Cardinal invariants of monotone and porous sets

Michael Hrušák
IMUNAM-Morelia
Universidad Nacional Autónoma de México
michael@matmor.unam.mx
(joint work with Ondřej Zindulka)

October 2010, Los Angeles
Content

1 Monotone sets

2 Cardinal invariants

3 Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity

4 Open problems
Monotone sets

Definition (Ondřej Zindulka)

Let (X, d) be a metric space.

- (X, d) is called monotone if there is $c > 0$ and a linear order $<$ on X such that $d(x, y) \leq c \, d(x, z)$ for all $x < y < z$ in X.
- (X, d) is called σ-monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove: • the existence of universal measure zero sets of large Hausdorff dimension, and
• that a Borel set in \mathbb{R}^n of Hausdorff dimension greater than m maps onto the m-dimensional cube by a Lipschitz map.
Monotone sets

Definition (Ondřej Zindulka)

Let \((X, d)\) be a metric space.
- \((X, d)\) is called *monotone* if there is \(c > 0\) and a linear order \(<\) on \(X\) such that \(d(x, y) \leq c \cdot d(x, z)\) for all \(x < y < z\) in \(X\).
- \((X, d)\) is called *\(\sigma\)-monotone* if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove:
- the existence of universal measure zero sets of large Hausdorff dimension, and
- that a Borel set in \(\mathbb{R}^n\) of Hausdorff dimension greater than \(m\) maps onto the \(m\)-dimensional cube by a Lipschitz map.
Monotone sets

Definition (Ondřej Zindulka)

Let \((X, d)\) be a metric space.
- \((X, d)\) is called \textit{monotone} if there is \(c > 0\) and a linear order \(<\) on \(X\) such that \(d(x, y) \leq c \, d(x, z)\) for all \(x < y < z\) in \(X\).
- \((X, d)\) is called \textit{\(\sigma\)-monotone} if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove:
- the existence of universal measure zero sets of large Hausdorff dimension, and
- that a Borel set in \(\mathbb{R}^n\) of Hausdorff dimension greater than \(m\) maps onto the \(m\)-dimensional cube by a Lipschitz map.
Monotone sets

Definition (Ondřej Zindulka)

Let \((X, d)\) be a metric space.

- \((X, d)\) is called \textit{monotone} if there is \(c > 0\) and a linear order \(<\) on \(X\) such that \(d(x, y) \leq c \, d(x, z)\) for all \(x < y < z\) in \(X\).
- \((X, d)\) is called \textit{\(\sigma\)-monotone} if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove:

- the existence of universal measure zero sets of large Hausdorff dimension, and
- that a Borel set in \(\mathbb{R}^n\) of Hausdorff dimension greater than \(m\) maps onto the \(m\)-dimensional cube by a Lipschitz map.
Monotone sets

Definition (Ondřej Zindulka)

Let \((X, d)\) be a metric space.
- \((X, d)\) is called monotone if there is \(c > 0\) and a linear order \(<\) on \(X\) such that \(d(x, y) \leq c \, d(x, z)\) for all \(x < y < z\) in \(X\).
- \((X, d)\) is called \(\sigma\)-monotone if it is a countable union of monotone subspaces (with possibly different witnessing constants).

Zindulka used it to prove:
- the existence of universal measure zero sets of large Hausdorff dimension, and
- that a Borel set in \(\mathbb{R}^n\) of Hausdorff dimension greater than \(m\) maps onto the \(m\)-dimensional cube by a Lipschitz map.
Basic properties of monotone sets

- Any monotone space is suborderable, i.e., any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

- The closure of any monotone subspace of a metric space is monotone.

- (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

- The graph $\sin\left(\frac{1}{x}\right)$ is not monotone but it is σ-monotone. (Hint: Many "bad" triangles.)
Basic properties of monotone sets

• Any monotone space is suborderable, i.e. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

• The closure of any monotone subspace of a metric space is monotone.

• (Nekvinda-Zindulka) Every discrete metric space is \(\sigma \)-monotone.

• The graph \(\sin(1/x) \) is not monotone but it is \(\sigma \)-monotone. (Hint: Many "bad" triangles.)
Basic properties of monotone sets

- Any monotone space is suborderable, i.e., any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

- The closure of any monotone subspace of a metric space is monotone.

