\
\end{array}
\]

Players \(I\) and \(II\) alternate playing numbers \(a_n \in \omega\), forming together an infinite sequence \(z = \langle a_0, a_1, a_2, \ldots \rangle \in \omega^\omega\).

If \(z\) belongs to \(A\) then player \(I\) wins.
If \(z\) does not belong to \(A\) then player \(II\) wins.
Determinacy:

\(\omega^\omega \) is the set of infinite sequences of natural numbers. Let \(A \subset \omega^\omega \). Define \(G_\omega(A) \) to be the following game:

<table>
<thead>
<tr>
<th>I</th>
<th>(a_0)</th>
<th>(a_2)</th>
<th>(a_4)</th>
<th>(a_6)</th>
<th>(a_8)</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(a_1)</td>
<td>(a_3)</td>
<td>(a_5)</td>
<td>(a_7)</td>
<td>(a_9)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

Players I and II alternate playing numbers \(a_n \in \omega \), forming together an infinite sequence \(z = \langle a_0, a_1, a_2, \cdots \rangle \in \omega^\omega \).

If \(z \) belongs to \(A \) then player I wins.
If \(z \) does not belong to \(A \) then player II wins.

\(G_\omega(A) \) is determined if one of the players has a winning strategy.

(A strategy is a complete recipe that instructs the player precisely how to play in each conceivable situation.)
For $\Gamma \subseteq \mathcal{P}(\omega^\omega)$, $\text{det}(\Gamma)$ is the statement that all sets in Γ are determined.
For $\Gamma \subset \mathcal{P}(\omega^\omega)$, $\text{det}(\Gamma)$ is the statement that all sets in Γ are determined.

Using the axiom of choice (just a wellordering of \mathbb{R}) it is easy to construct a non-determined set.
For $\Gamma \subset \mathcal{P}(\omega^\omega)$, det($\Gamma$) is the statement that all sets in Γ are determined.

Using the axiom of choice (just a wellordering of \mathbb{R}) it is easy to construct a non-determined set.

det($\mathcal{P}(\omega^\omega)$) is therefore false.
For $\Gamma \subset \mathcal{P}(\omega^\omega)$, $\text{det}(\Gamma)$ is the statement that all sets in Γ are determined.

Using the axiom of choice (just a wellordering of \mathbb{R}) it is easy to construct a non-determined set.

$\text{det}(\mathcal{P}(\omega^\omega))$ is therefore false.

But determinacy for \textit{definable} sets is:
For \(\Gamma \subset \mathcal{P}(\omega^\omega) \), \(\text{det}(\Gamma) \) is the statement that all sets in \(\Gamma \) are determined.

Using the axiom of choice (just a wellordering of \(\mathbb{R} \)) it is easy to construct a non-determined set.

\(\text{det}(\mathcal{P}(\omega^\omega)) \) is therefore false.

But determinacy for *definable* sets is: (1) true;
For $\Gamma \subset \mathcal{P}(\omega^\omega)$, $\text{det}(\Gamma)$ is the statement that all sets in Γ are determined.

Using the axiom of choice (just a wellordering of \mathbb{R}) it is easy to construct a non-determined set.

$\text{det}(\mathcal{P}(\omega^\omega))$ is therefore false.

But determinacy for \textit{definable} sets is: (1) true; and
For $\Gamma \subset \mathcal{P}(\omega^\omega)$, $\det(\Gamma)$ is the statement that all sets in Γ are determined.

Using the axiom of choice (just a wellordering of \mathbb{R}) it is easy to construct a non-determined set. $\det(\mathcal{P}(\omega^\omega))$ is therefore false.

But determinacy for *definable* sets is: (1) true; and (2) useful.
\(\omega^\omega \) is the set of finite sequences of natural numbers.
ω^ω is the set of finite sequences of natural numbers.

For $s \in \omega^\omega$ let $N_s = \{ x \in \omega^\omega \mid x \text{ extends } s \}$.
$\omega^<\omega$ is the set of finite sequences of natural numbers.

For $s \in \omega^<\omega$ let $N_s = \{ x \in \omega^\omega \mid x \text{ extends } s \}$.

N_s ($s \in \omega^<\omega$) are the *basic open sets*.
$\omega^{<\omega}$ is the set of finite sequences of natural numbers.

For $s \in \omega^{<\omega}$ let $N_s = \{x \in \omega^\omega \mid x \text{ extends } s\}$.

N_s ($s \in \omega^{<\omega}$) are the \textit{basic open sets}.

$A \subseteq \omega^\omega$ is \textit{open} if it is a union of basic open sets.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

For \(s \in \omega^{<\omega} \) let \(N_s = \{ x \in \omega^\omega \mid x \text{ extends } s \} \).

\(N_s \ (s \in \omega^{<\omega}) \) are the basic open sets.

\(A \subset \omega^\omega \) is open if it is a union of basic open sets.

\(\omega^\omega \) with this topology is Baire space.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

For \(s \in \omega^{<\omega} \) let \(N_s = \{ x \in \omega^\omega \mid x \text{ extends } s \} \).

\(N_s \ (s \in \omega^{<\omega}) \) are the basic open sets.

\(A \subset \omega^\omega \) is open if it is a union of basic open sets.

\(\omega^\omega \) with this topology is Baire space.

Following standard abuse of notation identify it with \(\mathbb{R} \).
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

For \(s \in \omega^{<\omega} \) let \(N_s = \{ x \in \omega^\omega \mid x \text{ extends } s \} \).

\(N_s \ (s \in \omega^{<\omega}) \) are the basic open sets.

A \(\subset \omega^\omega \) is open if it is a union of basic open sets.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

\[N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \ (s \in \omega^{<\omega}) \] are the basic open sets. \(A \subset \mathbb{R} \) is open if it is a union of basic open sets.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

\[N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \ (s \in \omega^{<\omega}) \text{ are the basic open sets.} \]

\(A \subset \mathbb{R} \) is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets using complementations and countable unions.
$\omega^{<\omega}$ is the set of finite sequences of natural numbers.

$N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \ (s \in \omega^{<\omega})$ are the basic open sets. $A \subset \mathbb{R}$ is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets using complementations and countable unions.

The projection of $B \subset \mathbb{R} \times \mathbb{R}$ is the set $\{ x \mid (\exists y) \langle x, y \rangle \in B \}$.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

\(N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \ (s \in \omega^{<\omega}) \) are the basic open sets. A \(\subset \mathbb{R} \) is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets using complementations and countable unions.

The projection of \(B \subset \mathbb{R} \times \mathbb{R} \) is the set \(\{ x \mid (\exists y)(x, y) \in B \} \).

A set is analytic if it is the projection of a closed set.
ω<ω is the set of finite sequences of natural numbers.

\[N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \quad (s \in \omega<\omega) \] are the basic open sets. A \(A \subset \mathbb{R} \) is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets using complementations and countable unions.

The projection of \(B \subset \mathbb{R} \times \mathbb{R} \) is the set \(\{ x \mid (\exists y) \langle x, y \rangle \in B \} \).

A set is analytic if it is the projection of a closed set.

A set is projective if it can be obtained from an open set using complementations and projections.
\(\omega^{<\omega} \) is the set of finite sequences of natural numbers.

\[N_s = \{ x \in \mathbb{R} \mid x \text{ extends } s \} \ (s \in \omega^{<\omega}) \] are the basic open sets. A \(A \subset \mathbb{R} \) is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets using complementations and countable unions.

The projection of \(B \subset \mathbb{R} \times \mathbb{R} \) is the set \(\{ x \mid (\exists y)(x, y) \in B \} \).

A set is analytic if it is the projection of a closed set.

A set is projective if it can be obtained from an open set using complementations and projections.

