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Abstract. We show that the Abraham-Rubin-Shelah Open Coloring Axiom

is consistent with a large continuum, in particular, consistent with 2ℵ0 =
ℵ3. This answers one of the main open questions from [1]. As in [1], we

need to construct names for so-called preassignments of colors in order to

add the necessary homogeneous sets. However, the known constructions of
preassignments (ours in particular) only work assuming the CH. In order to

address this difficulty, we show how to construct such names with very strong

symmetry conditions. This symmetry allows us to combine them in many
different ways, using a new type of poset called a partition product. Partition

products may be thought of as a restricted memory iteration with stringent

isomorphism and coherent-overlap conditions on the memories. We finally
construct, in L, the partition product which gives us a model of OCAARS in

which 2ℵ0 = ℵ3.

1. Introduction

Ramsey’s Theorem, regarding colorings of tuples of ω, is a fundamental result in
combinatorics. Naturally, set theorists have studied generalizations of this theorem
which concern colorings of pairs of countable ordinals, that is to say, colorings on
ω1. The most straightforward generalization of this theorem is the assertion that
any coloring of pairs of countable ordinals has an uncountable homogeneous set.
However, this naive generalization is provably false, at least in ZFC (see [9]). One
way to obtain consistent generalizations of Ramsey’s Theorem to uncountable sets,
ω1 in particular, is to place various topological constraints on the colorings. This
results in principles known as Open Coloring Axioms, which we discuss presently.
In what follows, we will use the notation [A]2 to denote all two-element subsets of
A.

Definition 1.1. Let A be a set and χ : [A]2 −→ {0, 1} a function. H ⊆ A is said
to be 0-homogeneous (respectively 1-homogeneous) with respect to χ if χ takes the
constant value 0 (respectively 1) on [H]2. H is said to be χ-homogeneous if it is
either 0 or 1 homogeneous with respect to χ.

A function χ : [ω1]2 −→ {0, 1} is said to be an open coloring if χ−1({0}) and
χ−1({1}) are both open in the product topology with respect to some second count-
able, Hausdorff topology on ω1.
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The Abraham-Rubin-Shelah Open Coloring Axiom, abbreviated OCAARS , states
that for any open coloring χ on ω1, there exists a partition ω1 =

⋃
n<ω An such

that each An is χ-homogeneous.

Abraham and Shelah ([2]) first studied the restriction of this axiom to colorings
arising from injective functions f : A −→ R, where |A| = ℵ1 and used these ideas
to show that Martin’s Axiom does not imply Baumgartner’s Axiom ([3]). The full
version made its debut in [1], where the authors studied it alongside a number of
other axioms about ℵ1-sized sets of reals. In particular, they showed that OCAARS
is consistent with ZFC.

A little later, Todorčević isolated the following axiom ([11]):

Definition 1.2. The Todorčević Open Coloring Axiom, abbreviated OCAT , states
the following: let A be a set of reals, and suppose that χ : [A]2 −→ {0, 1} is a
coloring so that χ−1({0}) is open in A × A. Then either there is an uncountable
A0 ⊆ A so that A0 is 0-homogeneous with respect to χ or there exists a partition
A =

⋃
n<ω Bn so that each Bn is 1-homogeneous with respect to χ.

If we restrict our attention to sets of reals A with size ℵ1, we denote this axiom
by OCAT (ℵ1).

Both of these versions of open coloring axioms imply that the CH is false. Indeed,
OCAARS implies that if A ⊆ R has size ℵ1 and f : A −→ R is injective, then f
is a union of countably-many monotonic subfunctions. However, under the CH,
there exists a function f : R −→ R which is not continuous on any uncountable
set, and hence not monotonic on any uncountable set (see C62 of [10]). In fact,
under the CH, there is even an uncountable, injective, partial f : R −→ R with no
uncountable monotonic subfunction (see [4]), and thus even continuous colorings
may fail to have large homogeneous sets under the CH. With regards to OCAT ,
this axiom implies that the bounding number b is ℵ2.

It is therefore of interest whether or not these axioms, individually or jointly,
actually decide the value of the continuum. In the case of OCAT , Farah has shown
in an unpublished note that OCAT (ℵ1) is consistent with an arbitrarily large value
of the continuum, though it is not known whether the full OCAT is consistent with
larger values of the continuum than ℵ2. On the other hand, Moore has shown in
[6] that OCAT + OCAARS does decide that the continuum is exactly ℵ2.

The question of whether OCAARS is powerful enough to decide the value of the
continuum on its own, first asked in [1], has remained open. There are a num-
ber of difficulties in obtaining a model of OCAARS with a “large continuum,” i.e.,
with 2ℵ0 > ℵ2. Chief among these difficulties is to construct so-called preassign-
ments of colors. The authors of [2] first discovered the technique of preassigning
colors. As used in [1], a preassignment of colors is a function which decides, in the
ground model, whether the forcing will place a countable ordinal α inside some 0-
homogeneous or some 1-homogeneous set, with respect to a fixed coloring. The key
to the consistency of OCAARS is to construct preassignments in such a way that the
posets which add the requisite homogeneous sets, as guided by the preassignments,
are c.c.c.

However, the known constructions of “good” preassignments (ours in particular)
only work under the CH. The construction of a preassignment involves diagonalizing
out of closed sets in finite products of the space, ensuring that no such closed set
can be the closure of an uncountable antichain of conditions in the poset (see the
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discussion preceding Remark 4.10). Under the CH, this task can be completed in
ω1-many steps, since the spaces we consider are second countable (and so there
are at most ℵ1-many such closed sets). Since forcing iterations whose strict initial
segments satisfy the CH can only lead to a model where the continuum is at most
ℵ2, this creates considerable difficulties for obtaining models of OCAARS in which
the continuum is, say, ℵ3.

In this paper, we prove the following theorem, thereby providing an answer to
this question:

Theorem 1.3. If ZFC is consistent, then so is ZFC + OCAARS + 2ℵ0 = ℵ3.

The general theme of the paper is the following: short iterations are necessary to
preserve the CH and thereby construct effective preassignments; longer iterations,
built out of these smaller ones in specific ways, can be used to obtain models with
a large continuum.

One can check using cardinality arguments that executing this theme requires
the construction of names for preassignments with substantial symmetry. Let us
briefly explain what we mean by this. For the purposes of the introduction, if χ is
a coloring as in the definition of OCAARS and f : ω1 −→ 2 is an arbitrary function
(any such is called a preassignment), then we use Q(χ, f) to denote the poset to
decompose ω1 into countably-many χ-homogeneous sets as guided by f (see Section
4.2 for a precise description). In [1], the authors show that if P is a sufficiently nice
c.c.c. poset preserving the CH and χ̇ is a P-name for an open coloring, then there
exists a P-name ḟ for a preassignment so that P outright forces that Q(χ̇, ḟ) is c.c.c.

In our case, we are able to construct a single P-name ḟ so that the following (and
much more besides) holds: if GL and GR are mutually generic filters for P, then
the poset

Q(χ̇[GL], ḟ [GL])×Q(χ̇[GR], ḟ [GR])

is c.c.c. in V [GL × GR]. Constructing names for symmetric preassignments takes
us beyond the techniques of [1]. Since there are only ℵ2 names for preassignments
named in short iteration forcings, many of them must be reused more than once
in a long iteration, and therefore this kind of symmetry proves to be necessary for
executing our theme. Determining exactly how much “symmetry” the names for
preassignments need to satisfy leads us to the notion of a Partition Product, which
is a type of restricted memory iteration with various isomorphism and coherent
overlap conditions on the memories.

Our method for proving Theorem 1.3 is general enough that it can be adapted
to incorporate posets of size ≤ ℵ1 with the Knaster property, thereby adding the
forcing axiom FA(ℵ2,Knaster(ℵ1)) to the conclusion. This forcing axiom asserts
that for any poset P of size ≤ ℵ1 which has the Knaster property and any sequence
〈Di : i < ω2〉 of ℵ2 dense subsets of P, there is a filter for P which meets each of
the Di. Thus we also obtain the following theorem:

Theorem 1.4. If ZFC is consistent, then so is ZFC + OCAARS + 2ℵ0 = ℵ3 +
FA(ℵ2,Knaster(ℵ1)).

The remainder of the paper is structured as follows: in Section 2, we introduce
the axiomatic definition of a partition product and prove a number of general facts
about this type of poset. In Section 3, we develop the machinery to combine parti-
tion products in a variety of ways. The main goal of Section 4 is to isolate exactly
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what we need our names for preassignments to satisfy. To do so, we introduce and
develop the notion of a finitely generated partition product. We also use the ma-
chinery developed so far to count these; the counting arguments will be crucial for
the diagonalization arguments involved in constructing preassignments. Section 5
includes the actual construction of our highly symmetric names for preassignments.
Finally, in section 6, we show how to construct partition products in L. It would
be helpful, though not necessary, for the reader to be familiar with the first few
sections of the paper [1], in particular, their construction of preassignments and the
role which preassignments play in showing the consistency of OCAARS .

We would like to thank the referee for investing a considerable amount of time
in providing extensive comments which have helped, we believe, to improve the
exposition of this paper.

2. Partition Products

2.1. Notation and Conventions. We begin with some remarks about notation
and conventions. First, if f is a function and A ⊆ dom(f), then we will in general
use f [A] to denote {f(x) : x ∈ A}, the pointwise image of A under f .

Second, given two sets X and Y , we will use X
⊎
Y to denote their disjoint

union, and if X and Y are also topological spaces with respective topologies τX
and τY , we take the topology on X

⊎
Y to be the disjoint union of the respective

topologies on X and Y , denoted τX
⊎
τY . Similarly, if fX and fY are functions

with domains X and Y , we take fX
⊎
fY to be the disjoint union of these functions

defined in the natural way on X
⊎
Y .

Additionally, we will often be working in the context of a poset R as well as
various other posets related to it; these other posets will have notational decora-
tions, for example, R∗. If Ġ is the canonical R-name for a generic filter, we use the
corresponding decorations, such as Ġ∗, to denote the related names.

Finally, regarding iterations, we will want to consider forcing iterations where the
domain of the iteration is not necessarily an ordinal, but possibly a non-transitive
set of ordinals. This will help smooth over various technicalities later. We view
elements in an iteration as partial functions where each value of the function is
forced by the restriction of the function to be a condition in the appropriate name
for a poset.

2.2. Definition and Basic Facts. Our first main goal in this section is to define
the notion of a partition product and prove a few basic lemmas. Before giving the
definition, we have a few paragraphs of remarks which will help provide motivation.

Roughly speaking, the class of partition products consists of finite support it-
erations with restricted memories which are built in very specific ways, but which
is rich enough to be closed under products, closed under products of iterations
taken over a common initial segment, and closed under more general “partitioned
products” of segments of the iterations taken over common earlier segments.

Iterations with restricted memory first appeared in Shelah’s work (see [7]; see
also [8] for further applications to the null ideal and [5] for applications to car-
dinal characteristics). The following definition captures restricted memory in a
convenient way for us. The memory limitation is in condition (2) of the definition.
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Definition 2.1. R is a finite support restricted memory iteration on X, of iterand
names 〈U̇ξ | ξ ∈ X〉, with memory function ξ 7→ bR(ξ) (ξ ∈ X), if the following
conditions hold:

(1) for each ξ ∈ X, bR(ξ) ⊆ X ∩ ξ. If ζ ∈ bR(ξ) then bR(ζ) ⊆ bR(ξ);

(2) U̇ξ is an R � bR(ξ)-name;
(3) conditions in R are finite partial functions p on X. For each ξ ∈ dom(p),

p(ξ) is a canonical R � bR(ξ)-name for an element of U̇ξ;
(4) q ≤ p in R if dom(q) ⊇ dom(p) and q � bR(ξ) R�bR(ξ) q(ξ) ≤ p(ξ) for each

ξ ∈ dom(p).

X is the domain of the iteration, denoted dom(R). A function satisfying condition
(1) is a memory function on X. The poset R � bR(ξ) in conditions (2)–(4) is the
restriction of R to conditions p with dom(p) ⊆ bR(ξ). Using condition (1) one

can check that R � bR(µ) is a restricted memory iteration of 〈U̇ξ | ξ ∈ bR(µ)〉.
More generally, Y ⊆ X is memory closed, also called base closed, if for all ξ ∈ Y ,
bR(ξ) ⊆ Y . Then R � Y is the restriction of R to conditions p with dom(p) ⊆ Y .

One can check this is exactly the restricted memory iteration of 〈U̇ξ | ξ ∈ Y 〉 with
memory function bR � Y .

Remark 2.2. Strictly speaking R as in Definition 2.1 is not actually an iteration,
even if X is transitive. This is because we take p(ξ) to be an R � bR(ξ)-name rather

than an R � ξ-name. But, because U̇ξ is an R � bR(ξ)-name, every R � ξ-name for

an element of U̇ξ can be forced in R � ξ to be equal to an R � bR(ξ)-name. Using
this and the finiteness of the supports one can check that R is isomorphic to a dense
subset of an iteration. Working with R, instead of the actual iteration, simplifies
our definitions.

Definition 2.3. Let b be a memory function on X. A bijection σ : X −→ X∗ is an
acceptable rearrangement of X, b if for all ζ, ξ ∈ X, ζ ∈ b(ξ) implies σ(ζ) < σ(ξ).
We then define σ(b), the σ-rearrangement of b, to be the function on X∗ given by
σ(b)(σ(ξ)) = σ[b(ξ)], and we note that σ(b) is a memory function on X∗.

Definition 2.4. Suppose R is a restricted memory iteration on X, of 〈U̇ξ | ξ ∈ X〉,
with memory function bR. Let σ : X −→ X∗ be an acceptable rearrangement of
X, bR. Then σ induces an isomorphism, which we also denote σ, between R and a
restricted memory iteration R∗ on X∗. This isomorphism in turn extends to act
on R-names u̇ and maps them to R∗-names σ(u̇) so that u̇[G] = σ(u̇)[σ[G]]. These
liftings are determined uniquely by the following conditions:

(1) R∗ is a restricted memory iteration of 〈U̇∗ξ | ξ ∈ X∗〉 with memory function

σ(bR);
(2) for p ∈ R, dom(σ(p)) = σ[dom(p)] and σ(p)(σ(ξ)) = σ(p(ξ));
(3) for an R-name u̇, σ(u̇) is the R∗-name {〈σ(ż), σ(p)〉 | 〈ż, p〉 ∈ u̇};
(4) U̇∗σ(µ) = σ(U̇µ).