- (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

- The graph $\sin(1/x)$ is not monotone but it is σ-monotone. (Hint: Many "bad" triangles.)
Basic properties of monotone sets

• Any monotone space is suborderable, i.e. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

• The closure of any monotone subspace of a metric space is monotone.

• (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

• The graph $\sin(1/x)$ is not monotone but it is σ-monotone. (Hint: Many ”bad” triangles.)
Basic properties of monotone sets

- Any monotone space is suborderable, i.e. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

- The closure of any monotone subspace of a metric space is monotone.

- (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

- The graph \(\sin \left(\frac{1}{x} \right) \) is not monotone but it is σ-monotone. (Hint: Many "bad" triangles.)
Basic properties of monotone sets

- Any monotone space is suborderable, i.e., any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

- The closure of any monotone subspace of a metric space is monotone.

- (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

- The graph $\sin(1/x)$ is not monotone but it is σ-monotone. (Hint: Many "bad" triangles.)
Basic properties of monotone sets

- Any monotone space is suborderable, i.e. any monotone set in the plane is homeomorphic to a subset of the line and any monotone connected set in the plane is homeomorphic to an interval.

- The closure of any monotone subspace of a metric space is monotone.

- (Nekvinda-Zindulka) Every discrete metric space is σ-monotone.

- The graph $\sin(1/x)$ is not monotone but it is σ-monotone. (Hint: Many ”bad” triangles.)
Functions with σ-monotone graphs

- (Zindulka) Every continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph such that the set of points of differentiability has Lebesgue measure zero.

- There is an absolutely continuous function $f : [0, 1] \to [0, 1]$ which does not have a σ-monotone graph.
Functions with σ-monotone graphs

- (Zindulka) Every continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph such that the set of points of differentiability has Lebesgue measure zero.

- There is an absolutely continuous function $f : [0, 1] \to [0, 1]$ which does not have a σ-monotone graph.
Functions with σ-monotone graphs

- (Zindulka) Every continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph has a dense set of points of differentiability,

on the other hand,

- (Mátrai-Vlasák) There is a continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph such that the set of points of differentiability has Lebesgue measure zero.

- There is an absolutely continuous function $f : [0, 1] \to [0, 1]$ which does not have a σ-monotone graph.
Functions with σ-monotone graphs

• (Zindulka) Every continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph has a dense set of points of differentiability,
on the other hand,

• (Mátrai-Vlasák) There is a continuous function $f : [0, 1] \to [0, 1]$ with a σ-monotone graph such that the set of points of differentiability has Lebesgue measure zero.

• There is an absolutely continuous function $f : [0, 1] \to [0, 1]$ which does not have a σ-monotone graph.
Question

(Zindulka) Is there a (separable) metric space of size \aleph_1 which is not σ-monotone?

Proposition

($\text{MA}_{\sigma\text{-linked}}$) Every separable metric space of size \aleph_1 is σ-monotone.
Question

(Zindulka) Is there a (separable) metric space of size \mathfrak{c} which is not σ-monotone?

Proposition

(MA_{σ}-linked) Every separable metric space of size \mathfrak{c} is σ-monotone.
Content

1. Monotone sets

2. Cardinal invariants

3. Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity

4. Open problems
Definition

Given an ideal I on a set X, the following are the usual cardinal invariants of I:

- $\text{add}(I) = \min\{|A| : A \subseteq I \land \bigcup A \notin I\}$,
- $\text{cov}(I) = \min\{|A| : A \subseteq I \land \bigcup A = X\}$,
- $\text{cof}(I) = \min\{|A| : A \subseteq I \land (\forall I \in I)(\exists A \in A)(I \subseteq A)\}$,
- $\text{non}(I) = \min\{|Y| : Y \subseteq X \land Y \notin I\}$.