\(\{ \text{Borel sets} \} \subset \{ \text{analytic sets} \} \subset \{ \text{projective sets} \} \).
Theorem 1 (Gale–Stewart 1953) *All open sets are determined.*
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.
Theorem 1 (Gale–Stewart 1953) *All open sets are determined.*

Theorem 2 (Martin 1975) *All Borel sets are determined.*

Theorem 3 (Martin 1970) *All analytic sets are determined.*

Theorem 4 (Martin–Steel 1985) *All projective sets are determined.*
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals.
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in \text{ON}} L_\alpha(\mathbb{R})$ where:
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in \text{ON}} L_\alpha(\mathbb{R})$ where: $L_0(\mathbb{R}) = \mathbb{R}$,
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in \text{ON}} L_\alpha(\mathbb{R})$ where: $L_0(\mathbb{R}) = \mathbb{R}$, $L_\lambda(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_\alpha(\mathbb{R})$ for limit λ,
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in \text{ON}} L_\alpha(\mathbb{R})$ where: $L_0(\mathbb{R}) = \mathbb{R}$, $L_\lambda(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_\alpha(\mathbb{R})$ for limit λ, $L_{\alpha+1}(\mathbb{R}) = L_\alpha(\mathbb{R}) \cup \{A \subset L_\alpha(\mathbb{R}) \mid A \text{ is 1st order definable over } L_\alpha(\mathbb{R})\}$.
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

$L(\mathbb{R})$ is the smallest model of set theory which contains all the reals and all the ordinals. It is obtained as the union $\bigcup_{\alpha \in \text{ON}} L_\alpha(\mathbb{R})$ where: $L_0(\mathbb{R}) = \mathbb{R}$, $L_\lambda(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_\alpha(\mathbb{R})$ for limit λ, $L_{\alpha+1}(\mathbb{R}) = L_\alpha(\mathbb{R}) \cup \{A \subset L_\alpha(\mathbb{R}) \mid A \text{ is 1st order definable over } L_\alpha(\mathbb{R})\}$.

$\{\text{projective sets}\} \subset L_1(\mathbb{R})$.
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.
Theorem 1 (Gale–Stewart 1953) *All open sets are determined.*

Theorem 2 (Martin 1975) *All Borel sets are determined.*

Theorem 3 (Martin 1970) *All analytic sets are determined.*

Theorem 4 (Martin–Steel 1985) *All projective sets are determined.*

Theorem 5 (Woodin 1985) *All sets of reals in $L(\mathbb{R})$ are determined.*
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

Theorem 5 (Woodin 1985) All sets of reals in $L(\mathbb{R})$ are determined.

Theorems 1 and 2 are in ZFC, the basic system of axioms for set theory.
Theorem 1 (Gale–Stewart 1953) All open sets are determined.

Theorem 2 (Martin 1975) All Borel sets are determined.

Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are determined.

Theorem 5 (Woodin 1985) All sets of reals in $L(\mathbb{R})$ are determined.

Theorems 1 and 2 are in ZFC, the basic system of axioms for set theory.

Theorems 3, 4, and 5 require large cardinal axioms.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.
Theorem 6 (Banach, Oxtoby 1957) Assume $\text{det}(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\text{det}(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\text{det}(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ:
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ: $\neg \Gamma$ is the pointclass of complements of sets in Γ.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ: $\neg \Gamma$ is the pointclass of complements of sets in Γ. $\exists \Gamma$ is the pointclass of projections of sets in Γ.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ: $\neg \Gamma$ is the pointclass of complements of sets in Γ. $\exists \Gamma$ is the pointclass of projections of sets in Γ.

$\Sigma^1_1 = \{\text{analytic sets}\}$. $\Pi^1_n = \neg \Sigma^1_n$. $\Sigma^1_{n+1} = \exists \Pi^1_n$.
Theorem 6 (Banach, Oxtoby 1957) Assume \(\det(\Gamma) \). Then all sets in \(\Gamma \) have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume \(\det(\Gamma) \). Then all sets in \(\Gamma \) are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume \(\det(\Gamma) \). Let \(A \in \Gamma \). Then either \(A \) is countable or else it contains a perfect set.

For a pointclass \(\Gamma \): \(\neg \Gamma \) is the pointclass of complements of sets in \(\Gamma \). \(\exists \Gamma \) is the pointclass of projections of sets in \(\Gamma \).

\[\Sigma^1_n = \{\text{analytic sets}\}. \quad \Pi^1_n = \neg \Sigma^1_n. \quad \Sigma^1_{n+1} = \exists \Pi^1_n. \quad \Delta^1_n = \Pi^1_n \cap \Sigma^1_n. \]
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ: $\neg \Gamma$ is the pointclass of complements of sets in Γ. $\exists \Gamma$ is the pointclass of projections of sets in Γ.

$\Sigma^1_1 = \{\text{analytic sets}\}$. $\Pi^1_n = \neg \Sigma^1_n$. $\Sigma^1_{n+1} = \exists \Pi^1_n$. $\Delta^1_n = \Pi^1_n \cap \Sigma^1_n$.

Every Σ^1_n set A is obtained from an underlying open set using negations and existential quantifiers.
Theorem 6 (Banach, Oxtoby 1957) Assume $\det(\Gamma)$. Then all sets in Γ have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume $\det(\Gamma)$. Then all sets in Γ are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume $\det(\Gamma)$. Let $A \in \Gamma$. Then either A is countable or else it contains a perfect set.

For a pointclass Γ: $\neg \Gamma$ is the pointclass of complements of sets in Γ. $\exists \Gamma$ is the pointclass of projections of sets in Γ.

$\Sigma^1_1 = \{\text{analytic sets}\}$. $\Pi^1_n = \neg \Sigma^1_n$. $\Sigma^1_{n+1} = \exists \Pi^1_n$. $\Delta^1_n = \Pi^1_n \cap \Sigma^1_n$.

Every Σ^1_n set A is obtained from an underlying open set using negations and existential quantifiers. A is (lightface) Σ^1_n if the underlying open set is recursive.
Theorem 6 (Banach, Oxtoby 1957) Assume \(\det(\Gamma) \). Then all sets in \(\Gamma \) have the Baire property.

Theorem 7 (Mycielski–Swierczkowski 1964) Assume \(\det(\Gamma) \). Then all sets in \(\Gamma \) are Lebesgue measurable.

Theorem 8 (Davis 1964) Assume \(\det(\Gamma) \). Let \(A \in \Gamma \). Then either \(A \) is countable or else it contains a perfect set.

For a pointclass \(\Gamma \): \(\neg \Gamma \) is the pointclass of complements of sets in \(\Gamma \). \(\exists \Gamma \) is the pointclass of projections of sets in \(\Gamma \).

\(\Sigma^1_1 = \{ \text{analytic sets} \} \). \(\Pi^1_n = \neg \Sigma^1_n \). \(\Sigma^1_{n+1} = \exists \Pi^1_n \). \(\Delta^1_n = \Pi^1_n \cap \Sigma^1_n \).

Every \(\Sigma^1_n \) set \(A \) is obtained from an underlying open set using negations and existential quantifiers. \(A \) is (lightface) \(\Sigma^1_n \) if the underlying open set is recursive. Similarly with \(\Pi^1_n \).
Γ has the \textit{reduction property} if for any $A, B \in \Gamma$, there are $A' \subset A$, $B' \subset B$ in Γ, so that $A' \cup B' = A \cup B$ and $A' \cap B' = \emptyset$.
Γ has the \textit{reduction property} if for any $A, B \in \Gamma$, there are $A' \subset A$, $B' \subset B$ in Γ, so that $A' \cup B' = A \cup B$ and $A' \cap B' = \emptyset$.

\textbf{Theorem 9 (Kuratowski 1936)} The pointclasses Π^1_1 and Σ^1_2 have the \textit{reduction property}.
Γ has the \textit{reduction property} if for any $A, B \in \Gamma$, there are $A' \subset A$, $B' \subset B$ in Γ, so that $A' \cup B' = A \cup B$ and $A' \cap B' = \emptyset$.

\textbf{Theorem 9 (Kuratowski 1936)} The pointclasses Π_{1}^{1} and Σ_{2}^{1} have the reduction property.

Reduction for higher pointclasses cannot be settled in ZFC.
Γ has the *reduction property* if for any $A, B \in \Gamma$, there are $A' \subset A$, $B' \subset B$ in Γ, so that $A' \cup B' = A \cup B$ and $A' \cap B' = \emptyset$.

Theorem 9 (Kuratowski 1936) The pointclasses Π_1^1 and Σ_2^1 have the reduction property.

Reduction for higher pointclasses cannot be settled in ZFC.

Blackwell (1967) obtained Π_1^1 and Σ_2^1 with a very elegant argument using det(open).
Γ has the \textit{reduction property} if for any $A, B \in \Gamma$, there are $A' \subset A$, $B' \subset B$ in Γ, so that $A' \cup B' = A \cup B$ and $A' \cap B' = \emptyset$.