The last three conditions are recursive. Knowledge of U̇∗σ(ξ) for ξ < µ allows

determining σ(p) for p ∈ R � µ, σ(u̇) for R � µ-names u̇, and U̇∗σ(µ). We refer

to R∗ as the σ-rearrangement of R, denoted σ(R). We also refer to σ(u̇) as the
σ-rearrangement of u̇, and we say that σ is a rearrangement of R.
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A partition product is a restricted memory iteration with two additional struc-
tural requirements. The first requirement is that the iterand names (up to isomor-
phisms induced by rearrangements) are all taken from a restricted alphabet. This is
phrased precisely in Definition 2.6. The second requirement is that the memory sets
bR(ξ), when not disjoint, intersect in very specific ways. This is phrased precisely
in Definitions 2.11 and 2.12. The first requirement captures the sense in which we
construct long iterations from a small set of short building blocks. The addition of
the second requirement helps us bound the class of partition products of size ℵ1,
up to isomorphism.

Definition 2.5. Let C ⊆ ω2 \ ω. A restricted memory alphabet on C is a pair of

sequences P = 〈Pδ : δ ∈ C〉 and Q̇ = 〈Q̇δ : δ ∈ C〉, where each Pδ is a restricted

memory iteration, and each Q̇δ is a Pδ-name for a poset.

Definition 2.6. Let P and Q̇ be a restricted memory alphabet on C. A simplified

partition product based upon P and Q̇ is a restricted memory iteration R of iterands

〈U̇ξ | ξ ∈ X〉, with memory function bR, and additional functions indexR on X and
πR
ξ for each ξ ∈ X, so that:

(1) indexR(ξ) ∈ C;
(2) πR

ξ : dom(PindexR(ξ)) −→ bR(ξ) is an acceptable rearrangement of PindexR(ξ);

(3) R � bR(ξ) is exactly equal to the πR
ξ -rearrangement of PindexR(ξ);

(4) U̇ξ = πR
ξ (Q̇indexR(ξ)).

We set baseR(ξ) = 〈bR(ξ), πR
ξ 〉, referring to baseR as the base function of R. indexR

is the index function of R, and the πR
ξ are the rearrangement functions.

For any base closed Y ⊆ X, the restriction of the above simplified partition
product to Y consists of the restriction of R to conditions with domain contained
in Y , the restriction of bR and indexR to Y , and the functions πR

ξ for ξ ∈ Y . One
can check that this restriction is itself a simplified partition product.

Definition 2.7. Let R be a simplified partition product. Let σ be an accept-
able rearrangement of R viewed as a restricted memory iteration. Let R∗ be
the σ-rearrangement of R viewed as a restricted memory iteration. Then R∗
can be enriched to a simplified partition product, based upon the same alpha-
bet as R, by setting indexR∗(σ(ξ)) = indexR(ξ), and πR∗

σ(ξ) = σ ◦ πR
ξ , so that

baseR∗(σ(ξ)) = 〈σ[bR(ξ)], σ ◦ πR
ξ 〉. We refer to this simplified partition product

as the σ-rearrangement of R. We denote indexR∗ and baseR∗ by σ(indexR) and
σ(baseR).

Remark 2.8. An analogue of Definition 2.7 works also for σ−1: Suppose R is
a restricted memory iteration, σ an acceptable rearrangement, and R∗ the σ-
rearrangement of R. If R∗ enriches to a simplified partition product, with functions
indexR∗ and πR∗

ξ say, then pulling these functions back by σ−1 gives an enrichment
of R to a simplified partition product. The σ-rearrangement of this enrichment of
R is exactly the enrichment of R∗ we started from.

Example 2.9. Before proceeding to the full definition of partition products, we
give a few examples of simplified partition products.

(1) First, let C ⊆ ω2 \ω be non-empty, and let α0 < ω2 be the least element of
C. Let Pα0

be the trivial forcing (viewed as a restricted memory iteration),
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and let Q̇α0
be a Pα0

-name for the poset Add(ω, 1) to add a single Cohen

real. Then any finite support power of Pα0∗Q̇α0 (which we may identify with
Cohen forcing) is (enrichable to) a simplified partition product. Indeed, let
X be a set of ordinals, and for ξ ∈ X, set bξ = ∅, πξ = ∅, index(ξ) = α0,

and U̇ξ = Q̇α0
. These assignments generate a simplified partition product

R, and it is clear that R is just the finite support X-power of Cohen forcing.
(2) Let α1 > α0 be the next element of C above α0. Let Pα1

be the simplified
partition product of part (1) of the example, with X = ω1, viewed as a

restricted memory iteration. This adds ω1 Cohen reals. Let Q̇α1 be a Pα1 -
name for the poset adding a real almost disjoint from the ω1 Cohen reals
added by Pα1

.
For η ∈ ω2\ω1, consider the poset that adds η Cohen reals and then a

real almost disjoint from them. This is (enrichable to) a simplified partition
product over the alphabet so far. To see this, let X = η + 1. For ξ < η
set index(ξ) = α0, U̇ξ = Q̇α0

, b(ξ) = ∅, and π(ξ) = ∅. Set index(η) = α1,

b(η) = η, πη : ω1 −→ η a bijection, and U̇η = πη(Q̇α1
).

(3) Finally, we show how to build a partition product with many different

copies of Q̇α1 . Fix a sequence ~B = 〈Bγ | γ < ω2〉 where each Bγ ⊆ ω2

has size ω1, and fix bijections τγ : ω1 −→ Bγ . Consider the poset that
adds ω2 Cohen reals, and then for each γ < ω2, adds a real almost disjoint
from the Cohen reals added at coordinates in Bγ . We check that this is
(enrichable to) a simplified partition product. To see this, set X = ω2 +ω2.

For ξ < ω2 set index(ξ) = α0, U̇ξ = Q̇α0 , b(ξ) = ∅, and π(ξ) = ∅. For
ξ = ω2 + γ ∈ [ω2, ω2 + ω2), set index(ξ) = α1, b(ξ) = Bγ , πξ = τγ , and

U̇ξ = πξ(Q̇α1).
(4) Let R be the poset of the simplified partition product of the previous item.

We can make quite a bit of product-like behavior appear in R, both pure
product and product over a common initial part, by tailoring how the Bγ
overlap. For instance, if Bγ ∩ Bδ = ∅, then R will contain an isomorphic

copy of the product (Pα1 ∗ Q̇α1) × (Pα1 ∗ Q̇α1). On the other hand, if

Bγ = Bδ, then R will contain a copy of Pα1
∗ (Q̇α1

× Q̇α1
). In between

the extremes of disjointness and equality of Bγ and Bδ, we can also have
non-trivial overlaps of any kind.

Partition products are simplified partition products satisfying additional con-
straints on how the memory sets bR(ξ) overlap and how the bijections πR

ξ interact
in cases of overlap. These constraints will help us limit the number of partition
products in a certain class over any fixed alphabet, up to rearrangement of course.
This is done in Subsection 4.3 and is an important part of our construction of pre-
assignments of colors. At the same time, these constraints are not so bad as to
prevent us from constructing the partition product posets we need for proving the
consistency of OCAARS with large continuum.

Definition 2.10. A basic alphabet on a set C ⊆ ω2 \ ω is a pair of sequences

P = 〈Pδ : δ ∈ C〉 and Q̇ = 〈Q̇δ : δ ∈ C〉 so that:

(1) each Pδ is a simplified partition product based upon P � δ and Q̇ � δ, and

Q̇δ is a Pδ-name for a poset; and
(2) for each δ ∈ C, dom(Pδ) is an ordinal ρδ ≤ δ+.
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A collapsing system for the basic alphabet is a sequence ~ϕ = 〈ϕδ,µ | δ ∈ C, µ < ρδ〉
so that ϕδ,µ : δ −→ µ is surjective.

Compared with the restricted memory alphabet in Definition 2.5, here each Pδ
carries not only a memory function, but also an index function and a rearrangement
function, that build Pδ from the components in the alphabet up to δ.

Definition 2.11. Let P and Q̇ be a basic alphabet on C, and let ~ϕ be a collapsing

system. Let δ̄ ≤ δ both belong to C, let µ̄ < ρδ̄, and µ < ρδ. We say that A ⊆ µ
coherently collapses 〈δ, µ〉 to 〈δ̄, µ̄〉 if:

(1) (Hull) A is of the form ϕδ,µ[δ̄];
(2) (Closure) A is countably closed in µ, meaning that any limit point of A

below µ of cofinality ω belongs to A;
(3) (Collapse) letting j denote the transitive collapse map of A, we have that

j ◦ ϕδ,µ � δ̄ = ϕδ̄,µ̄.

The existence of coherently collapsing sets A with δ > δ̄ depends on a reasonably
coherent choice of the collapsing system ~ϕ, since condition (3) of Definition 2.11
requires ϕδ,µ to collapse to ϕδ̄,µ̄. If the iteration lengths ρδ are sufficiently small
that ϕδ,µ can be constructed through some recipe that is uniform in δ, then the
coherence is easy to achieve. Alternatively, the coherence can be achieved in a
universe that satisfies condensation, for example in L. This is what we will do in
Section 6. A sequence picked generically by initial segments will also satisfy enough
coherence for the existence of some coherently collapsing sets with δ > δ̄. No special
choice is needed for the existence of coherently collapsing sets with δ = δ̄.

The Hull and Closure conditions in Definition 2.11 are used to identify initial
segments of the coherently collapsing set using the system ~ϕ of surjections (for
example see Corollary 2.30), and to identify how parts of one base set can sit inside
another (see Lemma 3.7). Among other things, this leads to a counting argument
of certain partition products, up to isomorphism, in Lemma 4.16. The Collapse
condition is used in a certain triangle lemma for coherence (Lemma 3.10), which is
essential later on, for the base case of the construction in Section 5, through its use
in Lemma 4.6.

Definition 2.12. Let P and Q̇ be a basic alphabet on C, and let ~ϕ be a collapsing

system for the alphabet. A partition product based upon P and Q̇ (with respect

to ~ϕ) is a simplified partition product R (based on the reduction of P, Q̇ to a
restricted memory alphabet), with memory function b, index function index, and
rearrangement functions πξ say, satisfying the following additional properties:

(1) πξ is an acceptable rearrangement of Pindex(ξ) and R � b(ξ) is exactly equal
to the πξ-rearrangement of Pindex(ξ), not only as restricted memory itera-
tions, but as simplified partition products;

(2) let ξ1, ξ2 ∈ dom(R). Suppose index(ξ1) ≤ index(ξ2), b(ξ1) ∩ b(ξ2) 6= ∅, and
ζ ∈ b(ξ1)∩ b(ξ2). Set b1 = b(ξ1), b2 = b(ξ2), δ1 = index(ξ1), δ2 = index(ξ2),
µ1 = π−1

ξ1
(ζ), and µ2 = π−1

ξ2
(ζ). Set A1 = πξ1 [µ1] and A2 = πξ2 [µ2]. We

view these as “initial segments” up to ζ of b1 and b2 respectively. Then
A1 ⊆ A2, and π−1

ξ2
[A1] coherently collapses 〈δ2, µ2〉 to 〈δ1, µ1〉.

For any base closed Y ⊆ X, the restriction of the above partition product to
Y is obtained as in Definition 2.6. One can check that this restriction is itself a
partition product.
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Example 2.13. The simplified partition products of items (1)-(2) in Example 2.9
are in fact partition products, over the alphabet defined in the example with Pα0

and Pα1 viewed as simplified partition products rather than reduced to restricted
memory iterations. This is easy to check; the coherent collapse condition is trivial
since the various memory sets have empty intersection. In item (3) of the example
one can obtain a partition product by making sure that the sets Bγ intersect at
initial segments. Specifically, select Bγ and τγ so that for every γ, δ < ω2, there is
a µ so that Bγ ∩Bδ = τγ [µ] = τδ[µ]. It is then easy to check the coherent collapse
condition for item (3) of the example.

Remark 2.14. Suppose σ is an acceptable rearrangement of a simplified partition
product R, and let R∗ be the σ-rearrangement of R. If R is a partition product,
then so is R∗. Similarly, if R∗ is a partition product, then so is R.

It follows from Remark 2.14 that if a coordinate δ is actually used as an index in
a partition product R, say as indexR(ξ), then Pδ is itself a partition product. Thus
there is no loss of generality, in the sense that no partition product posets are lost,
if we make the following additional demands on P and Q̇:

Definition 2.15. An alphabet P, Q̇ is a basic alphabet with the additional property
that each Pδ is a partition product (not merely a simplified partition product) based

upon P � δ, Q̇ � δ.

Working over an alphabet, the definition and remark below summarize all the
conditions that go into the definition of partition products:

Definition 2.16. Let P, Q̇ be an alphabet on a set C ⊆ ω2\ω. Let ~ϕ be a collapsing

system for the alphabet. Let baseδ, π
δ
µ, bδ, and indexδ denote the corresponding

functions in the partition product Pδ.
We say that functions base and index support a partition product on X based

upon P and Q̇ if:

(1) for each ξ ∈ X, index(ξ) ∈ C and base(ξ) is a pair (b(ξ), πξ), where b(ξ) ⊆
X∩ξ and πξ : ρindex(ξ) −→ b(ξ) is an acceptable rearrangement of Pindex(ξ);

(2) let ξ ∈ X, and set δ = index(ξ). Let µ ∈ ρδ and let ζ = πξ(µ) ∈ b(ξ). Then
b(ζ) = πξ[bδ(µ)], πζ = πξ ◦ πδµ and index(ζ) = indexδ(µ);

(3) let ξ1, ξ2 ∈ X. Suppose index(ξ1) ≤ index(ξ2), b(ξ1) ∩ b(ξ2) 6= ∅, and
ζ ∈ b(ξ1)∩ b(ξ2). Set b1 = b(ξ1), b2 = b(ξ2), δ1 = index(ξ1), δ2 = index(ξ2),
µ1 = π−1

ξ1
(ζ), and µ2 = π−1

ξ2
(ζ). Set A1 = πξ1 [µ1] and A2 = πξ2 [µ2]. Then

A1 ⊆ A2, and π−1
ξ2

[A1] coherently collapses 〈δ2, µ2〉 to 〈δ1, µ1〉.