Michael Hrušák (joint work with Ondřej Zindulka)
Cichoń’s diagram

\[
\begin{align*}
\text{cov}(\mathcal{N}) & \to \text{non}(\mathcal{M}) \to \text{cof}(\mathcal{M}) \to \text{cof}(\mathcal{N}) \\
\text{add}(\mathcal{N}) & \to \text{add}(\mathcal{M}) \to \text{cov}(\mathcal{M}) \to \text{non}(\mathcal{N}) \\
\text{m}_\sigma\text{-linked} & \to \text{m}_\sigma\text{-centered}
\end{align*}
\]

Michael Hrušák (joint work with Ondřej Zindulka)
Monotone sets

2 Cardinal invariants

3 **Mon** and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity

4 Open problems
Definition

The ideal of all σ-monotone sets in the plane is denoted Mon.

Theorem

(i) $\text{add}(\text{Mon}) = \omega_1$,
(ii) $\text{cof}(\text{Mon}) = c$.

Lemma

Let \mathcal{L} be a family of lines in \mathbb{R}^2. Then $\bigcup \mathcal{L}$ is σ-monotone if and only if \mathcal{L} is countable.
Additivity and cofinality of Mon

Definition

The ideal of all σ-monotone sets in the plane is denoted Mon.

Theorem

(i) $\text{add}(\text{Mon}) = \omega_1$,
(ii) $\text{cof}(\text{Mon}) = c$.

Lemma

Let \mathcal{L} be a family of lines in \mathbb{R}^2. Then $\bigcup \mathcal{L}$ is σ-monotone if and only if \mathcal{L} is countable.
Additivity and cofinality of \(\text{Mon} \)

Definition

The ideal of all \(\sigma \)-monotone sets in the plane is denoted \(\text{Mon} \).

Theorem

(i) \(\text{add}(\text{Mon}) = \omega_1 \),

(ii) \(\text{cof}(\text{Mon}) = c \).

Lemma

Let \(\mathcal{L} \) be a family of lines in \(\mathbb{R}^2 \). Then \(\bigcup \mathcal{L} \) is \(\sigma \)-monotone if and only if \(\mathcal{L} \) is countable.
Strongly porous sets

Definition

Let \((X, d)\) be a metric space. A set \(A \subseteq X\) is

- **porous at a point** \(x \in X\) if there is \(p > 0\) and \(r_0 > 0\) such that for any \(r \leq r_0\) there is \(y \in X\) such that \(B(y, pr) \subseteq B(x, r) \setminus A\),
- **porous** if it is porous at each point \(x \in A\), and
- **\(\sigma\)-porous** if it is a countable union of porous sets.

Definition

Let \(X\) be a metric space. The ideal of all \(\sigma\)-porous sets in \(X\) is denoted \(\text{SP}(X)\).

Proposition

\[
\text{cov}(\text{SP}(\mathbb{R})) = \text{cov}(\text{SP}(\mathbb{R}^2)) = \text{cov}(\text{SP}(2^\omega)) \text{ and likewise for non.}
\]
Strongly porous sets

Definition

Let (X, d) be a metric space. A set $A \subseteq X$ is

- *porous at a point* $x \in X$ if there is $p > 0$ and $r_0 > 0$ such that for any $r \leq r_0$ there is $y \in X$ such that $B(y, pr) \subseteq B(x, r) \setminus A$,

- *porous* if it is porous at each point $x \in A$, and

- *σ-porous* if it is a countable union of porous sets.

Definition

Let X be a metric space. The ideal of all σ-porous sets in X is denoted $\text{SP}(X)$.

Proposition

$\text{cov}(\text{SP}(\mathbb{R})) = \text{cov}(\text{SP}(\mathbb{R}^2)) = \text{cov}(\text{SP}(2^\omega))$ and likewise for non.
Strongly porous sets

Definition

Let \((X, d)\) be a metric space. A set \(A \subseteq X\) is

- **porous at a point** \(x \in X\) if there is \(p > 0\) and \(r_0 > 0\) such that for any \(r \leq r_0\) there is \(y \in X\) such that \(B(y, pr) \subseteq B(x, r) \setminus A\),
- **porous** if it is porous at each point \(x \in A\), and
- **\(\sigma\)-porous** if it is a countable union of porous sets.

Definition

Let \(X\) be a metric space. The ideal of all \(\sigma\)-porous sets in \(X\) is denoted \(\text{SP}(X)\).