\textbf{Theorem 9 (Kuratowski 1936)} \textit{The pointclasses Π^1_1 and Σ^1_2 have the reduction property.}

Reduction for higher pointclasses cannot be settled in ZFC.

Blackwell (1967) obtained Π^1_1 and Σ^1_2 with a very elegant argument using det(open).

Inspired by his proof, Martin and Addison–Moschovakis proved the reduction property for Π^1_3, assuming det(Δ^1_2).
Γ has the *reduction property* if for any \(A, B \in \Gamma \), there are \(A' \subset A \), \(B' \subset B \) in \(\Gamma \), so that \(A' \cup B' = A \cup B \) and \(A' \cap B' = \emptyset \).

Theorem 9 (Kuratowski 1936) The pointclasses \(\Pi^1_1 \) and \(\Sigma^1_2 \) have the reduction property.

Reduction for higher pointclasses cannot be settled in ZFC.

Blackwell (1967) obtained \(\Pi^1_1 \) and \(\Sigma^1_2 \) with a very elegant argument using \(\text{det(} \text{open}) \).

Inspired by his proof, Martin and Addison–Moschovakis proved the reduction property for \(\Pi^1_3 \), assuming \(\text{det}(\Delta^1_2) \).

In fact they did more. They obtained a fundamental property, the prewellordering property, which implies reduction.
A prewellorder on $A \subset \mathbb{R}$ is a relation \preceq on A which is transitive, reflexive, and wellfounded.
A *prewellorder* on $A \subset \mathbb{R}$ is a relation \preceq on A which is transitive, reflexive, and wellfounded.

A pwo \preceq induces an equivalence relation: $x \sim y$ iff $x \preceq y \land y \preceq x$. The pwo gives rise to a wellorder of the equivalence classes.
A prewellorder on $A \subset \mathbb{R}$ is a relation \preceq on A which is transitive, reflexive, and wellfounded.

A pwo \preceq induces an equivalence relation: $x \sim y$ iff $x \preceq y \land y \preceq x$. The pwo gives rise to a wellorder of the equivalence classes.

\preceq belongs to Γ if there are P, N in Γ, $\neg \Gamma$ respectively, so that for every $y \in A$, $\{ x \mid x \preceq y \} = \{ x \mid \langle x, y \rangle \in P \} = \{ x \mid \langle x, y \rangle \in N \}$.
A \emph{prewellorder} on $A \subset \mathbb{R}$ is a relation \preceq on A which is transitive, reflexive, and wellfounded.

A pwo \preceq induces an equivalence relation: $x \sim y$ iff $x \preceq y \land y \preceq x$. The pwo gives rise to a wellorder of the equivalence classes.

\preceq belongs to Γ if there are P, N in Γ, $\neg \Gamma$ respectively, so that for every $y \in A$, $\{x \mid x \preceq y\} = \{x \mid \langle x, y \rangle \in P\} = \{x \mid \langle x, y \rangle \in N\}$.

Γ has the \emph{prewellordering property} if every $A \in \Gamma$ admits a prewellorder in Γ.
A prewellorder on $A \subset \mathbb{R}$ is a relation \preceq on A which is transitive, reflexive, and wellfounded.

A pwo \preceq induces an equivalence relation: $x \sim y$ iff $x \preceq y \land y \preceq x$. The pwo gives rise to a wellorder of the equivalence classes.

\preceq belongs to Γ if there are P, N in Γ, $\neg \Gamma$ respectively, so that for every $y \in A$, $\{ x \mid x \preceq y \} = \{ x \mid \langle x, y \rangle \in P \} = \{ x \mid \langle x, y \rangle \in N \}$.

Γ has the prewellordering property if every $A \in \Gamma$ admits a prewellorder in Γ.

Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\text{det}($projective$)$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π^1_1, Σ^1_2, Π^1_3, Σ^1_4, \ldots.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\det(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π^1_1, Σ^1_2, Π^1_3, Σ^1_4, \cdots.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume det(projective). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\text{det}(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π^1_1, Σ^1_2, Π^1_3, Σ^1_4, \cdots.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid (x, y) \in B\}$.

Set $\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \}.$
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume \(\det(\text{projective}) \). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).

Set \(\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \} \).

For a pointclass \(\Gamma \) set \(\partial \Gamma = \{ \partial B \mid B \in \Gamma \} \).
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\det(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are $\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots$.

For $B \subseteq \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid \langle x, y \rangle \in B\}$.

Set $\partial B = \{x \mid I \text{ has a w.s. in } G_\omega(B_x)\}$.

For a pointclass Γ set $\partial \Gamma = \{\partial B \mid B \in \Gamma\}$.

Write $(\partial y)\langle x, y \rangle \in B$ for $x \in \partial B$.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume \(\text{det(projective)} \). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi_1^1, \Sigma_2^1, \Pi_3^1, \Sigma_4^1, \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).

Set \(\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \} \).

For a pointclass \(\Gamma \) set \(\partial \Gamma = \{ \partial B \mid B \in \Gamma \} \).

Write \((\partial y) \langle x, y \rangle \in B \) for \(x \in \partial B \).

Think of \(\partial \) as a quantifier, somewhere between \(\forall \) and \(\exists \).
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume \(\det(\text{projective}) \). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).

Set \(\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \} \).

For a pointclass \(\Gamma \) set \(\partial \Gamma = \{ \partial B \mid B \in \Gamma \} \).

Write \((\partial y)\langle x, y \rangle \in B \) for \(x \in \partial B \).

Think of \(\partial \) as a quantifier, somewhere between \(\forall \) and \(\exists \).

\[
(\exists y)\langle x, y \rangle \in B \iff (\exists y(0))(\exists y(1))(\exists y(2)) \cdots \cdots \langle x, y \rangle \in B.
\]
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\det(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π^1_1, Σ^1_2, Π^1_3, Σ^1_4, \ldots.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{ y \mid \langle x, y \rangle \in B \}$.

Set $\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \}$.

For a pointclass Γ set $\partial \Gamma = \{ \partial B \mid B \in \Gamma \}$.

Write $\langle \partial y \rangle \langle x, y \rangle \in B$ for $x \in \partial B$.

Think of ∂ as a quantifier, somewhere between \forall and \exists.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume \(\text{det(\text{projective})} \). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).

Set \(\partial B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \} \).

For a pointclass \(\Gamma \) set \(\partial \Gamma = \{ \partial B \mid B \in \Gamma \} \).

Write \((\partial y)\langle x, y \rangle \in B \) for \(x \in \partial B \).

Think of \(\partial \) as a quantifier, somewhere between \(\forall \) and \(\exists \).

\[
(\forall y)\langle x, y \rangle \in B \iff (\forall y(0))(\forall y(1))(\forall y(2)) \cdots \cdots \langle x, y \rangle \in B.
\]
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume det(\text{projective}). Then the projective pointclasses with the pwo property, and similarly reduction, are Π_1^1, Σ_2^1, Π_3^1, Σ_4^1, \ldots.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid \langle x, y \rangle \in B\}$.

Set $\partial B = \{x \mid I$ has a w.s. in $G_\omega(B_x)\}$.

For a pointclass Γ set $\partial \Gamma = \{\partial B \mid B \in \Gamma\}$.

Write $(\partial y)\langle x, y \rangle \in B$ for $x \in \partial B$.

Think of ∂ as a quantifier, somewhere between \forall and \exists.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume det(projective). Then the projective pointclasses with the pwo property, and similarly reduction, are \(\Pi^1_1, \Sigma^1_2, \Pi^1_3, \Sigma^1_4, \ldots \).

For \(B \subset \mathbb{R} \times \mathbb{R} \) set \(B_x = \{ y \mid \langle x, y \rangle \in B \} \).

Set \(\exists B = \{ x \mid I \text{ has a w.s. in } G_\omega(B_x) \} \).

For a pointclass \(\Gamma \) set \(\exists \Gamma = \{ \exists B \mid B \in \Gamma \} \).

Write \((\exists y)\langle x, y \rangle \in B \) for \(x \in \exists B \).