Remark 2.17. Let P, Q̇ be an alphabet on a set C ⊆ ω2 \ω. Let ~ϕ be a collapsing
system for the alphabet. Then R is a partition product with domain X, based upon
P, Q̇, with base and index as its base and index functions, iff:

(1) base and index support a partition product on X based upon P and Q̇;
(2) R consists of all finite partial functions p with dom(p) ⊆ X so that for

all ξ ∈ dom(p), p(ξ) is a canonical πξ(Pindex(ξ))-name for an element of

U̇ξ = πξ(Q̇index(ξ));
(3) q ≤ p iff dom(q) ⊇ dom(p) and for all ξ ∈ dom(p), q � b(ξ) πξ(Pindex(ξ))

q(ξ) ≤U̇ξ p(ξ).
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Note that R is determined uniquely from (the alphabet and) the functions base and
index. The forcing requirement in condition (3) is equivalent to the requirement
that q � b(ξ) R�b(ξ) q(ξ) ≤U̇ξ p(ξ); indeed one can check inductively that R � b(ξ)
is exactly πξ(Pindex(ξ)). This uses the assumption that base and index support a
partition product.

The definition of a partition product refers to C, the alphabet sequences P and
Q̇, and the collapsing system ~ϕ. We suppress some or all of these objects when
they are understood from the context.

Lemma 2.18. Let base and index support a partition product with domain X, and
let ξ ∈ X. Then b(ξ) is base-closed, and for each ζ ∈ b(ξ), index(ζ) < index(ξ).

Proof. Immediate from conditions (1) and (2) in Definition 2.16. To get index(ζ) <

index(ξ) we use the fact that Pindex(ξ) is based upon P � index(ξ), Q̇ � index(ξ). �

Lemma 2.19. Suppose that R is a partition product with domain X and that
B ⊆ X is base-closed. Then base � B and index � B support a partition product on
B, and this partition product is exactly R � B. Moreover, if there is a β ∈ C such
that {index(ξ) : ξ ∈ B} ⊆ β, then R � B is a partition product based upon P � β and

Q̇ � β. Finally, R � B is a complete subposet of R.

Proof. Clear from the definitions. For the final part, prove that if p ∈ R, q ∈ R � B,
and q ≤ p � B, then p∗ with domain dom(p) ∪ dom(q), mapping ξ ∈ B to q(ξ) and
ξ 6∈ B to p(ξ), is a condition in R and extends both p and q. �

If R, X, and B are as in the previous lemma, and if G is V -generic for R, we use
G � B to denote {p � B : p ∈ G}, which is V -generic for R � B.

2.3. Rearranging Partition Products. It will be convenient later on to rear-
range partition products in ways that make specific base closed sets into initial
segments of the partition product, and ways that isolate the use of the largest in-
dex (if there is one) as a product over the restriction to smaller indexes. This will
be done in Lemma 2.24, Corollary 2.25, and Lemma 2.26.

We begin with a couple of obvious results, and connections between rearrange-
ments and Mostowski collapses.

Lemma 2.20. (Rearrangement Lemma) Suppose that R is a partition product with
domain X and that σ : X −→ X∗ is an acceptable rearrangement of R. Recall
from Definitions 2.3 and 2.7 that σ(bR)(σ(ξ)) = σ[bR(ξ)], and σ(baseR)(σ(ξ)) =
〈σ[bR(ξ)], σ ◦ πR

ξ 〉.
Then σ(baseR) and σ(indexR) support a partition product, denoted σ(R), on X∗.

Moreover, σ lifts to act on conditions in R and on R-names through the inductive
equations that σ(p)(σ(ξ)) = σ(p(ξ)) and σ(u̇) = {〈σ(v̇), σ(p)〉 | 〈v̇, p〉 ∈ u̇}. This
gives an isomorphism from R to σ(R), σ lifts to act on R generics G by σ(G) = σ[G],
and for any R-name u̇ we have σ(u̇)[σ(G)] = u̇[G].

Proof. This summarizes facts from the previous subsection. �

Remark 2.21. Suppose that M and M∗ are transitive, satisfy enough of ZFC −
Powerset, and that σ : M −→M∗ is an elementary embedding. Also, suppose that
R ∈M is a partition product, say with domain X, and that R is based upon P � κ
and Q̇ � κ. Since σ is an elementary embedding, the ordinal function π := σ � X is
order-preserving and therefore provides an acceptable rearrangement of R.
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There is now a potential conflict between the π-rearrangements of conditions
in R and the images of these conditions under the embedding σ. However, these
two notions are the same if the embedding σ does not move any members of the
alphabet P � κ and Q̇ � κ. The next lemma summarizes what we need about this
situation and will be used crucially in the final proof of Theorem 1.3 in Section 6.
For the next lemma, we will continue to use π to denote the ordinal function which
lifts to act, for instance, on conditions in R, and we will keep σ as the elementary
embedding.

Lemma 2.22. Let σ : M −→M∗, R, X, κ, and π be as in Remark 2.21. Further
suppose that for each δ ∈ C ∩ κ, σ is the identity on every element of Pδ ∗ Q̇δ ∪{
Pδ, Q̇δ

}
. Then for each p ∈ R, π(p) = σ(p).

Furthermore, setting R∗ := σ(R), σ[X] is a base-closed subset of dom(R∗), and
R∗ � σ[X] equals π(R), the π-rearrangement of R.

Additionally, suppose that G is V -generic for R, G∗ is V -generic for R∗, and σ
extends to an elementary embedding σ∗ : M [G] −→ M∗[G∗]. Suppose also that τ̇
is an R-name (not necessarily in M) and π(τ̇) is the π-rearrangement of τ̇ . Then

π(τ̇) is an R∗-name, and τ̇ [G] = π(τ̇)[G∗]. Finally, if Q̇ is an R-name in M of

M -cardinality < crit(σ) and names a poset contained in crit(σ), then σ(Q̇) = π(Q̇).

Proof. We only prove the second and third parts. For the second part, fix some
ξ ∈ X. Then bR(ξ) is in bijection, via a bijection in M , with some ρα, for α < κ.
However, ρα is below crit(σ), since σ is the identity on Pα. Therefore,

bR∗(σ(ξ)) = σ(bR(ξ)) = σ[bR(ξ)],

where the first equality holds by the elementarity of σ and the second since crit(σ) >
|bR(ξ)|. This implies that σ[X] is base-closed, and therefore R∗ � σ[X] is a partition
product by Lemma 2.19. By the first part of the current lemma, we see that every
condition in R∗ � σ[X] is in the image of σ. However, π(p) = σ(p) for each condition
p ∈ R, and consequently R∗ � σ[X] equals π(R), the π-rearrangement of R.

For the third part, let G and G∗ be as in the statement of the lemma. Also
let π(G) denote the π-rearrangement of the filter G, as defined in Lemma 2.20,
so that τ̇ [G] = π(τ̇)[π(G)]. We also see that π(τ̇) is an R∗-name, since it is a
π (R)-name and since, by the second part of the current lemma, π (R) = R∗ � σ[X]
and σ[X] is base-closed. Furthermore, σ[G] (the pointwise image) is a subset of
G∗, by the elementarity of σ∗. However, by the first part of the current lemma,
σ[G] = {σ(p) : p ∈ G} = {π(p) : p ∈ G} = π (G), and therefore

τ̇ [G] = π(τ̇)[π (G)] = π(τ̇)[G∗].

Finally, if Q̇ ∈M and satisfies the assumptions in the statement of the lemma, then
σ(Q̇) = σ[Q̇], and σ[Q̇] = π(Q̇). This completes the proof of the lemma. �

Before we give applications of the Rearrangement Lemma, we record our defini-
tion of an embedding.

Definition 2.23. Suppose that R and R∗ are partition products with respective
domains X and X∗. We say that an injection σ : X −→ X∗ embeds R into R∗ if
σ : X −→ ran(σ) is an acceptable rearrangement of R, and if σ (baseR) = baseR∗ �
ran(σ) and σ (indexR) = indexR∗ � ran(σ).
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It is straightforward to check that if σ is an embedding as in Definition 2.23, and if
G∗ is generic over R∗, then the filter σ−1 (G∗) := {p ∈ R : σ(p) ∈ G∗} is generic over
R. We also remark that, in the context of the above definition, σ (R) = R∗ � ran(σ).

Lemma 2.24. Suppose that R is a partition product with domain X and B ⊆ X
is base-closed. Then R is isomorphic to a partition product R∗ with a domain X∗

such that B is an initial segment of X∗ and R∗ � B = R � B.

Proof. We define a map σ with domain X which will lift to give us R∗. Let ξ ∈ X.
If ξ ∈ B, then set σ(ξ) = ξ. On the other hand, if ξ ∈ X\B, say that ξ is the γth
element of X\B, then we define σ(ξ) = sup(X) + 1 + γ.

We show that σ is an acceptable rearrangement of R, and then we may set
R∗ := σ (R) by Lemma 2.20. So suppose that ζ, ξ ∈ X and ζ ∈ b(ξ); we check that
σ(ζ) < σ(ξ). There are two cases. On the one hand, if ξ ∈ B, then b(ξ) ⊆ B, since B
is base-closed, and therefore ζ ∈ B. Then σ(ζ) = ζ < ξ = σ(ξ). On the other hand,
if ξ /∈ B, then either ζ ∈ B or not. If ζ ∈ B, then σ(ζ) = ζ < sup(X) + 1 ≤ σ(ξ),
and if ζ /∈ B, then σ(ζ) < σ(ξ) since σ is order-preserving on X\B. �

It will be helpful later on to know that we can apply Lemma 2.24 ω-many times,
as in the following corollary.

Corollary 2.25. Suppose that R is a partition product with domain X and that
for each n < ω, πn is an acceptable rearrangement of R. Suppose that 〈Bn : n ∈ ω〉
is a ⊆-increasing sequence of base-closed subsets of X where B0 = ∅ and where
X =

⋃
nBn. Then there is a partition product R∗ which has domain an ordinal ρ∗

and an acceptable rearrangement σ : X −→ ρ∗ of R which lifts to an isomorphism
of R onto R∗ and which also satisfies that for each n < ω, σ[Bn] is an ordinal and
πn ◦ σ−1 is order-preserving on σ[Bn+1\Bn].

Proof. We aim to recursively construct a sequence 〈Rn : n < ω〉 of partition prod-
ucts, where Rn has domain Xn, and a sequence 〈σn : n < ω〉 of bijections, where
σn : X −→ Xn, so that

(1) σn is an acceptable rearrangement of R;
(2) σn[Bn] is an ordinal, and in particular, an initial segment of Xn;
(3) for each k < m < ω, σk[Bk] = σm[Bk];
(4) for each n < ω, πn ◦ σ−1

n+1 is order-preserving on σn+1[Bn+1\Bn].

Suppose that we can do this. Then we define a map σ on X, by taking σ(ξ) to
be the eventual value of the sequence 〈σn(ξ) : n < ω〉; we see that this sequence
is eventually constant by (3) and the assumption that

⋃
nBn = X. By (2) and

(3), σ[Bn] is an ordinal, for each n < ω, and therefore the range of σ is an ordinal,
which we call ρ∗. Furthermore, πn ◦σ−1 is order-preserving on σ[Bn+1\Bn] by (4),
and since σ and σn+1 agree on Bn+1. Finally, by (1) we see that σ is an acceptable
rearrangement of R, and we thus take R∗ to be the partition product isomorphic
to R via σ, by Lemma 2.20.

We now show how to create the above objects. Suppose that 〈Rm : m < n〉 and
〈σm : m < n〉 have been constructed. If n = 0, we take R0 = R and σ0 to be the
identity; since B0 = ∅, this completes the base case. So suppose n > 0. Apply
Lemma 2.24 to the partition product Rn−1 and the base-closed subset σn−1[Bn]
of Xn−1 to create a partition product Rn on a set Xn which is isomorphic to
Rn−1 via the acceptable rearrangement τn : Xn−1 −→ Xn and which satisfies
that σn−1[Bn] is an initial segment of Xn. Since σn−1[Bn−1] is an ordinal, by (2)
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applied to n − 1, and since σn−1[Bn] is an initial segment of Xn, we see that τn
is the identity on σn−1[Bn−1]. Also, by composing τn with a further function and
relabeling if necessary, we may assume that πn−1 ◦ τ−1

n just shifts the ordinals in
σn−1[Bn\Bn−1] in an order-preserving way and that τn ◦ σn−1[Bn] is an ordinal.
We now take σn to be τn ◦ σn−1, and we see that σn and Rn satisfy the recursive
hypotheses. �

Lemma 2.26. Suppose that β ∈ C∩κ and that R is a partition product with domain
X based upon P � (β+1) and Q̇ � (β+1). Then, letting B := {ξ ∈ X : index(ξ) < β}
and I := {ξ ∈ X : index(ξ) = β}, B is base-closed, and R is isomorphic to

(R � B) ∗
∏
ξ∈I

Q̇β
[
π−1
ξ

(
ĠB � b(ξ)

)]
,

where ĠB is the canonical R � B-name for the generic filter.

Proof. To see that B is base-closed, fix ξ ∈ B. Then for all ζ ∈ b(ξ), index(ζ) <
index(ξ) < β by Lemma 2.18, and so ζ ∈ B. Thus by Lemma 2.24, we may assume
that B is an initial segment of X, and hence I is a tail segment of X. Now let
GB be generic for R � B, and for each ξ ∈ I, let GB,ξ denote π−1

ξ (GB � b(ξ)),

which is generic for Pβ . The sequence of posets 〈Q̇β [GB,ξ] : ξ ∈ I〉 is in V [GB ],

and consequently the finite support iteration of 〈Q̇β [GB,ξ] : ξ ∈ I〉 in V [GB ] is

isomorphic to the (finite support) product
∏
ξ∈I Q̇β [GB,ξ]. Therefore, in V , R is

isomorphic to the poset in the statement of the lemma. �

Remark 2.27. The previous lemma shows that a partition product does indeed
have product-like behavior, and it is part of the justification for our term “partition
product.”

