Introduction

- The tree property at κ^+ states that every κ^+-tree has an unbounded branch.
The tree property at κ^+ states that every κ^+-tree has an unbounded branch.

(Magidor - Shelah, 1996) Suppose there is a model with a huge cardinal and ω many supercompact cardinals above it. Then there is a model with the tree property at $\aleph_{\omega+1}$.

We reduce the large cardinal hypothesis to ω many supercompact cardinals. Our construction is motivated by the Prikry type forcing in Gitik-Sharon (2008) and arguments in Neeman (2009).
The tree property at κ^+ states that every κ^+-tree has an unbounded branch.

(Magidor - Shelah, 1996) Suppose there is a model with a huge cardinal and ω many supercompact cardinals above it. Then there is a model with the tree property at $\aleph_{\omega+1}$.

We reduce the large cardinal hypothesis to ω many supercompact cardinals.

Our construction is motivated by the Prikry type forcing in Gitik-Sharon (2008) and arguments in Neeman (2009).
The Main Theorem

Theorem
(S) Suppose that in V, $\langle \kappa_n \mid n < \omega \rangle$ is an increasing sequence of supercompact cardinals and GCH holds. Then there is a generic extension in which:

1. $\kappa_0 = \aleph_\omega$,
2. the tree property holds at $\aleph_{\omega + 1}$.

Furthermore, there is a bad scale at κ_0.
In V, $\langle \kappa_n \mid n < \omega \rangle$ are increasing supercompact cardinals, $\kappa_0 = \kappa$ indestructably supercompact.
In V, $\langle \kappa_n \mid n < \omega \rangle$ are increasing supercompact cardinals, \(\kappa_0 = \kappa\) indestructably supercompact.

Force with C to make each κ_n be the n-th successor of κ. Let H be C-generic over V.
In V, $\langle \kappa_n \mid n < \omega \rangle$ are increasing supercompact cardinals, $\kappa_0 = \kappa$ indestructably supercompact.

Force with \mathbb{C} to make each κ_n be the n-th successor of κ. Let H be \mathbb{C}-generic over V.

In $V[H]$, we have:

$\langle U_n \mid n < \omega \rangle$ are supercompactness measures on $\mathcal{P}_\kappa(\kappa^{+n})$.
In V, $\langle \kappa_n \mid n < \omega \rangle$ are increasing supercompact cardinals, $\kappa_0 = \kappa$ indestructably supercompact.

Force with C to make each κ_n be the n-th successor of κ. Let H be C-generic over V.

In $V[H]$, we have:

- $\langle U_n \mid n < \omega \rangle$ are supercompactness measures on $\mathcal{P}_\kappa(\kappa^{+n})$

- $\langle K_n \mid n < \omega \rangle$, such that K_0 is Ult_{U_0}-generic for $Col(\kappa^{+\omega+2}, < j_{U_0}(\kappa))$ and for $n > 0$, K_n is Ult_{U_n}-generic for $Col(\kappa^{+n+2}, < j_{U_n}(\kappa))$.

Dima Sinapova UCI
The Main Forcing

Conditions in \mathbb{P} are of the form $p = \langle d, \langle p_n \mid n < \omega \rangle \rangle$, where setting $l = lh(p)$, we have:

1. For $0 \leq n < l$, $p_n = \langle x_n, c_n \rangle$ such that:
 - $x_n \in \mathcal{P}\kappa(\kappa + n)$ and for $i < n$, $x_i \prec x_n$,
 - $c_0 \in \text{Col}(\kappa + \omega + 2 x_0, <\kappa x_1)$ if $1 < l$,
 - if $1 < l$, for $0 < n < l - 1$, $c_n \in \text{Col}(\kappa + n + 2 x_n, <\kappa x_{n+1})$, and $c_{l-1} \in \text{Col}(\kappa + l + 1 x_{l-1}, <\kappa)$.

2. For $n \geq l$, $p_n = \langle A_n, C_n \rangle$ such that:
 - $A_n \in U_n$, $A_n \subset X_n$, and $x_{l-1} \prec y$ for all $y \in A_n$.
 - $[C_n] U_n \in K_n$.