Think of \(\exists \) as a quantifier, somewhere between \(\forall \) and \(\exists \).

\[
(\exists y)\langle x, y \rangle \in B \iff (\exists y(0))(\forall y(1))(\exists y(2)) \cdots \langle x, y \rangle \in B.
\]
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $	ext{det}(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π^1_1, Σ^1_2, Π^1_3, Σ^1_4, \ldots.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid \langle x, y \rangle \in B\}$.

Set $\partial B = \{x \mid I \text{ has a w.s. in } G_\omega(B_x)\}$.

For a pointclass Γ set $\partial \Gamma = \{\partial B \mid B \in \Gamma\}$.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\det(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π_1^1, Σ_2^1, Π_3^1, Σ_4^1, · · ·.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid \langle x, y \rangle \in B\}$.

Set $\partial B = \{x \mid I \text{ has a w.s. in } G_\omega(B_x)\}$.

For a pointclass Γ set $\partial \Gamma = \{\partial B \mid B \in \Gamma\}$.

Easy to check $\partial \Pi_n^1 = \Sigma_{n+1}^1$, and (using determinacy) $\partial \Sigma_n^1 = \Pi_{n+1}^1$.
Theorem 10 (Martin, Addison–Moschovakis 1968) Assume $\det(\text{projective})$. Then the projective pointclasses with the pwo property, and similarly reduction, are Π_1^1, Σ_2^1, Π_3^1, Σ_4^1, \ldots.

For $B \subset \mathbb{R} \times \mathbb{R}$ set $B_x = \{y \mid \langle x, y \rangle \in B\}$.

Set $\partial B = \{x \mid I \text{ has a w.s. in } G_\omega(B_x)\}$.

For a pointclass Γ set $\partial \Gamma = \{\partial B \mid B \in \Gamma\}$.

Easy to check $\partial \Pi^1_n = \Sigma^1_{n+1}$, and (using determinacy) $\partial \Sigma^1_n = \Pi^1_{n+1}$.

The pointclasses in Theorem 10 are therefore precisely the pointclasses $\partial^{(n)} \Pi^1_1$, $n < \omega$.

8
Theorem [10] helped establish determinacy as the right assumption in the study of definable sets.
Theorem \[\text{10}\] helped establish determinacy as the right assumption in the study of definable sets.

The *axiom of determinacy* (AD), stating that *all* sets of reals are determined, became standard in the study of \(L(\mathbb{R})\).
Theorem 10 helped establish determinacy as the right assumption in the study of definable sets.

The *axiom of determinacy* (AD), stating that *all* sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Let δ denote the supremum of the lengths of Δ pwos on Δ sets.
Theorem 10 helped establish determinacy as the right assumption in the study of definable sets.

The *axiom of determinacy* (AD), stating that all sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Let δ denote the supremum of the lengths of Δ pwos on Δ sets.

Theorem 11 Assume AD. Then $\delta^1_1 = \omega_1$, $\delta^1_2 = \omega_2$ (Martin), and $\delta^1_3 = \omega_{\omega+1}$ (Martin). (Much more known.)
Theorem 10 helped establish determinacy as the right assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are determined, became standard in the study of L(R).

Let δ denote the supremum of the lengths of Δ pwos on Δ sets.

Theorem 11 Assume AD. Then $\delta_1^1 = \omega_1$, $\delta_2^1 = \omega_2$ (Martin), and $\delta_3^1 = \omega_{\omega+1}$ (Martin). (Much more known.)

Values of δ_n^1 are absolute between L(R) and V.
Theorem 10 helped establish determinacy as the right assumption in the study of definable sets.

The *axiom of determinacy* (AD), stating that *all* sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Let δ denote the supremum of the lengths of Δ pwos on Δ sets.

Theorem 11 Assume AD. Then $\delta_1^1 = \omega_1$, $\delta_2^1 = \omega_2$ (Martin), and $\delta_3^1 = \omega_{\omega+1}$ (Martin). (Much more known.)

Values of δ_n^1 are absolute between $L(\mathbb{R})$ and V. So, e.g., $\delta_2^1 = (\omega_2)^{L(\mathbb{R})}$ assuming $AD^{L(\mathbb{R})}$.
Theorem 10 helped establish determinacy as the right assumption in the study of definable sets.

The axiom of determinacy (AD), stating that all sets of reals are determined, became standard in the study of $L(\mathbb{R})$.

Let δ denote the supremum of the lengths of Δ pwos on Δ sets.

Theorem 11 Assume AD. Then $\delta_1^1 = \omega_1$, $\delta_2^1 = \omega_2$ (Martin), and $\delta_3^1 = \omega_{\omega+1}$ (Martin). (Much more known.)

Values of δ_n^1 are absolute between $L(\mathbb{R})$ and V. So, e.g., $\delta_2^1 = (\omega_2)^{L(\mathbb{R})}$ assuming $AD^{L(\mathbb{R})}$.

Theorem 12 (Steel–Van Wesep–Woodin) Assume $AD^{L(\mathbb{R})}$. Then it is consistent (with $AD^{L(\mathbb{R})}$ and AC) that $(\omega_2)^{L(\mathbb{R})} = \omega_2$, and hence $\delta_2^1 = \omega_2$.
Large cardinals:
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \rightarrow M \subset V$.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \rightarrow M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \to M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \rightarrow M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal. Otherwise have $\tau < \kappa$ and a surjection $f : \tau \rightarrow \kappa$. But then by elementarity $\pi(f)$ is onto $\pi(\kappa)$. Since $f \subset \tau \times \kappa \subset \text{crit}(\pi)^2$, $\pi(f) = f$. So $\pi(\kappa) = \kappa$, contradiction.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \rightarrow M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal. Otherwise have $\tau < \kappa$ and a surjection $f : \tau \rightarrow \kappa$. But then by elementarity $\pi(f)$ is onto $\pi(\kappa)$. Since $f \subset \tau \times \kappa \subset \text{crit}(\pi)^2$, $\pi(f) = f$. So $\pi(\kappa) = \kappa$, contradiction.

κ must be a limit cardinal.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \to M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal. Otherwise have $\tau < \kappa$ and a surjection $f : \tau \to \kappa$. But then by elementarity $\pi(f)$ is onto $\pi(\kappa)$. Since $f \subset \tau \times \kappa \subset \text{crit}(\pi)^2$, $\pi(f) = f$. So $\pi(\kappa) = \kappa$, contradiction.

κ must be a limit cardinal. Otherwise have $\tau < \kappa$ so that $\kappa = \tau^+$. But then by elementarity $\pi(\kappa) = (\pi(\tau)^+)^M$. Yet $\pi(\tau) = \tau$, so $\pi(\kappa) = (\tau^+)^M = \kappa$, contradiction.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \to M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal. Otherwise have $\tau < \kappa$ and a surjection $f : \tau \to \kappa$. But then by elementarity $\pi(f)$ is onto $\pi(\kappa)$. Since $f \subset \tau \times \kappa \subset \text{crit}(\pi)^2$, $\pi(f) = f$. So $\pi(\kappa) = \kappa$, contradiction.

κ must be a limit cardinal. Otherwise have $\tau < \kappa$ so that $\kappa = \tau^+$. But then by elementarity $\pi(\kappa) = (\pi(\tau)^+)^M$. Yet $\pi(\tau) = \tau$, so $\pi(\kappa) = (\tau^+)^M = \kappa$, contradiction.

Similar arguments show κ must be inaccessible, and in fact cannot be described from below in any absolute manner.
Large cardinals:

Large cardinal axioms state the existence of (non-trivial) elementary embeddings $\pi : V \rightarrow M \subset V$.

The critical point of π is the first ordinal κ so that $\pi(\kappa) \neq \kappa$.

κ must be a cardinal. Otherwise have $\tau < \kappa$ and a surjection $f : \tau \rightarrow \kappa$. But then by elementarity $\pi(f)$ is onto $\pi(\kappa)$. Since $f \subset \tau \times \kappa \subset \text{crit}(\pi)^2$, $\pi(f) = f$. So $\pi(\kappa) = \kappa$, contradiction.

κ must be a limit cardinal. Otherwise have $\tau < \kappa$ so that $\kappa = \tau^+$. But then by elementarity $\pi(\kappa) = (\pi(\tau)^+)^M$. Yet $\pi(\tau) = \tau$, so $\pi(\kappa) = (\tau^+)^M = \kappa$, contradiction.