Lemma 2.28. Suppose that R is a partition product with domain X based upon
P � κ and Q̇ � κ. Suppose κ is a limit ordinal, and let 〈κα | α < δ〉 be cofinal in κ.
Finally, let Bα := {ξ ∈ X : index(ξ) < α}. Then each Bα is base closed, R � Bα is
a complete subposet of R � Bβ when α ≤ β, and R is the direct limit of the posets
R � Bα. In particular if each R � Bα is c.c.c., then so is R.

Proof. Base closure follows as in Lemma 2.26. By Lemma 2.19, R � Bα is a complete
subposet of R � Bβ when α ≤ β. R is the union of the posets R � Bα since⋃
α<δ Bα = X. The countable chain condition is preserved under this union since

the supports are finite. �

2.4. Further Remarks on Coherent Overlaps. In this subsection we state and
prove a few consequences of the Hull and Closure conditions (1), (2) of Definition
2.11. These results will, in combination with the ability to rearrange a partition
product, allow us to find isomorphism types of sufficiently simple partition products
inside many countably-closed M ≺ H(ω3), as well as their transitive collapses (see
Lemma 4.16).

Lemma 2.29. Let R be a partition product, say with domain X, based upon P and
Q̇. Let ξ1, ξ2 ∈ X, set δi = index(ξi), for i = 1, 2, and suppose that δ1 ≤ δ2 and

ρδ2 < ω3. Finally, let A = π−1
ξ2

[b(ξ1) ∩ b(ξ2)]. Then A is definable in H(ω3) from

~ϕ, the ordinals δ1 and δ2, and any cofinal Z ⊆ A.
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Proof. Let Z ⊆ A be cofinal. For each α ∈ Z, we have from Definition 2.16(3)
and condition (1) of Definition 2.11 that A ∩ α = ϕδ2,α[δ1]. Therefore A =⋃
α∈Z ϕδ2,α[δ1], which is definable in H(ω3) from Z, ~ϕ, δ1, and δ2. �

Corollary 2.30. Let R, X, ξ1, ξ2, and A be as in Lemma 2.29. Assume that for
all ξ ∈ C, ρξ < ω2. Let M ≺ H(ω3) be countably-closed containing the objects P,

Q̇, ~ϕ, and δ1, δ2. Then A is a member of M as well as the transitive collapse of M .

Proof. First observe that A is a subset of ρδ2 , which is a member of M . Since
ρδ2 < ω2 and M contains ω1 as a subset, ρδ2 ⊆ M . In particular, sup(A) is an
element of M .

Consider the case that sup(A) has countable cofinality. Then by the countable
closure of M , we can find a cofinal subset Z of A inside M . By Lemma 2.29, we
then conclude that A ∈M .

Now suppose that sup(A) has uncountable cofinality. Recall from condition (2)
of Definition 2.11 that A is countably closed in sup(A). Moreover, since A ∩ α =
ϕδ2,α[δ1] for each α ∈ A, we know that the sequence of sets 〈ϕδ2,α[δ1] : α ∈ A〉 is
⊆-increasing. By the elementarity of M , we may find an ω-closed, cofinal subset
Z of sup(A) such that Z ∈ M for which the sequence of sets 〈ϕδ2,α[δ1] : α ∈ Z〉 is
⊆-increasing. Combining this with the fact that Z ∩A is also ω-closed and cofinal
in sup(A), we have that

A =
⋃

α∈A∩Z
ϕδ2,α[δ1] =

⋃
α∈Z

ϕδ2,α[δ1],

and hence A is in M , as
⋃
α∈Z ϕδ2,α[δ1] is in M by elementarity. Finally, since A

is bounded in the ordinal M ∩ ω2, A is fixed by the transitive collapse map. �

3. Combining Partition Products

In this section, we develop the machinery necessary to combine partition prod-
ucts in various ways. This will be essential for later arguments where, in the context
of working with a partition product R, we will want to create another partition prod-
uct R∗ into which R embeds in a variety of ways. Forcing with R∗ will then add
plenty of generics for R, with various amounts of agreement or mutual genericity.

The main result of this section is a so-called “grafting lemma” which gives condi-
tions under which, given partition products P and R, we may extend R to another
partition product R∗ in such a way that R∗ subsumes an isomorphic image of P; in
this case P is, in some sense, “grafted onto” R. One trivial way of doing this, we will
show, is to take the partition product P×R. However, the issue becomes somewhat
delicate if we desire, as later on we often will, that R and the isomorphic copy of
P in R∗ have coordinates in common, and hence share some part of their generics.
Doing so requires that we keep track of more information about the structure of a
partition product, and we begin with the relevant definition in the first subsection.

3.1. Shadow Bases.

Definition 3.1. A triple 〈x, πx, α〉 is said to be a shadow base if the following
conditions are satisfied: α ∈ C, πx has domain γx for some γx ≤ ρα, and πx :
γx −→ x is an acceptable rearrangement of Pα � γx.

Moreover, if R is a partition product, say with domain X, we say that a shadow
base 〈x, πx, α〉 is an R-shadow base if x ⊆ X is base-closed and if πx embeds Pα � γx
into R � x.
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For example, if R is a partition product with domain X, then for any ξ ∈ X the
triple 〈b(ξ), πξ, index(ξ)〉 is an R- “shadow” base; this is part of the motivation for
the term. In practice, a shadow base will be an initial segment, in a sense we will
specify soon, of such a triple.

Definition 3.2. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two shadow bases. We
say that they cohere if the following holds: suppose that α ≤ β and that there is
some ζ ∈ x ∩ y. Define µx := π−1

x (ζ) and µy := π−1
y (ζ). Then

(1) πx[µx] ⊆ πy[µy]; and
(2) π−1

y [πx[µx]] coherently collapses 〈β, µy〉 to 〈α, µx〉.
A collection B of shadow bases is said to cohere if any two elements of B cohere.

Note that with this definition, item (3) of Definition 2.16 could be rephrased as
saying that the two shadow bases 〈b(ξ1), πξ1 , index(ξ1)〉 and 〈b(ξ2), πξ2 , index(ξ2)〉
cohere.

Remark 3.3. It is straightforward to check that Corollary 2.30 holds for shadow
bases too, in the following sense. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two
coherent shadow bases, say with α ≤ β. Then π−1

y [x ∩ y] is a member of any M as
in the statement of Corollary 2.30, provided that α and β, as well as the additional
parameters P � β, Q̇ � β, and ~ϕ, are all in M .

Definition 3.4. Given a shadow base 〈x, πx, α〉 and some a ⊆ x, we say that a is
an initial segment of 〈x, πx, α〉 if a is of the form πx[µ] for some µ ≤ dom(πx).

Given two shadow bases 〈x0, πx0
, α0〉 and 〈x, πx, α〉, we say that 〈x0, πx0

, α0〉 is
an initial segment of 〈x, πx, α〉 if α0 = α, x0 is an initial segment of 〈x, πx, α〉, and
πx � dom(πx0) = πx0 .

Remark 3.5. A simple but useful observation is that if 〈x0, πx0
, α〉 and 〈y, πy, β〉

are two coherent shadow bases, 〈x0, πx0
, α〉 is an initial segment of 〈x, πx, α〉, and

(x\x0) ∩ y = ∅, then 〈x, πx, α〉 and 〈y, πy, β〉 cohere.

Lemma 3.6. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are coherent shadow bases and
α ≤ β. Then π−1

x [x ∩ y] is an ordinal ≤ dom(πx), and hence x ∩ y is an initial
segment of 〈x, πx, α〉.
Proof. Fix ξ ∈ x ∩ y. By the definition of coherence and the fact that α ≤ β, we
see that π−1

x (ξ) + 1 ⊆ π−1
x [x ∩ y]. Thus

π−1
x [x ∩ y] =

⋃
ξ∈x∩y

(π−1
x (ξ) + 1),

and therefore π−1
x [x ∩ y] is an ordinal. �

Lemma 3.7. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two coherent shadow bases,
where α ≤ β. Let ζ ∈ x ∩ y, and define µx := π−1

x (ζ) and µy := π−1
y (ζ). Then

π−1
y ◦ πx is an order preserving map from µx into µy. In particular, µx ≤ µy, and

π−1
x ◦ πy is the transitive collapse of π−1

y [πx[µx]].

Proof. By Definition 3.2 (1), we know that πx[µx] is a subset of πy[µy], and so
π−1
y ◦πx is indeed a map from µx into µy. Let us abbreviate π−1

y ◦πx by j. Suppose
that ζ < η < µx, and we show j(ζ) < j(η). Set ζy = j(ζ) and ηy = j(η). Since
πx(η) = πy(ηy) ∈ x ∩ y, Definition 3.2 (1) implies that πx[η] ⊆ πy[ηy]. Next, as
ζ < η, πx(ζ) ∈ πx[η], and so πy(ζy) ∈ πy[ηy]. Finally, since πy is a bijection we
conclude that ζy ∈ ηy, i.e., j(ζ) < j(η). �
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As a result of the previous lemma, if two coherent shadow bases have the same
“index”, then their intersection is an initial segment of both.

Corollary 3.8. Suppose that 〈x, πx, α〉 and 〈y, πy, α〉 are two coherent shadow bases
and that ζ ∈ x ∩ y. Then ζ0 := π−1

x (ζ) = π−1
y (ζ), and in fact, πx � (ζ0 + 1) = πy �

(ζ0 + 1).

Proof. Fix η ∈ x∩y. Since both shadow bases have index α, we know from Lemma
3.7 that π−1

x (η) = π−1
y (η). Since this holds for any η ∈ x∩ y, the result follows. �

Remark 3.9. In the context of Corollary 3.8, we note that π−1
x [x∩y] = π−1

y [x∩y]
is an ordinal ≤ ρα, and if x 6= y, then this ordinal is strictly less than ρα.

We conclude this subsection with a very useful lemma.

Lemma 3.10. Suppose that 〈x, πx, α〉, 〈y, πy, β〉, and 〈z, πz, γ〉 are shadow bases
such that α, β ≤ γ. Suppose further that x∩ y ⊆ z, that 〈x, πx, α〉 and 〈z, πz, γ〉 co-
here, and that 〈y, πy, β〉 and 〈z, πz, γ〉 cohere. Then 〈x, πx, α〉 and 〈y, πy, β〉 cohere.

Proof. By relabeling if necessary, we assume that α ≤ β. Let ζ ∈ x∩ y, and we will
show that (1) and (2) of Definition 3.2 hold. Define µx := π−1

x (ζ) and µy := π−1
y (ζ).

As x ∩ y ⊆ z, ζ ∈ z, and therefore we may also define µz := π−1
z (ζ). Applying the

coherence assumptions in the statement of the lemma, we conclude that

π−1
z [πx[µx]] = ϕγ,µz [α] and π−1

z [πy[µy]] = ϕγ,µz [β].

Since α ≤ β, it then follows that πx[µx] ⊆ πy[µy].
We next show that π−1

y [πx[µx]] = ϕβ,µy [α]. By Lemma 3.7 applied to the shadow

bases 〈y, πy, β〉 and 〈z, πz, γ〉, we conclude that π−1
y ◦ πz, which we abbreviate

as jz,y, is the transitive collapse of π−1
z [πy[µy]]. Furthermore, the definition of

coherence also implies that jz,y ◦ ϕγ,µz � β = ϕβ,µy . Since α ≤ β and since

π−1
z [πx[µx]] = ϕγ,µz [α], we apply jz,y to conclude that π−1

y [πx[µx]] = ϕβ,µy [α].

Now let jy,x denote the transitive collapse of π−1
y [πx[µx]]; we check that jy,x ◦

ϕβ,µy � α = ϕα,µx . We also let jz,x be the transitive collapse of π−1
z [πx[µx]]. From

Lemma 3.7, we know that jy,x = π−1
x ◦πy and jz,x = π−1

x ◦πz. Thus jz,x = jy,x◦jz,y.
Since jz,y ◦ϕγ,µz � β = ϕβ,µy and α ≤ β, we conclude that ϕα,µx = jy,x ◦ϕβ,µy � α,
completing the proof. �

Note that the proof of Lemma 3.10 uses the Collapse condition (3) of Definition
2.11 for y and z, in order to prove one of the other conditions, namely the Hull
condition (1), for x and y.

3.2. Enriched Partition Products. In this subsection, we will consider in greater
detail how shadow bases interact with partition products. We begin with the fol-
lowing definition.

Definition 3.11. Let R be a partition product with domain X. A collection B of
R-shadow bases is said to be R-full if for all ξ ∈ X, 〈b(ξ), πξ, index(ξ)〉 ∈ B. B is
said to be an R-enrichment if B is both coherent and R-full.

An enriched partition product is a pair (R,B) where B is an enrichment of R.

The next definition is a strengthening of the notion of a base-closed subset which
allows us to restrict an enrichment.
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Definition 3.12. Let (R,B) be an enriched partition product with domain X. A
base-closed subset B ⊆ X is said to cohere with (R,B) if for all triples 〈x, πx, α〉 in
B and for every ζ ∈ B ∩ x, if ζ = πx(ζ0), say, then πx[ζ0] ⊆ B.

Lemma 3.13. Suppose that (R,B) is an enriched partition product with domain
X and that B ⊆ X coheres with (R,B). Let 〈x, πx, α〉 ∈ B, and define πx∩B to be
the restriction of πx mapping onto x ∩B. Then 〈x ∩B, πx∩B , α〉 is a shadow base.

Additionally, if we define

B � B := {〈x ∩B, πx∩B , α〉 : 〈x, πx, α〉 ∈ B} ,
then (R � B,B � B) is an enriched partition product.

Proof. To see that 〈x∩B, πx∩B , α〉 is a shadow base, it suffices to show that π−1
x [x∩

B] is an ordinal. This holds since for each ξ ∈ x ∩ B, by the coherence of B with
(R,B), π−1

x (ξ) + 1 ⊆ π−1
x [x ∩B].