3. If $l > 0$, then $d \in \text{Col}(\omega, \kappa + \omega x_0)$, otherwise $d \in \text{Col}(\omega, \kappa)$.
The Main Forcing

Conditions in \mathbb{P} are of the form $p = \langle d, \langle p_n \mid n < \omega \rangle \rangle$, where setting $l = lh(p)$, we have:

1. For $0 \leq n < l$, $p_n = \langle x_n, c_n \rangle$ such that:
 - $x_n \in \mathcal{P}_{\kappa}(\kappa^+ \cdot n)$ and for $i < n$, $x_i \prec x_n$,
 - $c_0 \in Col(\kappa^{x_0 + \omega + 2}, < \kappa_{x_1})$ if $1 < l$, and if $l = 1$,
 - $c_0 \in Col(\kappa^{x_0 + \omega + 2}, < \kappa)$.
 - if $1 < l$, for $0 < n < l - 1$, $c_n \in Col(\kappa^{x_n + n + 2}, < \kappa_{x_n+1})$, and
 - $c_{l-1} \in Col(\kappa_{x_{l-1} + 1}, < \kappa)$.
The Main Forcing

Conditions in \mathbb{P} are of the form $p = \langle d, \langle p_n \mid n < \omega \rangle \rangle$, where setting $l = lh(p)$, we have:

1. For $0 \leq n < l$, $p_n = \langle x_n, c_n \rangle$ such that:
 - $x_n \in \mathcal{P}_{\kappa}^{\kappa^+ n}$ and for $i < n$, $x_i \prec x_n$.
 - $c_0 \in \text{Col}(\kappa_{\kappa^0}^{\omega+2}, < \kappa_{x_1})$ if $1 < l$, and if $l = 1$, $c_0 \in \text{Col}(\kappa_{\kappa^0}^{\omega+2}, < \kappa)$.
 - if $1 < l$, for $0 < n < l - 1$, $c_n \in \text{Col}(\kappa_{x_n}^{\omega+1}, < \kappa_{x_{n+1}})$, and $c_{l-1} \in \text{Col}(\kappa_{x_{l-1}}^{\omega+1}, < \kappa)$.

2. For $n \geq l$, $p_n = \langle A_n, C_n \rangle$ such that:
 - $A_n \in U_n$, $A_n \subset X_n$, and $x_{l-1} \prec y$ for all $y \in A_n$.
 - $[C_n]_{U_n} \in K_n$.

Dima Sinapova UCI
Conditions in \mathbb{P} are of the form $p = \langle d, \langle p_n \mid n < \omega \rangle \rangle$, where setting $l = lh(p)$, we have:

1. For $0 \leq n < l$, $p_n = \langle x_n, c_n \rangle$ such that:
 - $x_n \in \mathcal{P}_{\kappa}(\kappa^{+n})$ and for $i < n$, $x_i \prec x_n$,
 - $c_0 \in Col(\kappa_{\chi_0}^{+\omega+2}, < \kappa_{\chi_1})$ if $1 < l$, and if $l = 1$, $c_0 \in Col(\kappa_{\chi_0}^{+\omega+2}, < \kappa)$.
 - if $1 < l$, for $0 < n < l - 1$, $c_n \in Col(\kappa_{\chi_n}^{+n+2}, < \kappa_{\chi_{n+1}})$, and $c_{l-1} \in Col(\kappa_{\chi_{l-1}}^{+l+1}, < \kappa)$.

2. For $n \geq l$, $p_n = \langle A_n, C_n \rangle$ such that:
 - $A_n \in U_n$, $A_n \subset X_n$, and $x_{l-1} \prec y$ for all $y \in A_n$.
 - $[C_n]_{U_n} \in K_n$.

3. if $l > 0$, then $d \in Col(\omega, \kappa_{\chi_0}^{+\omega})$, otherwise $d \in Col(\omega, \kappa)$.
Properties of the forcing

Let G be \mathbb{P}-generic over $V[H]$

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa + \omega)^{V[H]}$.

Dima Sinapova UCI

The Tree property for small cardinals
Properties of the forcing

Let G be \mathbb{P}-generic over $V[H]$

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^+ \omega)^{V[H]}$.