Similar arguments show κ must be inaccessible, and in fact cannot be described from below in any absolute manner.

So the existence of non-trivial $\pi : V \rightarrow M \subset V$ cannot be proved in ZFC, and the first ordinal moved by π must be very large.
A cardinal is *measurable* if it is the critical point of an embedding $\pi : V \to M \subset V$.
A cardinal is *measurable* if it is the critical point of an embedding $\pi: V \to M \subset V$.

(Using an ultrapower construction, the measurability of κ is equivalent to the existence of a total, non-principal, countably complete, 2-valued measure on κ.)
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*

\(\pi : L \to L \) is enough (M.), and also *necessary* (Harrington).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*

\(\pi : L \to L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \to M \) can be obtained by demanding agreement between \(M \) and \(V \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subseteq V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi_1^1 \) sets are determined.*

\(\pi : L \to L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \to M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \)-*strong* if \(M \) has all bounded subsets of \(\lambda \),
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \rightarrow M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*

\(\pi : L \rightarrow L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \rightarrow M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \text{-} \text{strong} \) if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \text{-} \text{strong wrt } D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \rightarrow M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*

\(\pi : L \rightarrow L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \rightarrow M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \text{-strong} \) if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \text{-strong wrt } D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).

\(\kappa \) is \(<\delta \text{-strong} \) if it is the critical point of a \(\lambda \text{-strong} \) embedding for each \(\lambda < \delta \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \rightarrow M \subset V \).

Theorem (Martin) Suppose there is a measurable cardinal. Then all \(\Pi^1_1 \) sets are determined.

\(\pi : L \rightarrow L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \rightarrow M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \)-*strong* if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \)-*strong wrt* \(D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).

\(\kappa \) is \(<\delta \)-*strong* if it is the critical point of a \(\lambda \)-strong embedding for each \(\lambda < \delta \). Similarly wrt \(D \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.

\(\pi : L \to L \) is enough (M.), and also necessary (Harrington).

Greater strength from \(\pi : V \to M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \)-\textit{strong} if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \)-\textit{strong wrt} \(D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).

\(\kappa \) is \(<\delta \)-\textit{strong} if it is the critical point of a \(\lambda \)-\textit{strong} embedding for each \(\lambda < \delta \). Similarly wrt \(D \).

Note: if \(\kappa \) is the first measurable cardinal, then \(\kappa \) is only \(\kappa^+ \)-\textit{strong}.
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*

\(\pi : L \to L \) is enough (M.), and also necessary (Harrington).

Greater strength from \(\pi : V \to M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \)-*strong* if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \)-*strong wrt \(D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).

\(\kappa \) is \(<\delta \)-*strong* if it is the critical point of a \(\lambda \)-strong embedding for each \(\lambda < \delta \). Similarly wrt \(D \).
A cardinal is *measurable* if it is the critical point of an embedding \(\pi : V \to M \subset V \).

Theorem (Martin) *Suppose there is a measurable cardinals. Then all \(\Pi^1_1 \) sets are determined.*
\(\pi : L \to L \) is enough (M.), and also *necessary* (Harrington).

Greater strength from \(\pi : V \to M \) can be obtained by demanding agreement between \(M \) and \(V \).

\(\pi \) is \(\lambda \text{-}strong \) if \(M \) has all bounded subsets of \(\lambda \), and \(\lambda \text{-}strong \) wrt \(D \) if in addition \(\lambda \cap \pi(D) = \lambda \cap D \).

\(\kappa \) is \(<\delta \text{-}strong \) if it is the critical point of a \(\lambda \text{-}strong \) embedding for each \(\lambda < \delta \). Similarly wrt \(D \).

\(\delta \) is a *Woodin cardinal* if for every \(D \subset \delta \) there is \(\kappa < \delta \) which is \(<\delta \text{-}strong \) wrt \(D \).
Let $\pi: V \to M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The $(\kappa, \lambda)-extender$ induced by π is the function $E: \mathcal{P}(\kappa) \to \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.
Let $\pi: V \to M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The (κ, λ)-extender induced by π is the function $E: \mathcal{P}(\kappa) \to \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.

From E one can construct (using ultrapowers) an embedding $\sigma: V \to \text{Ult}(V, E)$ which agrees with π to λ, meaning that $\sigma(X) \cap \lambda = \pi(X) \cap \lambda$.
Let \(\pi: V \to M \). Let \(\kappa = \text{crit}(\pi) \) and \(\lambda \leq \pi(\kappa) \). The \((\kappa, \lambda)\)-extender induced by \(\pi \) is the function \(E: \mathcal{P}(\kappa) \to \mathcal{P}(\lambda) \) defined by \(E(X) = \pi(X) \cap \lambda \).

From \(E \) one can construct (using ultrapowers) an embedding \(\sigma: V \to \text{Ult}(V, E) \) which agrees with \(\pi \) to \(\lambda \), meaning that \(\sigma(X) \cap \lambda = \pi(X) \cap \lambda \). (\(\sigma \) is called the \textit{ultrapower embedding}.)
Let $\pi: V \to M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The (κ, λ)-extender induced by π is the function $E: \mathcal{P}(\kappa) \to \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.

From E one can construct (using ultrapowers) an embedding $\sigma: V \to \text{Ult}(V, E)$ which agrees with π to λ, meaning that $\sigma(X) \cap \lambda = \pi(X) \cap \lambda$. ($\sigma$ is called the ultrapower embedding.)

Extenders are thus enough to capture strength as defined above.
Let $\pi: V \rightarrow M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The (κ, λ)-extender induced by π is the function $E: \mathcal{P}(\kappa) \rightarrow \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.

From E one can construct (using ultrapowers) an embedding $\sigma: V \rightarrow \text{Ult}(V, E)$ which agrees with π to λ, meaning that $\sigma(X) \cap \lambda = \pi(X) \cap \lambda$. ($\sigma$ is called the ultrapower embedding.)

Extenders are thus enough to capture strength as defined above.

Models Q, Q^* agree past κ if $\mathcal{P}^{Q^*}(\kappa) = \mathcal{P}^Q(\kappa)$.
Let $\pi : V \to M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The (κ, λ)-extender induced by π is the function $E : \mathcal{P}(\kappa) \to \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.

From E one can construct (using ultrapowers) an embedding $\sigma : V \to \text{Ult}(V, E)$ which agrees with π to λ, meaning that $\sigma(X) \cap \lambda = \pi(X) \cap \lambda$. ($\sigma$ is called the ultrapower embedding.)

Extenders are thus enough to capture strength as defined above.

Models Q, Q^* agree past κ if $\mathcal{P}^{Q^*}(\kappa) = \mathcal{P}^{Q}(\kappa)$.

If E is an extender with critical point κ in a model Q, and Q^* agrees with Q past κ, then E gives rise, again using ultrapowers, to an embedding acting on Q^*.
Let $\pi : V \to M$. Let $\kappa = \text{crit}(\pi)$ and $\lambda \leq \pi(\kappa)$. The (κ, λ)-extender induced by π is the function $E : \mathcal{P}(\kappa) \to \mathcal{P}(\lambda)$ defined by $E(X) = \pi(X) \cap \lambda$.

From E one can construct (using ultrapowers) an embedding $\sigma : V \to \text{Ult}(V, E)$ which agrees with π to λ, meaning that $\sigma(X) \cap \lambda = \pi(X) \cap \lambda$. ($\sigma$ is called the ultrapower embedding.)

Extenders are thus enough to capture strength as defined above.

Models Q, Q^* agree past κ if $\mathcal{P}^{Q^*}(\kappa) = \mathcal{P}^{Q}(\kappa)$.

If E is an extender with critical point κ in a model Q, and Q^* agrees with Q past κ, then E gives rise, again using ultrapowers, to an embedding acting on Q^*.