Now we need to verify that (R � B,B � B) is an enriched partition product. It
is straightforward to see that B � B is (R � B)-full, since B is base-closed and since
the base and index functions for R � B are exactly the restrictions of those for R.
Similarly, we see that each shadow base in B � B is in fact an (R � B)-shadow
base. Thus we need to check that any two elements of B � B cohere. Fix 〈x, πx, α〉
and 〈y, πy, β〉 in B, and suppose that there exists ζ ∈ (x ∩ B) ∩ (y ∩ B). Let
µx < ρα be such that ζ = πx∩B(µx), and let µy < ρβ be such that ζ = πy∩B(µy).
Then since B coheres with (R,B), πx � (µx + 1) = πx∩B � (µx + 1), and similarly
πy � (µy + 1) = πy∩B � (µy + 1). Therefore conditions (1) and (2) of Definition 3.2
at ζ follow from their applications to 〈x, πx, α〉 and 〈y, πy, β〉 at ζ. �

Definition 3.14. Suppose that P and R are partition products and σ embeds P
into R. If 〈x, πx, α〉 is a P-shadow base, we define σ(〈x, πx, α〉) to be the triple

〈σ[x], σ ◦ πx, α〉.
If B is a collection of P-shadow bases, we define σ (B) := {σ(t) : t ∈ B}.

The proof of the following lemma is routine.

Lemma 3.15. Suppose that P and R are partition products, σ embeds P into R,
and B is a collection of P-shadow bases. Then σ (B) is a collection of R-shadow
bases.

The following technical lemma will be of some use later.

Lemma 3.16. Suppose that R and R∗ are partition products, σ1, σ2 are embeddings
of R into R∗, and 〈x, πx, α〉 and 〈y, πy, β〉 are two coherent R-shadow bases, with
α ≤ β. Let a be an initial segment of x such that a ⊆ y, σ1 � a = σ2 � a, and
σ1[x\a] is disjoint from σ2[y\a]. Then σ1(〈x, πx, α〉) and σ2(〈y, πy, β〉) are coherent
R∗-shadow bases.

Proof. From Lemma 3.15, we see that σ1(〈x, πx, α〉) and σ2(〈y, πy, β〉) are R∗-
shadow bases. Furthermore, if ζ∗ ∈ σ1[x] ∩ σ2[y], then ζ∗ must be in σ1[a] ∩ σ2[a],
since σ1[x\a] ∩ σ2[y\a] = ∅ and since σ1 � a = σ2 � a. As the injections σ1 and σ2

are equal on a, we then have that σ−1
1 (ζ∗) = σ−1

2 (ζ∗) =: ζ. Thus ζ ∈ x ∩ y, and
the coherence of the original triples at ζ implies the coherence of their images at
ζ∗. �

We next define a notion of embedding for enriched partition products.
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Definition 3.17. Suppose that (P,B) is an enriched partition product with domain
X, (R,D) is an enriched partition product with domain Y , and σ : X −→ Y is
a function. We say that σ embeds (P,B) into (R,D) if σ embeds P into R, as in
Definition 2.23, and if σ (B) ⊆ D.

We may now state and prove the Grafting Lemma; proving this lemma is one of
the main reasons we introduced shadow bases.

Lemma 3.18. (Grafting Lemma) Let (P,B) and (R,D) be enriched partition prod-

ucts with respective domains X and Y . Suppose that X̂ ⊆ X coheres with (P,B)

and that there is a map σ : X̂ −→ Y which embeds (P � X̂,B � X̂) into (R,D).Then
there is an enriched partition product (R∗,D∗) with domain Y ∗ such that Y ⊆ Y ∗,
R∗ � Y = R, D ⊆ D∗, and such that there is an extension σ∗ of σ which embeds

(P,B) into (R∗,D∗) and which satisfies σ∗
[
X\X̂

]
= Y ∗\Y .

Proof. We first define the map σ∗ extending σ: if ξ ∈ X̂, then set σ∗(ξ) := σ(ξ). If

ξ ∈ X\X̂, say ξ is the γth such element, then we set σ∗(ξ) := sup(Y )+1+γ. Then

σ∗ is an acceptable rearrangement, since X̂ is base-closed. Let Y ∗ := Y ∪ ran(σ∗).

Recalling that σ embeds P � X̂ into R, we know that σ∗ (baseP) � ran(σ) = baseR �
ran(σ) and that σ∗ (indexP) � ran(σ) = indexR � ran(σ). Thus if we define base∗ :=
baseR ∪σ∗ (baseP) and index∗ := indexR ∪σ∗ (indexP), then base∗ and index∗ are
functions.

Before we check that base∗ and index∗ support a partition product on Y ∗, we
need to check that D∪ σ∗ (B) consists of a coherent collection of shadow bases. To
facilitate the discussion, we set B∗ := σ∗ (B) and D∗ := D∪B∗. So fix 〈x, πx, α〉 ∈ B
and 〈y, πy, β〉 in D, and we check that 〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere, where

x∗ := σ∗[x] and πx∗ := σ∗ ◦ πx. By our assumption that σ embeds (P � X̂,B � X̂)

into (R,D), we know that 〈y, πy, β〉 and 〈σ[x ∩ X̂], σ ◦ πx∩X̂ , α〉 cohere. However,

〈σ[x ∩ X̂], σ ◦ πx∩X̂ , α〉 is an initial segment of 〈x∗, πx∗ , α〉, as in Definition 3.4.

Therefore by Remark 3.5, since σ∗[X\X̂] is disjoint from y, we have that 〈y, πy, β〉
and 〈x∗, πx∗ , α〉 cohere.

We now check that base∗ and index∗ support a partition product on Y ∗. Con-
ditions (1) and (2) of Definition 2.16 for base∗ and index∗ follow because they hold
for baseR and indexR, as well as σ∗ (baseP) and σ∗ (indexP) individually, and since
base∗ and index∗ are functions. Thus we need to verify condition (3). For this it
suffices to check that it holds for ξ1 ∈ Y and ξ2 ∈ Y ∗\Y . Rephrasing, we need to
show that the triples 〈b∗(ξ1), π∗ξ1 , index∗(ξ1)〉 and 〈b∗(ξ2), π∗ξ2 , index∗(ξ2)〉 cohere.

The first triple equals 〈bR(ξ1), πR
ξ1
, indexR(ξ1)〉 and so is in D since D is R-full.

The second triple is in B∗, since it equals 〈σ∗[bP(ξ̂2)], σ∗ ◦ πP
ξ̂2
, indexP(ξ̂2)〉, where

σ∗(ξ̂2) = ξ2. Consequently, both shadow bases are in D∗ and are therefore coherent,
by the previous paragraph. Thus condition (3) of Definition 2.16 is satisfied.

Thus base∗ and index∗ support a partition product on Y ∗, which we call R∗.
Since the restrictions of base∗ and index∗ to Y equal baseR and indexR, respectively,
we have that R∗ � Y = R. Additionally, σ∗ embeds P into R∗, since base∗ and index∗

restricted to ran(σ∗) equal σ∗ (baseP) and σ∗ (indexP) respectively. Thus it remains
to check that D∗ is an enrichment of R∗, and for this, it only remains to check that
D∗ is R∗-full. However, D is R-full, and since B is P-full, B∗ is full with respect to
R∗ � ran(σ∗). Thus D∗ is R∗-full. �
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Definition 3.19. Let (P,B), (R,D), (R∗,D∗), X̂, σ, and σ∗ be as in Lemma 3.18.
We will say in this case that (R∗,D∗) is the extension of (R,D) by grafting (P,B)
over σ, and we will call σ∗ the grafting embedding.

Note that as a corollary, we get that the product of two partition products is
isomorphic to a partition product; this fact could also be proven directly from the
definitions.

Corollary 3.20. Suppose that P and R are partition products with respective do-
mains X and Y . Then P× R is isomorphic to a partition product R∗.

In fact, by Lemma 2.20 we may assume that X ∩ Y = ∅, that R∗ is a partition
product on X ∪ Y , and that R∗ � X = P and R∗ � Y = R. Finally, in this case, if
B and D are enrichments of P and R respectively, then B ∪ D is an enrichment of
R∗.

The following technical lemma gives a situation under which, after creating a
single grafting embedding, we may extend a number of other embeddings without
further grafting; it will be used later in constructing preassignments (see Lemma
5.4).

Lemma 3.21. Let (P,B) and (R,D) be enriched partition products with domains
X and Y respectively. Suppose that X can be written as X = X0 ∪X1, where both
X0 and X1 cohere with (P,B). Let F be a finite collection of maps which embed
(P � X0,B � X0) into (R,D), and suppose that for each σ0, σ1 ∈ F ,

σ0[X0 ∩X1] = σ1[X0 ∩X1].

Finally, fix a particular σ0 ∈ F , let (R∗,D∗) be the extension of (R,D) by grafting
(P,B) over σ0, and let σ∗0 be the grafting embedding. Then for all σ ∈ F , the map

σ∗ := σ ∪ (σ∗0 � (X1\X0))

embeds (P,B) into (R∗,D∗).

Proof. Fix σ ∈ F . Before we continue, we note that σ∗ and σ∗0 agree on all of X1,
since they agree on X0 ∩X1 by assumption and on X1\X0 by definition.

We first verify that σ∗ provides an acceptable rearrangement of P. So let ζ, ξ ∈
X so that ζ ∈ bP(ξ). If ξ ∈ X0, then ζ is too, since X0 is base-closed. Then
σ∗(ζ) = σ(ζ) < σ(ξ) = σ∗(ξ), since σ is an acceptable rearrangement of P � X0.
On the other hand, if ξ ∈ X1, then ζ ∈ X1. Since σ∗ � X1 = σ∗0 � X1, and σ∗0 � X1

is an acceptable rearrangement of P � X1, we get that σ∗(ζ) < σ∗(ξ).
We may now see that σ∗ embeds P into R∗, as follows: let base∗ and index∗ be

the functions which support R∗. Then σ∗ (indexP) and σ∗ (baseP) agree with index∗

and base∗ on ran(σ), since σ embeds P � X0 into R. Furthermore, σ∗ (indexP) and
σ∗ (baseP) agree with index∗ and base∗ on σ∗[X1], since they are equal, respectively,
to σ∗0 (indexP) and σ∗0 (baseP) restricted to σ∗0 [X1]. Thus σ∗ (indexP) and σ∗ (baseP)
are equal to the restriction of index∗ and base∗ to ran(σ∗), and consequently, σ∗

embeds P into R∗.
We finish the proof of the lemma by showing that σ∗ (B) ⊆ D∗. To see this,

fix some 〈x, πx, α〉 ∈ B. We first claim that either x ⊆ X0 or x ⊆ X1. If this
is false, then there exist α ∈ x\X0 and β ∈ x\X1. Since X0 ∪ X1 = X, we
then have α ∈ X1 and β ∈ X0. We suppose, by relabeling if necessary, that
α0 := π−1

x (α) < π−1
x (β) =: β0. By the coherence of X0 with (P,B), we conclude
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that πx[β0] ⊆ X0. However, α = πx(α0) ∈ πx[β0], and therefore α ∈ X0, a
contradiction.

We now show that the shadow base 〈x∗, πx∗ , α〉 is in D∗, where x∗ := σ∗[x] and
πx∗ = σ∗ ◦ πx. On the one hand, if x ⊆ X0, then the shadow base 〈x, πx, α〉 is in
B � X0, and therefore 〈σ[x], σ ◦ πx, α〉 is a member of D ⊆ D∗. Since σ = σ∗ � X0,
〈x∗, πx∗ , α〉 = 〈σ[x], σ ◦ πx, α〉, completing this subcase. On the other hand, if
x ⊆ X1, then we see that 〈x∗, πx∗ , α〉 = 〈σ∗0 [x], σ∗0 ◦πx, α〉, since σ∗ � X1 = σ∗0 � X1.
It is therefore a member of D∗, which finishes the proof. �

4. Simplifying the Task: Finitely Generated Partition Products

In this section we begin the basic inductive step of constructing a single highly
symmetric preassignment name. We make the following assumption, which we will
secure through an induction later on.

Assumption 4.1(a) The CH holds. κ < ω2 is in C, and for each ξ ∈ C ∩ κ, ρξ is
below ω2. Additionally, the κ-alphabetical partition product Pκ is defined, and in
particular, Pκ is a partition product based upon P � κ and Q̇ � κ. We also assume

that the Pκ-names Ṡκ and χ̇κ are defined and satisfy that Ṡκ names a countable
basis for a second countable, Hausdorff topology on ω1 and χ̇κ names a coloring, as
in the definition of OCAARS , which is open with respect to the topology generated
by Ṡκ.

Recall that we want substantial symmetry for the poset Q̇κ. In the introduction
we mentioned, for example, that if GL × GR is generic for Pκ × Pκ, then we need
Q̇κ[GL] × Q̇κ[GR] to be c.c.c. in V [GL × GR]. In fact we need to handle not just

interpretations of Q̇κ by generics arising through powers of Pκ, but any combination
of generics arising through copies of Pκ in partition products based upon P � κ and
Q̇ � κ. We need to know that any product of such interpretations is c.c.c. In other

words, we need to construct Q̇κ in such a way that any partition product based
upon P � (κ+ 1) and Q̇ � (κ+ 1) is c.c.c.

We will inductively assume:

Assumption 4.1(b) Any partition product based upon P � κ and Q̇ � κ is c.c.c.

We refer to the conjunction of Assumption 4.1(a) and 4.1(b) as Assumption 4.1.

Our basic step goal then is to construct, under Assumption 4.1, a Pκ-name Q̇κ
which secures Assumption 4.1(b) at κ + 1. In this section we make a series of
reductions to streamline and simplify this goal. We will complete the basic step
construction in Section 5, and in Section 6 we will use this as part of an inductive
construction of a sequence P which provides the right building blocks for our main
theorem.