2. The cofinality of each $\kappa_n = (\kappa^+ n)^{V[H]}$ in $V[H][G]$ is ω.
Properties of the forcing

Let G be \mathbb{P}-generic over $V[H]$

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^+\omega)^{V[H]}$.

2. The cofinality of each $\kappa_n = (\kappa^+)^{V[H]}$ in $V[H][G]$ is ω.

3. \mathbb{P} has the $\mu = \kappa^+\omega+1$ chain condition, so, cardinals greater than or equal to $\kappa^+\omega+1$ are preserved.
Properties of the forcing

Let G be \mathbb{P}-generic over $V[H]$

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^+ + \omega)^{V[H]}$.

2. The cofinality of each $\kappa_n = (\kappa^+ + n)^{V[H]}$ in $V[H][G]$ is ω.

3. \mathbb{P} has the $\mu = \kappa^+ + \omega + 1$ chain condition, so, cardinals greater than or equal to $\kappa^+ + \omega + 1$ are preserved.

4. \mathbb{P} has the Prikry property.
Properties of the forcing

Let G be \mathbb{P}-generic over $V[H]$

1. G determines a generic sequence $\langle x_n \mid n < \omega \rangle$, such that $\bigcup_n x_n = (\kappa^+ + \omega)^{V[H]}$.

2. The cofinality of each $\kappa_n = (\kappa^+ + n)^{V[H]}$ in $V[H][G]$ is ω.

3. \mathbb{P} has the $\mu = \kappa^+ + \omega + 1$ chain condition, so, cardinals greater than or equal to $\kappa^+ + \omega + 1$ are preserved.

4. \mathbb{P} has the Prikry property.

In particular, in $V[H][G]$, μ is the successor of κ, and $\mu = \kappa^+ \omega_1$.
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\[S = \langle I, \mathcal{R} \rangle \] is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

\begin{itemize}

 \item \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{ \alpha \} \times \kappa \) is the \(\alpha \)-level of \(S \),

 \item \(\mathcal{R} \) is a set of transitive binary relations on \(S \), \(|\mathcal{R}| < \nu \),

 \item for \(\alpha < \beta \) in \(I \), there are \(u \in S_\alpha, v \in S_\beta, R \in \mathcal{R} \), s.t. \(\langle u, v \rangle \in R \),

 \item for \(R \in \mathcal{R} \), if \(u_1, u_2 \) are distinct, \(\langle u_1, v \rangle \in R, \langle u_2, v \rangle \in R \), then \(\langle u_1, u_2 \rangle \in R \) or \(\langle u_2, u_1 \rangle \in R \).
\end{itemize}

A branch of \(S \) is a set \(b \subset \bigcup \alpha \in I S_\alpha \) s.t. for every \(\alpha \), \(|b \cap S_\alpha| \leq 1 \), and for some \(R \in \mathcal{R} \), for all \(u, v \in b \), \(\langle u, v \rangle \in R \) or \(\langle v, u \rangle \in R \); \(b \) is unbounded if for unboundedly many \(\alpha \in I \), \(b \cap S_\alpha \neq \emptyset \).
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\(S = \langle I, \mathcal{R} \rangle \) is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

- \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{\alpha\} \times \kappa \) is the \(\alpha \)-level of \(S \),
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\(S = \langle I, \mathcal{R} \rangle \) is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

- \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{\alpha\} \times \kappa \) is the \(\alpha \)-level of \(S \),
- \(\mathcal{R} \) is a set of transitive binary relations on \(S \), \(|\mathcal{R}| < \nu \),
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\(S = \langle I, \mathcal{R} \rangle \) is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

- \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{ \alpha \} \times \kappa \) is the \(\alpha \)-level of \(S \),
- \(\mathcal{R} \) is a set of transitive binary relations on \(S \), \(|\mathcal{R}| < \nu \),
- for \(\alpha < \beta \) in \(I \), there are \(u \in S_\alpha \), \(v \in S_\beta \), \(R \in \mathcal{R} \), s.t. \(\langle u, v \rangle \in R \),
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\[S = \langle I, \mathcal{R} \rangle \] is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