This allows constructing iterated ultrapowers with non-linear base orders.
Constructed in stages, starting from a base model M_0. E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7} : M_1 \rightarrow M_7$ be the ultrapower embedding. At limit λ: pick a branch through the tree, cofinal in λ. Set M_λ equal to the direct limit of models and embeddings along this branch. The result is an iteration tree on M_ω.

\[\begin{align*} M_0 &\rightarrow M_1 & M_1 &\rightarrow M_2 & M_2 &\rightarrow M_3 \ldots \rightarrow M_\omega \rightarrow M_{\omega+1} \\ j_{0,1} &\rightarrow j_{1,2} & j_{1,3} &\rightarrow j_{2,4} & \vdots & \rightarrow \vdots \end{align*} \]
Constructed in stages, starting from a base model \(M = M_0 \).
Constructed in stages, starting from a base model $M = M_0$.
E.g., having constructed M_1, \ldots, M_6:

\[
\begin{align*}
M_0 & \rightarrow M_1 \\
M_1 & \rightarrow M_2 \\
M_2 & \rightarrow M_3 \\
M_3 & \rightarrow M_4 \\
M_4 & \rightarrow M_5 \\
M_5 & \rightarrow M_6 \\
M_6 & \rightarrow M_7 \\
M_7 & \rightarrow M_ω \\
M_ω & \rightarrow M_{ω+1}
\end{align*}
\]
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$,
Construct in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_1, j_7: M_1 \to M_7$ be the ultrapower embedding.
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7}: M_1 \to M_7$ be the ultrapower embedding.
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7}: M_1 \rightarrow M_7$ be the ultrapower embedding.

At limit λ:
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7} : M_1 \to M_7$ be the ultrapower embedding.

At limit λ: pick a branch through the tree, cofinal in λ.
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7}: M_1 \to M_7$ be the ultrapower embedding.

At limit λ: pick a branch through the tree, cofinal in λ. Set M_λ equal to the direct limit of models and embeddings along this branch.
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7}: M_1 \to M_7$ be the ultrapower embedding.

At limit λ: pick a branch through the tree, cofinal in λ. Set M_λ equal to the direct limit of models and embeddings along this branch.

The result is an iteration tree on M.
The creation of an iteration tree on M requires large cardinals in M.
The creation of an iteration tree on M requires large cardinals in M.

For non-linear iterations, measurable cardinals are not enough.
The creation of an iteration tree on M requires large cardinals in M.

For non-linear iterations, measurable cardinals are not enough.

If $E_k \in M_k$ is to be applied to M_l for some $l < k$, then M_l and M_k must agree past $\text{crit}(E_k)$.
The creation of an iteration tree on M requires large cardinals in M.

For non-linear iterations, measurable cardinals are not enough.

If $E_k \in M_k$ is to be applied to M_l for some $l < k$, then M_l and M_k must agree past $\text{crit}(E_k)$.

Thus the extenders used to form the models between M_l and M_k must be $\text{crit}(E_k)$–strong.
The creation of an iteration tree on M requires large cardinals in M.

For non-linear iterations, measurable cardinals are not enough.

If $E_k \in M_k$ is to be applied to M_l for some $l < k$, then M_l and M_k must agree past $\text{crit}(E_k)$.

Thus the extenders used to form the models between M_l and M_k must be $\text{crit}(E_k)$–strong.

The creation of iteration trees with several cofinal branches requires many strong extenders.
The creation of an iteration tree on M requires large cardinals in M.

For non-linear iterations, measurable cardinals are not enough.

If $E_k \in M_k$ is to be applied to M_l for some $l < k$, then M_l and M_k must agree past $\text{crit}(E_k)$.

Thus the extenders used to form the models between M_l and M_k must be $\text{crit}(E_k)$–strong.

The creation of iteration trees with several cofinal branches requires many strong extenders.

Woodin cardinals give precisely the extenders needed.
In fact using the extenders given by Woodin cardinals one can construct iteration trees very flexibly, reducing quantifiers over real numbers to quantifiers over iteration trees and branches through them.
In fact using the extenders given by Woodin cardinals one can construct iteration trees very flexibly, reducing quantifiers over real numbers to quantifiers over iteration trees and branches through them.

Such reductions are key to:
In fact using the extenders given by Woodin cardinals one can construct iteration trees very flexibly, reducing quantifiers over real numbers to quantifiers over iteration trees and branches through them.

Such reductions are key to:

Theorem (Martin–Steel) Suppose there are n Woodin cardinals and a measurable cardinal above them. Then all Π_{n+1}^1 sets are determined.
In fact using the extenders given by Woodin cardinals one can construct iteration trees very flexibly, reducing quantifiers over real numbers to quantifiers over iteration trees and branches through them.

Such reductions are key to:

Theorem (Martin–Steel) Suppose there are n Woodin cardinals and a measurable cardinal above them. Then all Π^1_{n+1} sets are determined.

Theorem (Woodin) Suppose there are ω Woodin cardinals and a measurable cardinal above them. Then all sets in $L(\mathbb{R})$ are determined.
In fact using the extenders given by Woodin cardinals one can construct iteration trees very flexibly, reducing quantifiers over real numbers to quantifiers over iteration trees and branches through them.

Such reductions are key to:

Theorem (Martin–Steel) Suppose there are n Woodin cardinals and a measurable cardinal above them. Then all Π^1_{n+1} sets are determined.

Theorem (Woodin) Suppose there are ω Woodin cardinals and a measurable cardinal above them. Then all sets in $L(\mathbb{R})$ are determined.

In both cases Woodin cardinals in iterable inner models (rather than the actual universe V) are enough, and moreover necessary.
These theorems are the starting point for a very strong connection between large cardinals and the theory of $L(R)$.
These theorems are the starting point for a very strong connection between large cardinals and the theory of $L(\mathbb{R})$.

Many of the results on $L(\mathbb{R})$ can be proved from determinacy (which in turn is proved from large cardinals).
These theorems are the starting point for a very strong connection between large cardinals and the theory of $L(\mathbb{R})$.

Many of the results on $L(\mathbb{R})$ can be proved from determinacy (which in turn is proved from large cardinals).

But some make direct use of inner models for Woodin cardinals.
A set A is α–Π_1^1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π_1^1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

(The hierarchy generated by this definition is the difference hierarchy on Π^1_1 sets. If $\alpha = 2$ for example, then the condition states simply that $A = A_0 - A_1$.)
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.
A set A is α–Π_1^1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π_1^1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) $\det(\Pi^1_{n+1})$ implies determinacy for all sets in the larger pointclass $\mathcal{C}^{(n)}(\omega^2–\Pi^1_1)$.
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) \(\text{det}(\Pi^1_{n+1}) \) implies determinacy for all sets in the larger pointclass $\mathcal{C}(n)(<\omega^2–\Pi^1_1)$.

For $n = 0$: Π^1_1 determinacy gives a non-trivial $\pi: L \rightarrow L$ (Harrington), which in turn gives $<\omega^2–\Pi^1_1$ determinacy (Martin).
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) $\det(\Pi^1_{n+1})$ implies determinacy for all sets in the larger pointclass $\deltac(n)(<\omega^2–\Pi^1_1)$.

For $n = 0$: Π^1_1 determinacy gives a non-trivial $\pi: L \to L$ (Harrington), which in turn gives $<\omega^2–\Pi^1_1$ determinacy (Martin).

Generally: Π^1_{n+1} determinacy gives non-trivial $\pi: M \to M$ where M is an iterable class model with n Woodin cardinals (Woodin), which in turn gives $\deltac(n)(<\omega^2–\Pi^1_1)$ determinacy (Neeman).
A set A is $\alpha-\Pi^1_1$ if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) $\det(\Pi^1_{n+1})$ implies determinacy for all sets in the larger pointclass $\mathcal{D}^{(n)}(\omega^2-\Pi^1_1)$.

For $n = 0$: Π^1_1 determinacy gives a non-trivial $\pi: L \to L$ (Harrington), which in turn gives $\omega^2-\Pi^1_1$ determinacy (Martin).

Generally: Π^1_{n+1} determinacy gives non-trivial $\pi: M \to M$ where M is an iterable class model with n Woodin cardinals (Woodin), which in turn gives $\mathcal{D}^{(n)}(\omega^2-\Pi^1_1)$ determinacy (Neeman).

Theorem known previously for odd n, not using large cardinals (Kechris–Woodin).
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) \(\det(\Pi^1_{n+1}) \) implies determinacy for all sets in the larger pointclass $\mathcal{O}^{(n)}(<\omega^2-\Pi^1_1)$.
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi \mid \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) $\text{det}(\Pi^1_{n+1})$ implies determinacy for all sets in the larger pointclass $\varnothing^{(n)}(<\omega^2–\Pi^1_1)$.