4.1. κ-Suitable Collections. We now consider how various copies of Pκ fit into a
partition product R, where R is based upon P � κ and Q̇ � κ. Even though we have

yet to construct the name Q̇κ, we would still like to isolate the relevant behavior of
copies of Pκ inside such an R which these copies would have if R were of the form

R = R∗ � {ξ ∈ dom(R∗) : index(ξ) < κ} ,

for some partition product R∗ based upon P � (κ + 1) and Q̇ � (κ + 1). Put
differently, we need a mechanism to enforce that the copies of Pκ behave like they
would after we construct Q̇κ. This leads to the following definition.
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Definition 4.2. Let R be a partition product with domain X based upon P � κ
and Q̇ � κ. Let {〈Bι, ψι〉 : ι ∈ I} be a set of pairs, where each Bι ⊆ X is base-closed
and where ψι : ρκ −→ Bι is a bijection which embeds Pκ into R. We say that the
collection {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to R if

{〈Bι, ψι, κ〉 : ι ∈ I} ∪ {〈b(ξ), πξ, index(ξ)〉 : ξ ∈ X}
is a coherent set of R-shadow bases.

Moreover, if (R,B) is an enriched partition product, we say that {〈Bι, ψι〉 : ι ∈ I}
is κ-suitable with respect to (R,B) if {〈Bι, ψι, κ〉 : ι ∈ I} ⊆ B and if α ≤ κ for all
〈x, πx, α〉 ∈ B.

The remaining results in this subsection will develop in detail a number of tech-
nical properties of κ-suitable collections. The main point to keep in mind is that
in a κ-suitable collection, any two copies of Pκ agree on some initial segment of Pκ
and are disjoint afterwards. In the later construction of preassignments (see Lemma
5.4) this allows a natural induction on the “height” of the collection, namely, the
maximal such agreement.

As the next lemma shows, κ-suitable collections give us subsets which cohere with
the original partition product, since the indices of the triples in the enrichment do
not exceed κ.

Lemma 4.3. Suppose that {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an en-
riched partition product (R,B). Then for any I0 ⊆ I,

⋃
ι∈I0 Bι coheres with (R,B).

Proof. Let 〈x, πx, α〉 ∈ B, and suppose that there exists ζ ∈ (
⋃
ι∈I0 Bι) ∩ x. Fix

some ι ∈ I0 such that ζ ∈ Bι ∩ x. Then 〈Bι, ψι, κ〉 is in B. Furthermore, α ≤ κ, by
definition of κ-suitability with respect to (R,B). Since B is coherent, by definition
of an enrichment, and since α ≤ κ, we have by Definition 3.2 that

πx[π−1
x (ζ)] ⊆ ψι[ψ−1

ι (ζ)].

Since ran(ψι) = Bι, this finishes the proof. �

We will often be interested in the following strengthening of the notion of an
embedding, one which preserves the κ-suitable structure.

Definition 4.4. Let R and R∗ be two partition products, and let S = {〈Bι, ψι〉 : ι ∈ I}
and S∗ =

{
〈B∗η , ψ∗η〉 : η ∈ I∗

}
be κ-suitable collections with respect to R and R∗

respectively. An embedding σ of R into R∗ is said to be (S,S∗)-suitable if for each
ι ∈ I, there is some η ∈ I∗ such that σ � Bι isomorphs R � Bι onto R∗ � B∗η and
ψ∗η = σ ◦ ψι. A collection F of embeddings is said to be (S,S∗)-suitable if each
σ ∈ F is (S,S∗)-suitable.

If σ is (S,S∗)-suitable, we let hσ denote the map from I into I∗ such that
η = hσ(ι) witnesses suitability at ι, for each ι ∈ I.

The following technical lemmas will be used in the next section.

Lemma 4.5. Suppose that {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an en-
riched partition product (R,B) and that the elements of {Bι : ι ∈ I} are pairwise
disjoint. Then for any 〈x, πx, α〉 ∈ B, x ∩ (

⋃
ι∈I Bι) = x ∩Bι0 for a unique ι0 ∈ I.

Proof. Suppose otherwise, and fix 〈x, πx, α〉 ∈ B as well as distinct ι0, ι1 ∈ I such
that x ∩ Bι0 6= ∅ and x ∩ Bι1 6= ∅. Let ζ ∈ x ∩ Bι0 and η ∈ x ∩ Bι1 . Then ζ 6= η,
since Bι0 ∩ Bι1 = ∅. Define ζ0 := π−1

x (ζ) and η0 := π−1
x (η). Since ζ0 6= η0, we
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suppose, by relabeling if necessary, that ζ0 < η0. By definition of an enrichment,
we know that 〈Bι1 , ψι1 , κ〉 and 〈x, πx, α〉 cohere, and since α ≤ κ and η ∈ Bι1 ∩ x,
we conclude that πx[η0] ⊆ Bι1 . However, ζ0 < η0, and so ζ = πx(ζ0) ∈ πx[η0],
which implies that ζ ∈ Bι1 . This contradicts the fact that Bι0 ∩Bι1 = ∅. �

The next lemma gives a sufficient condition for creating an enrichment. It will be
used as part of the base case of the main lemma which constructs preassignments
(see Lemma 5.4), in which the κ-suitable collection is isomorphic to a product (i.e.,
there is no overlap between the various copies of Pκ in the κ-suitable collection).

Lemma 4.6. Suppose that S = {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an
enriched partition product (R,B) and that the elements of {Bι : ι ∈ I} are pair-
wise disjoint. Suppose further that R∗ is a partition product with domain X∗

and that S∗ =
{
〈B∗η , ψ∗η〉 : η ∈ I∗

}
is κ-suitable with respect to R∗. Finally, set

X̂ :=
⋃
ι∈I Bι, and suppose that there exists a finite collection F of (S,S∗)-suitable

embeddings of R � X̂ into R∗ such that for any distinct ι0, ι1 ∈ I and any (not
necessarily distinct) π0, π1 ∈ F ,

B∗hπ0
(ι0) ∩B

∗
hπ1

(ι1) = ∅,

where for each π ∈ F , hπ is the associated map from Definition 4.4. Then

B∗ :=
{
〈b∗(ξ), π∗ξ , index∗(ξ)〉 : ξ ∈ X∗

}
∪
⋃
π∈F

π
(
B � X̂

)
∪
{
〈B∗η , ψ∗η , κ〉 : η ∈ I∗

}
is an enrichment of R∗ and S∗ is κ-suitable with respect to (R∗,B∗).

Proof. We will first show that
⋃
π∈F π

(
B � X̂

)
is a coherent collection of R∗-shadow

bases. Since each π ∈ F is an embedding of R � X̂ into R∗, Lemma 3.15 implies
that this is a set of R∗-shadow bases. Thus we check coherence.

Fix π0, π1 ∈ F and 〈x, πx, α〉, 〈y, πy, β〉 ∈ B � X̂, and assume, by relabeling if
necessary, that α ≤ β. We show that 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 cohere, where
x∗ := π0[x] and πx∗ := π0 ◦ πx, and where y∗ := π1[y], πy∗ := π1 ◦ πy. By

Lemma 4.5, and since x and y are subsets of X̂, we may fix ι0, ι1 ∈ I such that
x = x ∩ X̂ = x ∩Bι0 and y = y ∩ X̂ = y ∩Bι1 . There are two cases.

First suppose that ι0 6= ι1. Then we must have that x∗ ∩ y∗ = ∅. To see this,
observe that

x∗ = π0[x] = π0[x ∩Bι0 ] ⊆ B∗hπ0
(ι0),

and

y∗ = π1[y] = π1[y ∩Bι1 ] ⊆ B∗hπ1 (ι1).

Therefore x∗ ∩ y∗ = ∅, as B∗hπ0
(ι0) ∩B

∗
hπ1

(ι1) = ∅, by assumption. We thus trivially

have the coherence of 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 in this case.
On the other hand, suppose that ι := ι0 = ι1. Define a ⊆ x to be the largest

initial segment (see Definition 3.4) of 〈x, πx, α〉 on which π0 and π1 agree, and
set a∗ := π0[a] = π1[a]. In order to see that 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 cohere,
it suffices, in light of Lemma 3.16, to show that π0[x\a] is disjoint from π1[y\a].
Towards this end, fix some ζ∗ ∈ x∗ ∩ y∗, and suppose for a contradiction that
ζ∗ /∈ a∗. Define µx := π−1

x∗ (ζ∗), and observe that µx is greater than the ordinal
π−1
x [a], since ζ∗ /∈ a∗. Using the abbreviation ηi := hπi(ι), for i ∈ {0, 1}, we see

that ζ∗ ∈ B∗η0
∩ B∗η1

, as x∗ = π0[x ∩ Bι] ⊆ B∗η0
, and as y∗ = π1[y ∩ Bι] ⊆ B∗η1

.
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Set ζ0 := (ψ∗η0
)−1(ζ∗). Since the R∗-shadow bases 〈B∗η0

, ψ∗η0
, κ〉 and 〈B∗η1

, ψ∗η1
, κ〉

cohere, Corollary 3.8 implies that ψ∗η0
� (ζ0 + 1) = ψ∗η1

� (ζ0 + 1).
Now we observe that

πx∗(µx) = π0(πx(µx)) = ζ∗ = ψ∗η0
(ζ0) = π0(ψι(ζ0)),

and therefore πx(µx) = ψι(ζ0). Let us call this ordinal ζ. Since ζ ∈ Bι ∩ x, the
coherence of 〈x, πx, α〉 with 〈Bι, ψι, κ〉 and the fact that α ≤ κ imply that

πx[µx + 1] ⊆ ψι[ζ0 + 1].

As noted above, ψ∗η0
� (ζ0 +1) = ψ∗η1

� (ζ0 +1), and since ψ∗ηi = πi ◦ψι by Definition
4.4, π0 and π1 agree on ψι[ζ0 + 1]. In particular, they agree on πx[µx + 1]. Thus
πx[µx + 1] is an initial segment of 〈x, πx, α〉 on which π0 and π1 agree. Since
ζ = πx(µx) /∈ a, this contradicts the maximality of a.

At this point, we have shown that
⋃
π∈F π

(
B � X̂

)
is a coherent collection of

R∗-shadow bases. We introduce the abbreviation

B∗0 :=
{
〈b∗(ξ), π∗ξ , index∗(ξ)〉 : ξ ∈ X∗

}
∪
{
〈B∗η , ψ∗η , κ〉 : η ∈ I∗

}
.

We know that B∗0 is a coherent set of R∗-shadow bases, by the definition of κ-
suitability. Therefore, to finish showing that B∗ is an enrichment of R∗, we now
check that if 〈y, πy, β〉 ∈ B∗0 , π ∈ F , and 〈x, πx, α〉 ∈ B � X̂, then 〈y, πy, β〉 and
〈x∗, πx∗ , α〉 cohere, where x∗ := π[x] and πx∗ = π ◦ πx. By Lemma 4.5, let ι ∈ I be

such that x = x∩ X̂ = x∩Bι. Then x∗ = π[x] = π[x∩Bι] ⊆ B∗hπ(ι). Now 〈x, πx, α〉
and 〈Bι, ψι, κ〉 cohere, and moreover, π isomorphs R � Bι onto R∗ � B∗hπ(ι) and

satisfies that ψ∗hπ(ι) = π ◦ψι. It is straightforward to see from this that 〈x∗, πx∗ , α〉
and 〈B∗hπ(ι), ψ

∗
hπ(ι), κ〉 cohere. However, 〈y, πy, β〉 and 〈B∗hπ(ι), ψ

∗
hπ(ι), κ〉 also cohere,

by definition of κ-suitability. Since α, β ≤ κ, Lemma 3.10 therefore implies that
〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere, which is what we wanted to show. �

We note that the final case in the proof of Lemma 4.6 makes use of Lemma 3.10,
and through this the first essential use of the Collapse condition (3) of Definition
2.11.

4.2. What Suffices: Finitely Generated Partition Products. Given a (pos-
sibly partial) 2-coloring χ on ω1 and a function f from ω1 into {0, 1}, we use
Q(χ, f) to denote the poset to decompose ω1 into countably-many χ-homogeneous
sets which respect the function f . More precisely, a condition is a finite partial
function q with dom(q) ⊆ ω such that for each n ∈ dom(q), q(n) is a finite subset of
ω1 on which f is constant, say with value i, and q(n) is χ-homogeneous with color
i, meaning that if x, y ∈ q(n) and 〈x, y〉 ∈ dom(χ), then χ(x, y) = i. The ordering
is q1 ≤ q0 iff dom(q0) ⊆ dom(q1), and for each n ∈ dom(q0), q0(n) ⊆ q1(n). This
forcing was introduced and extensively analyzed in [1].

Following [1], we refer to any such f as a preassignment of colors. Our main goal

in this section is to come up with a Pκ-name ḟ for a particularly nice preassignment
of colors for χ̇κ, in the following sense:

Proposition 4.7. There is a Pκ-name ḟ for a preassignment of colors so that for
any partition product R based upon P � κ and Q̇ � κ, any generic G for R, and any
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finite collection {〈Bι, ψι〉 : ι ∈ I} which is κ-suitable with respect to R, the poset∏
ι∈I

Q
(
χ̇κ
[
ψ−1
ι (G � Bι)

]
, ḟ
[
ψ−1
ι (G � Bι)

])
is c.c.c. in V [G].

Remark 4.8. Observe that in the previous proposition, the same name ḟ is in-
terpreted in a variety of ways, namely, by various generics for Pκ added by forcing
with R. Moreover, ḟ is strong enough that the product of the induced homogeneous
set posets is c.c.c. This is what we mean by referring to the name as “symmetric.”

Corollary 4.9. Let ḟκ be a name witnessing Proposition 4.7, and set Q̇κ to be
the Pκ-name Q(χ̇κ, ḟκ). Then any partition product based upon P � (κ + 1) and

Q̇ � (κ+ 1) is c.c.c.