Proposition

\[\text{cov}(\text{SP}(\mathbb{R})) = \text{cov}(\text{SP}(\mathbb{R}^2)) = \text{cov}(\text{SP}(2^\omega))\] and likewise for non.
Strongly porous sets

Definition
Let \((X, d)\) be a metric space. A set \(A \subseteq X\) is

- **porous at a point** \(x \in X\) if there is \(p > 0\) and \(r_0 > 0\) such that for any \(r \leq r_0\) there is \(y \in X\) such that \(B(y, pr) \subseteq B(x, r) \setminus A\),
- **porous** if it is porous at each point \(x \in A\), and
- **\(\sigma\)-porous** if it is a countable union of porous sets.

Definition
Let \(X\) be a metric space. The ideal of all \(\sigma\)-porous sets in \(X\) is denoted \(\text{SP}(X)\).

Proposition
\[
\text{cov}(\text{SP}(\mathbb{R})) = \text{cov}(\text{SP}(\mathbb{R}^2)) = \text{cov}(\text{SP}(2^{\omega})) \text{ and likewise for non-}
\]
Strongly porous sets

Definition

Let \((X, d)\) be a metric space. A set \(A \subseteq X\) is

- **porous at a point** \(x \in X\) if there is \(p > 0\) and \(r_0 > 0\) such that for any \(r \leq r_0\) there is \(y \in X\) such that \(B(y, pr) \subseteq B(x, r) \setminus A\),
- **porous** if it is porous at each point \(x \in A\), and
- **\(\sigma\)-porous** if it is a countable union of porous sets.

Definition

Let \(X\) be a metric space. The ideal of all \(\sigma\)-porous sets in \(X\) is denoted \(\text{SP}(X)\).

Proposition

\[
\text{cov(\text{SP}(\mathbb{R})) = cov(\text{SP}(\mathbb{R}^2)) = cov(\text{SP}(2^\omega)) and likewise for non.}
\]
Monotone vs. porous

Proposition

*Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\text{Mon} \subseteq \text{SP}(\mathbb{R}^2)$.***

Proposition

If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary

$cov(\text{Mon}) = cov(\text{SP})$ and $\text{non}(\text{Mon}) = \text{non}(\text{SP})$ (from now on SP denotes $\text{SP}(2^\omega)$).

Michael Hrušák (joint work with Ondřej Zindulka)
Monotone vs. porous

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\text{Mon} \subseteq \text{SP}(\mathbb{R}^2)$.

Proposition

If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary

$\text{cov}(\text{Mon}) = \text{cov}(\text{SP})$ and $\text{non}(\text{Mon}) = \text{non}(\text{SP})$ (from now on SP denotes $\text{SP}(2^\omega)$).
Monotone vs. porous

Proposition
Every monotone set $X \subseteq \mathbb{R}^2$ is porous. Consequently $\text{Mon} \subseteq \text{SP}(\mathbb{R}^2)$.

Proposition
If $A, B \subseteq \mathbb{R}$ are porous, then $A \times B \subseteq \mathbb{R}^2$ is monotone.

Corollary
$\text{cov}(\text{Mon}) = \text{cov}(\text{SP})$ and $\text{non}(\text{Mon}) = \text{non}(\text{SP})$ (from now on SP denotes $\text{SP}(2^{\omega})$).
Proposition

Every monotone set \(X \subseteq \mathbb{R}^2 \) is contained in a closed set of measure zero.

Corollary

\[
\text{non}(\text{Mon}) = \text{non}(\text{SP}) \leq \min\{\text{non}(\mathcal{N}), \text{non}(\mathcal{M})\} \quad \text{and} \\
\max\{\text{cov}(\mathcal{N}), \text{cov}(\mathcal{M})\} \leq \text{cov}(\text{Mon}) = \text{cov}(\text{SP}).
\]
Bounds on cov and non

Proposition

Every monotone set $X \subseteq \mathbb{R}^2$ is contained in a closed set of measure zero.