- \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{\alpha\} \times \kappa \) is the \(\alpha \)-level of \(S \),
- \(\mathcal{R} \) is a set of transitive binary relations on \(S \), \(|\mathcal{R}| < \nu \),
- for \(\alpha < \beta \) in \(I \), there are \(u \in S_\alpha \), \(v \in S_\beta \), \(R \in \mathcal{R} \), s.t. \(\langle u, v \rangle \in R \),
- for \(R \in \mathcal{R} \), if \(u_1, u_2 \) are distinct, \(\langle u_1, v \rangle \in R \), \(\langle u_2, v \rangle \in R \), then \(\langle u_1, u_2 \rangle \in R \) or \(\langle u_2, u_1 \rangle \in R \).
The preservation theorem

- motivated by the Preservation Theorem in Magidor-Shelah.
- instead of trees, here we work with narrow systems

\[S = \langle I, \mathcal{R} \rangle \]

is a **narrow system** of height \(\nu^+ \) and levels of size \(\kappa < \nu \) if:

- \(I \subset \nu^+ \) is unbounded; for \(\alpha \in I \), \(S_\alpha = \{ \alpha \} \times \kappa \) is the \(\alpha \)-level of \(S \),
- \(\mathcal{R} \) is a set of transitive binary relations on \(S \), \(|\mathcal{R}| < \nu \),
- for \(\alpha < \beta \) in \(I \), there are \(u \in S_\alpha \), \(v \in S_\beta \), \(R \in \mathcal{R} \), s.t. \(\langle u, v \rangle \in R \),
- for \(R \in \mathcal{R} \), if \(u_1, u_2 \) are distinct, \(\langle u_1, v \rangle \in R \), \(\langle u_2, v \rangle \in R \), then \(\langle u_1, u_2 \rangle \in R \) or \(\langle u_2, u_1 \rangle \in R \).

A **branch** of \(S \) is a set \(b \subset \bigcup_{\alpha \in I} S_\alpha \) s. t. for every \(\alpha \), \(|b \cap S_\alpha| \leq 1 \), and for some \(R \in \mathcal{R} \), for all \(u, v \in b \), \(\langle u, v \rangle \in R \) or \(\langle v, u \rangle \in R \);

\(b \) is unbounded if for unboundedly many \(\alpha \in I \), \(b \cap S_\alpha \neq \emptyset \).
The preservation theorem

Theorem

(S) Suppose that $\text{cof}(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+, levels of size κ, $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathbb{R} is a $<\chi$ closed notion of forcing where $\chi > \max(\kappa, \tau)^{+}$, and let F be \mathbb{R}-generic over V. Suppose that in $V[F]$ there are (not necessarily all unbounded) branches $\langle b_{R,\delta} \mid R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

1. every $b_{R,\delta}$ is a branch through R,
2. for all $\alpha \in I$, there is $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, such that $S_{\alpha} \cap b_{R,\delta} \neq \emptyset$.

Finally suppose that for some $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, $b_{R,\delta}$ is unbounded. Then S has an unbounded branch in V.

Dima Sinapova UCI
The preservation theorem

Theorem
(S) Suppose that \(\text{cof}(\nu) = \omega \) and \(S = \langle I, R \rangle \) is a narrow system in \(V \) of height \(\nu^+ \), levels of size \(\kappa \), \(|R| = \tau \), where \(\kappa, \tau < \nu \). Suppose also that \(R \) is a \(< \chi \) closed notion of forcing where \(\chi > \max(\kappa, \tau)^+ \), and let \(F \) be \(R \)-generic over \(V \). Suppose that in \(V[F] \) there are (not necessarily all unbounded) branches \(\langle b_{R,\delta} | R \in R, \delta < \kappa \rangle \), such that:

1. every \(b_{R,\delta} \) is a branch through \(R \),
2. for all \(\alpha \in I \), there is \(\langle R, \delta \rangle \in R \times \kappa \), such that \(S_{\alpha} \cap b_{R,\delta} \neq \emptyset \).
The preservation theorem