Theorem 14 (Hjorth) Work in $L(\mathbb{R})$ assuming AD. Let \preceq be a $\varnothing(\alpha–\Pi^1_1)$ prewellorder with $\alpha < \omega \cdot k$. Then the ordertype of \preceq is smaller than ω_{k+1}.

17
A set A is α–Π^1_1 if there is a sequence $\langle A_\xi | \xi < \alpha \rangle$ of Π^1_1 sets so that $x \in A$ iff the least ξ so that $x \notin A_\xi \lor \xi = \alpha$ is odd.

The lightface notion is defined similarly, requiring a recursive code for the sequence.

Theorem 13 (Neeman–Woodin) $\det(\Pi^1_{n+1})$ implies determinacy for all sets in the larger pointclass $\mathcal{D}(n)(<\omega^2 - \Pi^1_1)$.

Theorem 14 (Hjorth) Work in $L(\mathbb{R})$ assuming AD. Let \preceq be a $\mathcal{D}(\alpha - \Pi^1_1)$ prewellorder with $\alpha < \omega \cdot k$. Then the ordertype of \preceq is smaller than ω_{k+1}.

Theorem 15 (Neeman, Woodin) Assume $\text{AD}^{L(\mathbb{R})}$. Then it is consistent (with $\text{AD}^{L(\mathbb{R})}$ and the axiom of choice) that $\delta^1_3 = \omega_2$.

17
Let $\theta(\nu)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Iterable:
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi : M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Iterable:

The creation of iteration trees requires some choice at limits.
Constructed in stages, starting from a base model $M = M_0$.

E.g., having constructed M_1, \ldots, M_6: pick an extender $E_6 \in M_6$, apply it to M_1, setting $M_7 = \text{Ult}(M_1, E_6)$ and letting $j_{1,7}: M_1 \to M_7$ be the ultrapower embedding.

At limit λ: pick a branch through the tree, cofinal in λ. Set M_λ equal to the direct limit of models and embeddings along this branch.

The result is an iteration tree on M.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Iterable:

The creation of iteration trees requires some choice at limits.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Iterable:

The creation of iteration trees requires some choice at limits.

M is *iterable* if these choices can be made in a way that secures the wellfoundedness of all the models created.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi : M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.
Let \(\theta(v) \) be a formula. A *sharp* for \(\theta \) is a non-trivial embedding \(\pi: M \to M \) where \(M \) is the minimal iterable class model admitting a non-trivial embedding \(\pi \) and satisfying \(\theta[\text{crit}(\pi)] \).

Minimal:
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Minimal:

A model consisting of just the sets constructible from enough extenders to witness θ.
Let $\theta(v)$ be a formula. A \textit{sharp} for θ is a non-trivial embedding $\pi : M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Minimal:

A model consisting of just the sets constructible from enough extenders to witness θ.

Minimal for θ in much the same way L is minimal for ZFC.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Minimal:

A model consisting of just the sets constructible from enough extenders to witness θ.

Minimal for θ in much the same way L is minimal for ZFC.

Iterability crucial for making sense of minimality in the presence of extenders.
Let $\theta(v)$ be a formula. A \emph{sharp} for θ is a non-trivial embedding $\pi: M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Minimal:

A model consisting of just the sets constructible from enough extenders to witness θ.

Minimal for θ in much the same way L is minimal for ZFC.

Iterability crucial for making sense of minimality in the presence of extenders.

Comparisons through iterated ultrapowers show that any two ways to witness θ are compatible.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi : M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \to M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Let $\kappa = \text{crit}(\pi)$. The *theory* of the sharp for θ is $\bigoplus_{k<\omega} T_k$ where T_k is the theory of $\langle \kappa, \pi(\kappa), \cdots, \pi^{k-1}(\kappa) \rangle$ in M.
Let $\theta(v)$ be a formula. A *sharp* for θ is a non-trivial embedding $\pi: M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Let $\kappa = \text{crit}(\pi)$. The *theory* of the sharp for θ is $\bigoplus_{k<\omega} T_k$ where T_k is the theory of $\langle \kappa, \pi(\kappa), \ldots, \pi^{k-1}(\kappa) \rangle$ in M.

The sharp for "$v = v$" is called $0^\#$. It is a non-trivial $\pi: L \rightarrow L$.
Let $\theta(v)$ be a formula. A **sharp** for θ is a non-trivial embedding $\pi : M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Let $\kappa = \text{crit}(\pi)$. The **theory** of the sharp for θ is $\bigoplus_{k<\omega} T_k$ where T_k is the theory of $\langle \kappa, \pi(\kappa), \ldots, \pi^{k-1}(\kappa) \rangle$ in M.

The sharp for “$v = v$” is called $0^\#$. It is a non-trivial $\pi : L \rightarrow L$.

Theorem 16 (Martin) Let B_i be a recursive enumeration of the $<\omega^2-\Pi^1_1$ sets. Suppose $0^\#$ exists. Then all $<\omega^2-\Pi^1_1$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_{\omega}(B_i)\}$ is recursively isomorphic to the theory of $0^\#$.
Let $\theta(v)$ be a formula. A \textit{sharp} for θ is a non-trivial embedding $\pi : M \rightarrow M$ where M is the minimal iterable class model admitting a non-trivial embedding π and satisfying $\theta[\text{crit}(\pi)]$.

Let $\kappa = \text{crit}(\pi)$. The \textit{theory} of the sharp for θ is $\bigoplus_{k<\omega} T_k$ where T_k is the theory of $\langle \kappa, \pi(\kappa), \cdots, \pi^{k-1}(\kappa) \rangle$ in M.

The sharp for "$v = v$" is called $0^\#$. It is a non-trivial $\pi : L \rightarrow L$.

\textbf{Theorem 16 (Martin)} Let B_i be a recursive enumeration of the $<\omega^2-\Pi^1_1$ sets. Suppose $0^\#$ exists. Then all $<\omega^2-\Pi^1_1$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_{\omega}(B_i)\}$ is recursively isomorphic to the theory of $0^\#$.

\textbf{Theorem 17 (Neeman)} Let B_i be a recursive enumeration of the $\mathcal{D}^{(n)}(<\omega^2-\Pi^1_1)$ sets. Suppose a sharp for n Woodin cardinals exists. Then all $\mathcal{D}^{(n)}(<\omega^2-\Pi^1_1)$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_{\omega}(B_i)\}$ is recursively isomorphic to the theory of the sharp for n Woodin cardinals.
Theorem 16 (Martin) Let B_i be a recursive enumeration of the $<\omega^2-\Pi^1_1$ sets. Suppose $0^#$ exists. Then all $<\omega^2-\Pi^1_1$ games are determined, and \{\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}\} is recursively isomorphic to the theory of $0^#$.

Theorem 17 (Neeman) Let B_i be a recursive enumeration of the $\mathcal{D}^{(n)}(<\omega^2-\Pi^1_1)$ sets. Suppose a sharp for n Woodin cardinals exists. Then all $\mathcal{D}^{(n)}(<\omega^2-\Pi^1_1)$ games are determined, and \{\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}\} is recursively isomorphic to the theory of the sharp for n Woodin cardinals.
Theorem 16 (Martin) Let B_i be a recursive enumeration of the $<\omega^2-\Pi^1_1$ sets. Suppose $0^\#$ exists. Then all $<\omega^2-\Pi^1_1$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}$ is recursively isomorphic to the theory of $0^\#$.

Theorem 17 (Neeman) Let B_i be a recursive enumeration of the $\mathcal{O}(n)(<\omega^2-\Pi^1_1)$ sets. Suppose a sharp for n Woodin cardinals exists. Then all $\mathcal{O}(n)(<\omega^2-\Pi^1_1)$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}$ is recursively isomorphic to the theory of the sharp for n Woodin cardinals.

These theorems give tight connection between the theory of embeddings acting on models for large cardinals, and determinacy.
Theorem 16 (Martin) Let B_i be a recursive enumeration of the $<\omega^2-\Pi^1_1$ sets. Suppose $0^#$ exists. Then all $<\omega^2-\Pi^1_1$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}$ is recursively isomorphic to the theory of $0^#$.