Corollary

$$\text{non}(\text{Mon}) = \text{non}(\text{SP}) \leq \min\{\text{non}(\mathcal{N}), \text{non}(\mathcal{M})\} \quad \text{and}$$

$$\max\{\text{cov}(\mathcal{N}), \text{cov}(\mathcal{M})\} \leq \text{cov}(\text{Mon}) = \text{cov}(\text{SP}).$$
Uniformity

Theorem

\[m_{\sigma\text{-linked}} \leq \text{non}(\text{SP}) = \text{non}(\text{Mon}). \]

Theorem

It is relatively consistent with ZFC that
\[\text{add}(\mathcal{N}) = m_{\sigma\text{-centered}} = c > \text{non}(\text{SP}) = \text{non}(\text{Mon}) = \omega_1. \]
Theorem

$m_{\sigma\text{-linked}} \leq \text{non}(\text{SP}) = \text{non}(\text{Mon})$.

Theorem

It is relatively consistent with ZFC that

$\text{add}(\mathcal{N}) = m_{\sigma\text{-centered}} = c > \text{non}(\text{SP}) = \text{non}(\text{Mon}) = \omega_1$.
Theorem

It is relatively consistent with ZFC that $\text{cov}(\text{Mon}) = \text{cov}(\text{SP}) < \mathfrak{c}$.

Theorem

It is relatively consistent with ZFC that $\text{cof}(\mathcal{N}) = \omega_1$ and $\text{cov}(\text{SP}) = \omega_2$.
It is relatively consistent with ZFC that \(\text{cov}(\text{Mon}) = \text{cov}(\text{SP}) < c \).

It is relatively consistent with ZFC that \(\text{cof}(\mathcal{N}) = \omega_1 \) and \(\text{cov}(\text{SP}) = \omega_2 \).
A tree $T \subseteq 2^{<\omega}$ is hyper-perfect if

$$\forall s \in T \ \forall n \exists t \supseteq s \ \forall r \in 2^n \ t \upharpoonright r \in T.$$
Hyper-perfect tree forcing

Definition

A tree $T \subseteq 2^{<\omega}$ is hyper-perfect if

$$\forall s \in T \\forall n \exists t \supseteq s \\forall r \in 2^n \ t \upharpoonright r \in T.$$

Definition

$\mathsf{HP} = \{ T \subseteq 2^{<\omega} : T \text{ is hyper-perfect} \}$
Content

1. Monotone sets

2. Cardinal invariants

3. Mon and its cardinal invariants
 - Additivity and cofinality
 - Porous sets
 - Covering and uniformity

4. Open problems
Open problems

Question

Is it true that

(i) \(\text{add}(\text{SP}) = \omega_1, \)

(ii) \(\text{cof}(\text{SP}) = c, \)

Question

What can one say about the cardinal invariants of \(\text{Mon}(X) \) when \(X \) is

(i) the non-\(\sigma \)-monotone graph of an absolutely continuous function \(f : [0, 1] \to [0, 1] \),

(ii) the Hilbert cube,

(iii) the Urysohn space?

Question

Is there a metric space of cardinality \(\aleph_1 \) that is not \(\sigma \)-monotone?
Open problems

Question

Is it true that

(i) \(\text{add}(\text{SP}) = \omega_1 \),
(ii) \(\text{cof}(\text{SP}) = c \),

Question

What can one say about the cardinal invariants of \(\text{Mon}(X) \) when \(X \) is

(i) the non-\(\sigma \)-monotone graph of an absolutely continuous function \(f : [0, 1] \rightarrow [0, 1] \),
(ii) the Hilbert cube,
(iii) the Urysohn space?

Question

Is there a metric space of cardinality \(\aleph_1 \) that is not \(\sigma \)-monotone?
Open problems

Question

Is it true that

(i) \(\text{add}(\text{SP}) = \omega_1 \),
(ii) \(\text{cof}(\text{SP}) = c \).

Question

What can one say about the cardinal invariants of \(\text{Mon}(X) \) when \(X \) is

(i) the non-\(\sigma \)-monotone graph of an absolutely continuous function \(f : [0, 1] \to [0, 1] \),
(ii) the Hilbert cube,
(iii) the Urysohn space?

Question

Is there a metric space of cardinality \(\aleph_1 \) that is not \(\sigma \)-monotone?