Proof of Corollary 4.9. Let R be a partition product based upon P � (κ + 1) and

Q̇ � (κ+ 1), and let X be the domain of R. Set X̂ := {ξ ∈ X : index(ξ) < κ}, and
let I := {ξ ∈ X : index(ξ) = κ}. By Lemma 2.26, R is isomorphic to

(R � X̂) ∗
∏
ξ∈I

Q̇κ
[
π−1
ξ

(
Ġ � b(ξ)

)]
,

and R � X̂ is a partition product based upon P � κ and Q̇ � κ. By Assumption

4.1, R � X̂ is c.c.c. It is also straightforward to check that {〈b(ξ), πξ〉 : ξ ∈ I} is
κ-suitable, by the definition of R as a partition product based upon P � (κ + 1)

and Q̇ � (κ + 1). Finally, from Proposition 4.7, we know each finitely-supported
subproduct of ∏

ξ∈I

Q̇κ
[
π−1
ξ (G � b(ξ))

]
is c.c.c. in V [G � X̂], and hence the entire product is c.c.c. Since R � X̂ is c.c.c. in
V , this finishes the proof. �

As mentioned in the introductory remarks for this section, we will prove Propo-
sition 4.7 by working backwards through a series of reductions; the final proof of
Proposition 4.7 occurs in Subsection 5.2. We first want to see what happens if
a finite product

∏
l<mQ(χl, fl) is not c.c.c., where each χl is an open coloring

on ω1 with respect to some second countable, Hausdorff topology τl on ω1 and
fl : ω1 −→ {0, 1} is an arbitrary preassignment. The specific reductions at this
stage are very similar to those of [1].

Thus fix a sequence 〈τl : l < m〉 of second countable, Hausdorff topologies on
ω1 with respective open colorings 〈χl : l < m〉 and preassignments 〈fl : l < m〉.
Recalling the notational remarks at the end of the introduction, let us define τ :=⊎
τl, a topology on X :=

⊎
l<m ω1, as well as f :=

⊎
fl and χ :=

⊎
χl. So, for

example, if x ∈ X, then f(x) = fl(x), where l is unique s.t. x is in the lth copy
of ω1, and if x, y ∈ X then χ(x, y) is defined iff x and y are distinct and belong
to the same copy of ω1, say the lth, and in this case, χ(x, y) = χl(x, y). With this
notation, we may view a condition in the product

∏
l<mQ(χl, fl) as a condition

in Q(χ, f). Note that χ is partial, and this is the only reason we allowed partial
colorings in the definition of Q(χ, f).
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Now suppose that
∏
l<mQ(χl, fl) has an uncountable antichain. Then we claim

that there exists an n < ω, an uncountable subset A of Xn and a closed (in Xn)
set F ⊇ A so that

(1) the function 〈x(0), . . . , x(n − 1)〉 7→ 〈f(x(0)), . . . , f(x(n − 1))〉 is constant
on A, say with value d ∈ 2n. Abusing notion we also denote this function
by f ;

(2) no two tuples in A have any elements in common;
(3) for every distinct x, y ∈ F , there exists some i < n so that χ(x(i), y(i)) is

defined and χ(x(i), y(i)) 6= d(i).

To see that this is true, take an antichain of size ℵ1 in the product
∏
l<mQ(χl, fl),

and first thin it to assume that for each l, k all conditions contribute the same
number of elements to the kth homogeneous set for χl. Now viewing the elements
in the antichain as sequences arranging the members according to the coloring and
homogeneous set they contribute to, call the resulting set A. Let n be the length of
each sequence in A. We further thin A to secure (1). Next, thin A to become a ∆-
system, and note that by taking n to be minimal, we secure (2). Now observe that,
for each x ∈ A, if i < j < n and x(i) and x(j) are part of the same homogeneous
set for the same coloring χl, say with color c, then as χl is an open coloring, there
exists a pair of open sets Ui,j × Vi,j in τi × τj such that

〈x(i), x(j)〉 ∈ Ui,j × Vi,j ⊆ χ−1
l ({c}).

With this x still fixed, by intersecting at most finitely-many open sets around each
x(i), we may remove the dependence on coordinates j 6= i, and thereby obtain for
each i, an open set Ui around x(i) witnessing the values of χ. In particular, for any
i < j < n such that x(i) and x(j) are in the same homogeneous set for the same
coloring, say χl, we have

〈x(i), x(j)〉 ∈ Ui × Uj ⊆ χ−1
l ({c}),

where c = χl(x(i), x(j)). By using basic open sets, of which there are only countably-
many, we may thin A to assume that the sequence of open sets 〈Ui : i < n〉 is the
same for all x ∈ A. As a result of fixing these open sets, and since A is an antichain,
we see that (3) holds for the elements of A. Since χ is an open coloring, (3) also
hold for F , the closure of A in Xn.

Remark 4.10. The conditions in the previous paragraph are equivalent to the
existence of n < ω, d ∈ 2n, and a closed set F ⊆ Xn so that (i) for any distinct
x, y ∈ F , χ(x(i), y(i)) is defined for all i < n, and for some i < n, χ(x(i), y(i)) 6=
d(i); and (ii) for every countable z ⊆ X, there exists x ∈ F ∩ (X\z)n so that
f ◦ x = d. Indeed, it is immediate that (1)-(3) give (i) and (ii), and for the other
direction, iterate (ii) to obtain the uncountable set A.

Any F as in Remark 4.10 is a closed subset of a second countable space, and
so F is coded by a real. Thus if R is a partition product as in the statement of
Proposition 4.7, then any R-name Ḟ for such a closed set will only involve conditions
intersecting countably-many support coordinates, since R, by Assumption 4.1, is
c.c.c. This motivates the following definition and subsequent remark.

Definition 4.11. A partition product R with domain X, say, based upon P � κ
and Q̇ � κ is said to be finitely generated if there is a finite, κ-suitable collection
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{〈Bι, ψι〉 : ι ∈ I}, and a countable Z ⊆ X disjoint from
⋃
ι∈I Bι, such that

X = Z ∪
⋃
ξ∈Z

b(ξ) ∪
⋃
ι∈I

Bι.

In this case, we will refer to Z as the auxiliary part.

Note that in the above definition, it poses no loss of generality to assume that
Z is disjoint from

⋃
ιBι, since the Bι are base-closed.

Remark 4.12. Assuming the conclusion of Proposition 4.7 fails for a partition
product R, the discussion above produces the objects in Remark 4.10. In fact it
produces these objects for a finitely generated partition product which is a regular
suborder of R. To see this, simply take the suborder generated by the finitely-many
Bι’s and a countable auxiliary part large enough to give the real coding the closed
set F .

We further remark that Definition 4.11 refers implicitly to the following objects:
indexδ, baseδ, and ϕδ,µ for δ < κ, as well as Pκ, indexκ, baseκ, and ϕκ,µ, which are
needed in order to define a suitable collection.

We now define the notion of the “height” of the finite suitable collection, a
natural measure of how much the images of Pκ agree in the partition product. As
mentioned in the paragraph after Definition 4.2, the height will be one component
in our later inductive construction of preassignments (see Lemma 5.4).

Definition 4.13. Let (R,B) be a finitely-generated partition product with κ-
suitable collection S = {〈Bι, ψι〉 : ι ∈ I}. For each ι0 6= ι1 both in I, we define the
height of 〈Bι0 , Bι1〉, denoted ht(Bι0 , Bι1), to be equal to the ordinal ψ−1

ι0 [Bι0 ∩Bι1 ];

this also equals ψ−1
ι1 [Bι0 ∩Bι1 ] by Remark 3.9. We define the height of S, denoted

ht(S), to be the ordinal

max {ht(Bι0 , Bι1) : ι0, ι1 ∈ I ∧ ι0 6= ι1} .

We close this subsection with the following straightforward lemma.

Lemma 4.14. Let (P,B), (R,D), and σ be as in Lemma 3.18. Suppose that both
(P,B) and (R,D) are finitely generated and that (R∗,D∗) is the extension of (R,D)
by grafting (P,B) over σ. Then (R∗,D∗) is also finitely generated.

4.3. Counting Finitely Generated Partition Products. The main reason we
prefer to work with finitely generated partition products is that we are now able,
using the machinery developed up to this point, to carry out counting arguments.
More specifically, we can show that there are only ℵ1-many isomorphism types of
such partition products.

Lemma 4.15. Let M ≺ H(ω3) be countably closed with P � (κ + 1), Q̇ � κ ∈ M .

If R is a finitely generated partition product based upon P � κ and Q̇ � κ, then R is
isomorphic to a partition product which has domain an ordinal ρ below M ∩ ω2.

Proof. Fix such an M , and let R be a finitely generated partition product based
upon P � κ and Q̇ � κ, say with domain X. Let {〈Bm, ψm〉 : m < n} be the κ-
suitable collection and Z the auxiliary part, where we assume that Z is disjoint from
the union of the Bm. Let us enumerate Z as 〈ξk : k < ω〉 and set δk := index(ξk)
for each k < ω. Furthermore, we let πk be the rearrangement of Pδk associated to
base(ξk).
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We intend to apply Corollary 2.25, and so we define a sequence 〈τm : m < ω〉
of rearrangements of R and base-closed subsets 〈Dm : m < ω〉 of X. For each
m < n, set τm to be the rearrangement which first shifts the ordinals in X\Bm
past sup(Bm) and then acts as ψ−1

m on Bm. For each m ≥ n, say m = n + k, we
set τm to be the rearrangement which first shifts the ordinals in X\(b(ξk) ∪ {ξk})
past ξk and then acts as π−1

k on b(ξk) and sends ξk to ρδk . We set D0 := ∅,
Dm+1 :=

⋃
k≤mBk for m < n, and Dn+1+k := Dn ∪

⋃
l≤k(b(ξl) ∪ {ξl}) for k < ω.

By Corollary 2.25, let σ be a rearrangement of R so that ran(σ) is an ordinal ρ
and so that for each m < ω, σ[Dm] is an ordinal and τm ◦σ−1 is order-preserving on
σ[Dm+1\Dm]. We then see that ρ equals

∑
m<ω ot(σ[Dm+1\Dm]). However, if m <

n, then ot(σ[Dm+1\Dm]) is no larger than ρκ, and if m ≥ n, then ot(σ[Dm+1\Dm])
is no larger than ρδk + 1, where m = n+ k. Therefore

ρ =
∑
m<ω

ot(σ[Dm+1\Dm]) ≤ ρκ · n+
∑
k<ω

(ρδk + 1).

By the elementarity and countable closure of M , the ordinal on the right hand side
is an element of M ∩ ω2. Thus ρ ∈M ∩ ω2 since M ∩ ω2 is an ordinal. �

Lemma 4.16. Let M ≺ H(ω3) be countably closed containing P � (κ + 1), Q̇ � κ
and ~ϕ as members. If R is a finitely generated partition product based upon P � κ
and Q̇ � κ, then R is isomorphic to a partition product which belongs to M , as well
as the transitive collapse of M .

Lemma 4.16 is the counting argument that we mentioned earlier in the paper,
and it relies on the Hull and Closure conditions (1) and (2) of Definition 2.11. These
conditions come in through the use of Remark 3.3 and Lemma 3.7.

Proof. Let M be fixed as in the statement of the lemma, and let R be finitely
generated. Let {〈Bk, ψk〉 : k < n} be the κ-suitable collection and Z the auxiliary
part associated to R. By Lemma 4.15, we may assume that R is a partition product
on some ordinal ρ and that ρ ∈M ∩ ω2. Since M ∩ ω2 is an ordinal, ρ ⊆M . Then
Z ⊆M , and so by the countable closure of M , Z is a member of M . Hence by the
elementarity and countable closure of M , setting δξ := index(ξ) for each ξ ∈ Z, the
sequence 〈δξ : ξ ∈ Z〉 is in M .

Now fix k < n and ξ ∈ Z, and note that by Remark 3.3, since δξ and κ are

in M , ψ−1
k [Bk ∩ b(ξ)] is in M . Next consider the relation in µ, ν which holds iff

πξ(µ) = ψk(ν), and observe that by Lemma 3.7, this holds iff ν is the µth element

of ψ−1
k [Bk ∩ b(ξ)]. Therefore, this relation is a member of M . By the countable

closure of M , the relation in ξ, k, µ, ν which holds iff πξ(µ) = ψk(ν) is in M too.
Similarly, the relation (in ξ, ζ, µ, ν) which holds iff πξ(µ) = πζ(ν) and the relation
(in k, l, µ, ν) which holds iff ψk(µ) = ψl(ν) are also in M .

We now apply the elementarity ofM to find a finitely generated partition product
R∗ with domain ρ which has the following properties, where base∗ and index∗ denote
the functions supporting R∗:

(1) R∗ has κ-suitable collection {〈B∗k , ψ∗k〉 : k < n} and auxiliary part Z; more-
over, for each ξ ∈ Z, index∗(ξ) = δξ;

(2) for each µ, ν < ρ and each ξ, ζ ∈ Z, πξ(µ) = πζ(ν) iff π∗ξ (µ) = π∗ζ (ν), and

similarly with one of the ψk (resp. ψ∗k) replacing one or both of the πi (resp.
π∗i ).
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It is also straightforward to see that R∗ is a member of the transitive collapse of
M , as it is an iteration of length below M ∩ ω2 of posets of size ≤ ℵ1, and hence is
not moved by the transitive collapse map.

We now define a bijection σ : ρ −→ ρ which will be the rearrangement witnessing
that R and R∗ are isomorphic. Set σ(α) = β iff α = β are both in Z; or for
some ξ ∈ Z, α = πξ(µ) and β = π∗ξ (µ); or for some k < n, α = ψk(µ) and

β = ψ∗k(µ). By (2), we see that σ is well-defined, i.e., there is no conflict when some
of these conditions overlap. It is also straightforward to see that σ is an acceptable
rearrangement of R and in fact, σ (base) = base∗ and σ (index) = index∗, so that
σ is an isomorphism from R onto R∗. �

Recall that we are assuming the CH holds (Assumption 4.1). Thus for the rest of
Section 4, we fix a countably closed M ≺ H(ω3) satisfying the conclusion of Lemma
4.16 such that |M | = ℵ1. We write M =

⋃
γ<ω1

Mγ , for a continuous, increasing
sequence of elementary, countable Mγ , such that the relevant parameters are in
M0.

Remark 4.17. The crucial use of the CH in the paper is to fix the model M . We
will use the decomposition M =

⋃
γ<ω1

Mγ to partition a tail of ω1 into the slices

[Mγ ∩ω1,Mγ+1∩ω1). We will show that it suffices to define the preassignment one
slice at a time, with the values of the preassignment on one slice independent of
the others. As Lemma 4.19 below shows, the preassignment restricted to the slice
[Mγ ∩ ω1,Mγ+1 ∩ ω1) only needs to anticipate “partition product names” which
are members of Mγ . This idea that the preassignment need only work in the above
slices goes back to Lemma 3.2 of [1]. Furthermore, the proof of our Lemma 4.18 is
more or less the same as Lemma 3.2 of [1]; we are simply working in slightly greater
generality in order to analyze products of posets rather than just a single poset.