Theorem 17 (Neeman) Let B_i be a recursive enumeration of the $\mathcal{O}(n)(<\omega^2-\Pi^1_1)$ sets. Suppose a sharp for n Woodin cardinals exists. Then all $\mathcal{O}(n)(<\omega^2-\Pi^1_1)$ games are determined, and $\{i \mid I \text{ has a w.s. in } G_\omega(B_i)\}$ is recursively isomorphic to the theory of the sharp for n Woodin cardinals.

These theorems give tight connection between the theory of embeddings acting on models for large cardinals, and determinacy.

The connection (with analogues for ω Woodin cardinals) is crucial for Theorems [13–15].
Analogous connections exist for stronger large cardinal axioms, and stronger forms of determinacy.
Analogous connections exist for stronger large cardinal axioms, and stronger forms of determinacy.

Reach as far as games of length ω_1.

Analogous connections exist for stronger large cardinal axioms, and stronger forms of determinacy.

Reach as far as games of length \(\omega_1 \).

Let \(\tilde{S} = \langle S_a \mid a \in [\omega_1]^{<\omega} \rangle \) be a collection of mutually disjoint stationary subsets of \(\omega_1 \).
Analogous connections exist for stronger large cardinal axioms, and stronger forms of determinacy.

Reach as far as games of length ω_1.

Let $\vec{S} = \langle S_a \mid a \in [\omega_1]^<\omega \rangle$ be a collection of mutually disjoint stationary subsets of ω_1.

(With a stationary set S_a associated to each tuple $a \in [\omega_1]^<\omega$.)
Analogous connections exist for stronger large cardinal axioms, and stronger forms of determinacy.

Reach as far as games of length ω_1.

Let $\vec{S} = \langle S_a \mid a \in [\omega_1]^{<\omega} \rangle$ be a collection of mutually disjoint stationary subsets of ω_1.

(With a stationary set S_a associated to each tuple $a \in [\omega_1]^{<\omega}$.)

Let $[\vec{S}]$ denote the set

$$\{ \langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\omega_1]^{<\omega} \mid (\forall i < k) \alpha_i \in S_{\langle \alpha_0, \ldots, \alpha_{i-1} \rangle} \}.$$
Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula.
Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula. Define $G_{\omega_1}(\vec{S}, \varphi)$ to be the following game:
Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula. Define $G_{\omega_1}(\vec{S}, \varphi)$ to be the following game:

Players I and II alternate playing ω_1 natural numbers, producing together a sequence $r \in \omega^{\omega_1}$.

Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula. Define $G_{\omega_1}(\vec{S}, \varphi)$ to be the following game:

Players I and II alternate playing ω_1 natural numbers, producing together a sequence $r \in \omega^{\omega_1}$.

If there is a club $C \subset \omega_1$ so that $(L_{\omega_1}[r]; r) \models \varphi[\alpha_0, \ldots, \alpha_{k-1}]$ for all $\langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\vec{S}] \cap [C]^k$ then player I wins the run r.
Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula. Define $G_{\omega_1}(\vec{S}, \varphi)$ to be the following game:

Players I and II alternate playing ω_1 natural numbers, producing together a sequence $r \in \omega^{\omega_1}$.

If there is a club $C \subset \omega_1$ so that $(L_{\omega_1}[r]; r) \models \varphi[\alpha_0, \ldots, \alpha_{k-1}]$ for all $\langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\vec{S}] \cap [C]^k$ then player I wins the run r.

If there is a club $C \subset \omega_1$ so that $(L_{\omega_1}[r]; r) \models \neg \varphi[\alpha_0, \ldots, \alpha_{k-1}]$ for all $\langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\vec{S}] \cap [C]^k$ then player II wins r.
Let $\varphi(x_0, \ldots, x_{k-1})$ be a formula. Define $G_{\omega_1}(\vec{S}, \varphi)$ to be the following game:

Players I and II alternate playing ω_1 natural numbers, producing together a sequence $r \in \omega^{\omega_1}$.

If there is a club $C \subset \omega_1$ so that $(L_{\omega_1}[r]; r) \models \varphi[\alpha_0, \ldots, \alpha_{k-1}]$ for all $\langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\vec{S}] \cap [C]^k$ then player I wins the run r.

If there is a club $C \subset \omega_1$ so that $(L_{\omega_1}[r]; r) \models \neg \varphi[\alpha_0, \ldots, \alpha_{k-1}]$ for all $\langle \alpha_0, \ldots, \alpha_{k-1} \rangle \in [\vec{S}] \cap [C]^k$ then player II wins r.

If neither condition holds then both players lose.
Theorem 18 (Neeman) Let φ_i be a recursive enumeration of formulae. Suppose that there is a sharp $\pi: M \rightarrow M$ for the statement “crit(π) is a Woodin cardinal.” Then:
Theorem 18 (Neeman) Let φ_i be a recursive enumeration of formulae. Suppose that there is a sharp $\pi: M \to M$ for the statement “$\text{crit}(\pi)$ is a Woodin cardinal.” Then:

1. The games $G_{\omega_1}(\vec{S}, \varphi)$ are all determined.
Theorem 18 (Neeman) Let φ_i be a recursive enumeration of formulae. Suppose that there is a sharp $\pi: M \to M$ for the statement “$\text{crit}(\pi)$ is a Woodin cardinal.” Then:

1. The games $G_{\omega_1}(\vec{S}, \varphi)$ are all determined.

2. Which player has a w.s. in $G_{\omega_1}(\vec{S}, \varphi)$ depends only on φ, not on \vec{S}.
Theorem 18 (Neeman) Let φ_i be a recursive enumeration of formulae. Suppose that there is a sharp $\pi: M \to M$ for the statement “$\text{crit}(\pi)$ is a Woodin cardinal.” Then:

1. The games $G_{\omega_1}(\vec{S}, \varphi)$ are all determined.

2. Which player has a w.s. in $G_{\omega_1}(\vec{S}, \varphi)$ depends only on φ, not on \vec{S}.

3. The set \(\{i \mid I \text{ has a w.s. in } G_{\omega_1}(\vec{S}, \varphi_i) \} \) is recursively isomorphic to the theory of the sharp for “$\text{crit}(\pi)$ is a Woodin cardinal.”
Theorem 18 (Neeman) Let ϕ_i be a recursive enumeration of formulae. Suppose that there is a sharp $\pi: M \rightarrow M$ for the statement “crit(π) is a Woodin cardinal.” Then:

1. The games $G_{\omega_1}(\vec{S}, \phi)$ are all determined.

2. Which player has a w.s. in $G_{\omega_1}(\vec{S}, \phi)$ depends only on ϕ, not on \vec{S}.

3. The set $\{i \mid I \text{ has a w.s. in } G_{\omega_1}(\vec{S}, \phi_i)\}$ is recursively isomorphic to the theory of the sharp for “crit(π) is a Woodin cardinal.”

The theorem establishes a precise analogue of Theorems 16 and 17, but for embeddings concentrating on Woodin cardinals and for games of length ω_1.
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?

Theorem 18 is the frontier right now. But the large cardinals involved are still low compared, for example, to superstrong.
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?

Theorem 18 is the frontier right now. But the large cardinals involved are still low compared, for example, to superstrong.

Question What kind of games are tied to axioms higher up in the large cardinal hierarchy?
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?

Theorem 18 is the frontier right now. But the large cardinals involved are still low compared, for example, to superstrong.

Question What kind of games are tied to axioms higher up in the large cardinal hierarchy?

Games motivated by Theorem 18 were used by Woodin in results on Σ^2_2 absoluteness.
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?

Theorem 18 is the frontier right now. But the large cardinals involved are still low compared, for example, to superstrong.

Question What kind of games are tied to axioms higher up in the large cardinal hierarchy?

Games motivated by Theorem 18 were used by Woodin in results on Σ^2_2 absoluteness. Other games similar to those in the theorem are enough to capture the theory of superstrong cardinals.
Question How high in the large cardinal hierarchy can such tight connections between games and the theories of embeddings be found?

Theorem 18 is the frontier right now. But the large cardinals involved are still low compared, for example, to superstrong.

Question What kind of games are tied to axioms higher up in the large cardinal hierarchy?

Games motivated by Theorem 18 were used by Woodin in results on Σ_2^2 absoluteness. Other games similar to those in the theorem are enough to capture the theory of superstrong cardinals. But there are no determinacy proofs for these games from large cardinals, and indeed there are some negative results (Larson).
The End

Press Esc.