Theorem
(S) Suppose that \(\text{cof}(\nu) = \omega \) and \(S = \langle I, R \rangle \) is a narrow system in \(V \) of height \(\nu^+ \), levels of size \(\kappa \), \(|R| = \tau \), where \(\kappa, \tau < \nu \). Suppose also that \(R \) is a \(<\chi \) closed notion of forcing where \(\chi > \max(\kappa, \tau)^+ \), and let \(F \) be \(R \)-generic over \(V \). Suppose that in \(V[F] \) there are (not necessarily all unbounded) branches \(\langle b_{R,\delta} \mid R \in R, \delta < \kappa \rangle \), such that:

1. every \(b_{R,\delta} \) is a branch through \(R \),
2. for all \(\alpha \in I \), there is \(\langle R, \delta \rangle \in R \times \kappa \), such that \(S_\alpha \cap b_{R,\delta} \neq \emptyset \).

Finally suppose that for some \(\langle R, \delta \rangle \in R \times \kappa \), \(b_{R,\delta} \) is unbounded.
The preservation theorem

Theorem

(S) Suppose that $\text{cof}(\nu) = \omega$ and $S = \langle I, \mathcal{R} \rangle$ is a narrow system in V of height ν^+, levels of size κ, $|\mathcal{R}| = \tau$, where $\kappa, \tau < \nu$. Suppose also that \mathcal{R} is a $< \chi$ closed notion of forcing where $\chi > \max(\kappa, \tau)^+$, and let F be \mathcal{R}-generic over V. Suppose that in $V[F]$ there are (not necessarily all unbounded) branches $\langle b_{R,\delta} | R \in \mathcal{R}, \delta < \kappa \rangle$, such that:

1. every $b_{R,\delta}$ is a branch through R,
2. for all $\alpha \in I$, there is $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, such that $S_\alpha \cap b_{R,\delta} \neq \emptyset$.

Finally suppose that for some $\langle R, \delta \rangle \in \mathcal{R} \times \kappa$, $b_{R,\delta}$ is unbounded. Then S has an unbounded branch in V.

Dima Sinapova UCI

The Tree property for small cardinals
In $V[H][G]$, the tree property holds at $\aleph_{\omega+1}$. The proof is motivated by Neeman. The main difference is that we have to deal with the poset C and rely on the Preservation Theorem.
The tree property

In $V[H][G]$, the tree property holds at $\aleph_{\omega+1}$.

- The proof is motivated by Neeman
- The main difference is that we have to deal with the poset C and rely on the Preservation Theorem.
Connection with the SCH

Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+$.

Theorem (Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_ω is strong limit and $2^{\aleph_\omega} = \aleph_\omega + 2$.

Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ^{++}. This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.
Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+$.

Theorem
(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_ω is strong limit and $2^{\aleph_\omega} = \aleph_{\omega+2}$.

Definition
The Singular Cardinal Hypothesis (SCH) states that if κ is singular and $2^{\text{cf}(\kappa)} < \kappa$, then $\kappa^{\text{cf}(\kappa)} = \kappa^+$.

Theorem
(Magidor) If there exists a supercompact cardinal, then there is a forcing extension in which \aleph_ω is strong limit and $2^{\aleph_\omega} = \aleph_{\omega+2}$.

Gitik and Woodin significantly reduced the large cardinal hypothesis to a measurable cardinal κ of Mitchell order κ^{++}. This hypothesis was shown to be optimal by Gitik and Mitchell using core model theory.
Question (Woodin and others): Does not SCH at a cardinal κ of cofinality ω imply the failure of the tree property?
Question (Woodin and others): Does not SCH at a cardinal κ of cofinality ω imply the failure of the tree property?

Theorem

(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ.
Connection with the SCH

Question (Woodin and others): Does not SCH at a cardinal κ of cofinality ω imply the failure of the tree property?

Theorem
(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ.

Question
Can Neeman’s result be obtained for $\kappa = \aleph_\omega$, or even \aleph_{ω_2}?
Question (Woodin and others): Does not SCH at a cardinal κ of cofinality ω imply the failure of the tree property?

Theorem
(Neeman, 2009) The tree property at κ^+ is consistent with the failure of SCH at κ.

Question
Can Neeman’s result be obtained for $\kappa = \aleph_\omega$, or even \aleph_{ω_2}?

The strategy in the proof our theorem suggests some hope of answering the above question in the positive.