4.4. Further Reductions. In this subsection we make our final reduction in
preparation for the basic step construction in Section 5. We formulate a concrete
condition on the preassignment name ḟ which implies that ḟ satisfies Proposition
4.7.

We recall that Ṡκ names a countable basis for a second countable, Hausdorff
topology on ω1 and that χ̇κ names a coloring from [ω1]2 into 2 which is continuous

with respect to the topology generated by Ṡκ.

Lemma 4.18. Suppose that ḟ is a Pκ-name for a function from ω1 into {0, 1}
which satisfies the following: for any finitely generated partition product R, with
κ-suitable collection {〈Bι, ψι〉 : ι ∈ I} and auxiliary part Z, say, all of which are
in M ; for every γ sufficiently large so that R, the κ-suitable collection, and Z are
in Mγ ; for any R-name Ḟ in Mγ for a set of n-tuples in X :=

⊎
ι∈I ω1, which is

closed in
(⊎

ι Ṡκ[ψ−1
ι (Ġ � Bι)]

)n
; for any generic G for R; and for any x with

x ∈ Ḟ [G] ∩ (Mγ+1[G]\Mγ [G])n,

there exist pairwise distinct tuples y, y′ in Ḟ [G]∩Mγ [G] so that for every i < n and
ι ∈ I, if x(i) is in the ι-th copy of ω1, then so are y(i) and y′(i), and

χ̇κ[ψ−1
ι (G � Bι)](y(i), y′(i)) = ḟ [ψ−1

ι (G � Bι)](x(i)).

Then ḟ satisfies Proposition 4.7.
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Proof. Let ḟ be as in the statement of the lemma, and suppose that ḟ failed to
satisfy Proposition 4.7. By Remarks 4.10 and 4.12 there exist a finitely generated
partition product R, a condition p ∈ R, an integer n < ω, a sequence d ∈ 2n, and an
R-name for a closed set Ḟ of n-tuples such that p forces that these objects satisfy
Remark 4.10. We may assume that R ∈M by Lemma 4.16. Since M is countably
closed and contains R, and since R is c.c.c. (by Assumption 4.1), we know that the

name Ḟ belongs to M too. Thus we may find some γ < ω1 such that Ḟ and all
other relevant objects are in Mγ .

Now let G be a generic for R containing the condition p. Let S :=
⊎
ι Ṡκ[ψ−1

ι (G �
Bι)], let f :=

⊎
ι ḟ [ψ−1

ι (G � Bι)], and let χ :=
⊎
ι χ̇κ[ψ−1

ι (G � Bι)]. By (ii)
of Remark 4.10, we may find some x ∈ F ∩ (X\Mγ [G])n, so that f ◦ x = d,

where F := Ḟ [G]. We now want to consider how the models 〈Mβ : γ ≤ β < ω1〉
separate the elements of x, and then we will apply the assumptions of the lemma
to each β ∈ [γ, ω1) such that Mβ+1[G]\Mβ [G] contains an element of x. Indeed,
consider the finite set a of β ∈ [γ, ω1) such that x contains at least one element in
Mβ+1[G]\Mβ [G], and let 〈γk : k < l〉 be the increasing enumeration of a. Further,
let xk, for each k < l, be the restriction of x to the set ek of i < n so that x(i) is
inside Mγk+1[G]\Mγk [G].

We now work downwards from l to define a sequence of formulas 〈ϕk : k ≤ l〉. We
will maintain as recursion hypotheses that if 0 ≤ k < l, then (i) ϕk+1(x0, . . . , xk) is
satisfied, and that (ii) the parameters of ϕk+1 are in Mγ0

[G]. Recall ek = dom(xk).
Let ϕl(u0, . . . , ul−1) state that u0 ∪ · · · ∪ ul−1 ∈ F ∧

∧
k<l dom(uk) = ek; then (i)

and (ii) are satisfied. Now suppose that 0 ≤ k < l and that ϕk+1 is defined. Let Fk
be the closure of the set of all tuples u such that ϕk+1(x0, . . . , xk−1, u) is satisfied.
By (ii) and the fact that x0 ∪ · · · ∪ xk−1 ∈ Mγk [G], we see that Fk is in Mγk [G].
Furthermore, xk ∈ Fk. Therefore, by the assumptions of the lemma, we may find
pairwise distinct tuples vk,L, vk,R in Mγk [G]∩Fk, with the same domain as xk, such
that for every i ∈ dom(xk) and ι ∈ I, if xk(i) is in the ι-th copy of ω1, then so are
vk,L(i) and vk,R(i), and

χ̇κ[ψ−1
ι (G � Bι)](vk,L(i), vk,R(i)) = ḟ [ψ−1

ι (G � Bι)](xk(i)).

For each such i, fix a pair of disjoint, basic open sets Ui, Vi from Ṡκ[ψ−1
ι (G � Bι)]

witnessing this coloring statement. By definition of Fk, we may find two further
tuples uk,L, uk,R such that for each Z ∈ {L,R}, ϕk+1(x0, . . . , xk−1, uk,Z) is satisfied,
and such that the pair 〈uk,L(i), uk,R(i)〉 is in Ui × Vi. Now define ϕk(u0, . . . , uk−1)
to be the following formula:

∃wk,L, wk,R

 ∧
Z∈{L,R}

ϕk+1(u0, . . . , uk−1, wk,Z) ∧
∧
i

(
〈wk,L(i), wk,R(i)〉 ∈ Ui × Vi

) .

Then (i) is satisfied, and since the only additional parameters are the basic open
sets Ui and Vi, (ii) is also satisfied.

This completes the construction of the sequence 〈ϕk : k ≤ l〉. Now using the
fact that the sentence ϕ0 is true and has only parameters in Mγ0

, we may work
our way upwards through the sequence ϕ0, ϕ1, . . . , ϕl in order to find two tuples
xL, xR of the same length as x such that xL, xR ∈ F , and such that for each i < n,
〈xL(i), xR(i)〉 ∈ Ui × Vi. In particular, for each i < n,

χ̇κ[ψ−1
ι (G � Bι)](xL(i), xR(i)) = ḟ [ψ−1

ι (G � Bι)](x(i)),



30 THOMAS GILTON AND ITAY NEEMAN

where ι is such that x(i) is in the ι-th copy of ω1. However, recalling Remark 4.10
and the assumptions about the condition p, this contradicts the fact that f ◦x = d,
and that there is some i < n so that χ(xL(i), xR(i)) 6= d(i). �

The following lemma gives a nice streamlining of the previous one and uses any
collection U̇ of n-tuples in ω1 in the hypothesis, not just collections Ḟ which are
closed in the appropriate topology. The greater generality in the hypothesis here
is only apparent, as we can always take closures and obtain, because the colorings
are open, the general hypothesis from its restriction to closed sets. However, it
is technically convenient to forget the topology in stating the lemma. Also, as a
matter of notation, for each γ < ω1, we fix an enumeration 〈νγ,n : n < ω〉 of the
slice [Mγ ∩ ω1,Mγ+1 ∩ ω1).

Lemma 4.19. Suppose that ḟ is a Pκ-name for a function from ω1 into {0, 1}
satisfying the following: for any finitely generated partition product R, say with
κ-suitable collection {〈Bι, ψι〉 : ι ∈ I} and auxiliary part Z, all of which are in M ;
for any γ sufficiently large such that Mγ contains R, {〈Bι, ψι〉 : ι ∈ I}, and Z; for

any l < ω; for any R-name U̇ in Mγ for a set of l-tuples in ω1; and for any generic

G for R, if 〈νγ,0, . . . , νγ,l−1〉 ∈ U̇ [G], then there exist pairwise distinct l-tuples ~µ, ~µ′

in Mγ [G] ∩ U̇ [G] so that for all k < l and all ι ∈ I,

χ̇κ[ψ−1
ι (G � Bι)](µk, µ

′
k) = ḟ [ψ−1

ι (G � Bι)](νγ,k).

Then ḟ satisfies the assumptions of Lemma 4.18 and hence the conclusion of Propo-
sition 4.7.

Proof. We want to first observe that Lemma 4.18 follows from its restriction to
sequences z which are bijections from some n < ω onto

⊎
ι {νγ,l : l < m}, for some

m < ω. Towards this end, fix Ḟ , G, and a tuple x ∈ Ḟ [G] as in the statement of
Lemma 4.18. First, if x is not such a surjection, we may add additional coordinates
to x to form a sequence x′ which is a surjection onto

⊎
ι {νγ,l : l < m}, for some

m < ω. Then we define the name Ḟ ′ as the product of Ḟ with the requisite, finite
number of copies of ω1, so that x′ is a member of Ḟ ′[G]. Second, if x′ contains
repetitions, then we make the necessary shifts in x′ to eliminate the repetitions
and call the resulting sequence x′′. We then consider the name Ḟ ′′ of all tuples
from Ḟ ′ which have the same corresponding shifts in their tuples as x′′. Ḟ ′′ still
names a closed set and is still an element of Mγ . Thus x′′ ∈ Ḟ ′′[G], and x′′ is a
bijection from some integer onto

⊎
ι {νγ,l : l < m}, for some m < ω. By applying

the restricted version of Lemma 4.18 to x′′ and Ḟ ′′, we see that the desired result
holds for x and Ḟ .

To verify Lemma 4.18, fix Ḟ , a generic G, and a sequence x ∈ Ḟ [G] as in
the statement thereof, where we assume that x is a bijection from some n onto⊎
ι {νγ,l : l < m}, for some m < ω. Define U̇ to be the R-name for the set of all

tuples ~ξ = 〈ξ0, . . . , ξm−1〉 in ω1 such that ~ξ concatenated with itself |I|-many times

is an element of Ḟ , noting that U̇ is still a member of Mγ . Since x is a bijection

as described above, 〈νγ,0, . . . , νγ,m−1〉 ∈ U̇ [G]. Now apply the assumptions in the
statement of the current lemma to find two pairwise distinct m-tuples ~µ, ~µ′ in
Mγ [G] ∩ U̇ [G] so that for all l < m and ι ∈ I,

χ̇κ[ψ−1
ι (G � Bι)](µl, µ

′
l) = ḟ [ψ−1

ι (G � Bι)](νγ,l).
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Let y be the |I|-fold concatenation of ~µ with itself, and let y′ be defined similarly

with respect to ~µ′. Then as ~µ, ~µ′ ∈ U̇ [G], we have y, y′ are in Ḟ [G]. And since
~µ, ~µ′ satisfy the appropriate coloring requirements, we have that y and y′ satisfy
the conclusion of Lemma 4.18. �

Lemma 4.19 gives a sufficient condition for Proposition 4.7, and it thus implies
that any partition product based upon P � (κ + 1) and Q̇ � (κ + 1) is c.c.c. In the

next section, we consider how to obtain a Pκ-name ḟ as in Lemma 4.19.

5. Constructing Preassignments

In this section, which forms the technical heart of the paper, we show how to
obtain a Pκ-name ḟ satisfying the assumptions of Lemma 4.19. In light of Remark
4.17 and Lemma 4.19, it suffices to define the name ḟ separately for each of its
restrictions to the slices [Mγ ∩ ω1,Mγ+1 ∩ ω1), and so let γ < ω1 be fixed for the
remainder of this section. To simplify notation, we drop the γ-subscript from the
enumeration 〈νγ,n : n < ω〉 of [Mγ ∩ ω1,Mγ+1 ∩ ω1), preferring instead to simply

write 〈νn : n < ω〉. We note that the values of ḟ on the countable ordinal M0 ∩ ω1

are irrelevant, by Remark 4.10.

5.1. Canonical Color Names and the Partition Product Preassignment
Property. In order to define the name ḟ , we recursively specify the Pκ-name
equal to ḟ(νk), which we call ȧk. Each ȧk will be a canonical name, which we view
as a function from a maximal antichain in Pκ into {0, 1}. We refer to these more
specifically as canonical color names. By a partial canonical color name we mean a
function from an antichain in Pκ, possibly not maximal, into {0, 1}. When viewing
such functions as names ȧ, we say that ȧ[G], where G is generic for Pκ, is defined
and equal to i if there is some p ∈ G which belongs to the domain of the function
ȧ and gets mapped to i. The upcoming definition isolates exactly what we need.

Definition 5.1. Suppose that ȧ0, . . . , ȧl−1 are partial canonical color names. We
say that they have the partition product preassignment property at γ if for every
finitely generated partition product R with κ-suitable collection {〈Bι, ψι〉 : ι ∈ I},
say, all of which are in Mγ ; for every R-name U̇ ∈ Mγ for a collection of l-tuples

in ω1; and for every generic G for R, the following holds: if 〈ν0, . . . , νl−1〉 ∈ U̇ [G],

then there exist two pairwise distinct tuples ~µ, ~µ′ ∈ U̇ [G]∩Mγ [G] so that for every
ι ∈ I and k < l, if ȧk[ψ−1

ι (G � Bι)] is defined, then

χ̇κ[ψ−1
ι (G � Bι)](µk, µ

′
k) = ȧk[ψ−1

ι (G � Bι)].

Definition 5.2. In the context of Definition 5.1, we say that two sequences ~µ and
~µ′ of length l match ȧ0, . . . , ȧl−1 at ι with respect to G, or match at Bι with respect
to G if for every k < l such that ȧk[ψ−1

ι (G � Bι)] is defined,

χ̇κ[ψ−1
ι (G � Bι)](µk, µ

′
k) = ȧk[ψ−1

ι (G � Bι)].

We say that two sequences ~µ and ~µ′ match ȧ0, . . . , ȧl−1 on I with respect to G if
for every ι ∈ I, ~µ and ~µ′ match ȧ0, . . . , ȧl−1 at ι with respect to G. If the filter G is
clear from context, we drop the phrase “with respect to G.” Furthermore, we will
often want to avoid talking about the index set I explicitly, and so we will also say
that ~µ, ~µ′ match ȧ0, . . . , ȧl−1 on S := {〈Bι, ψι〉 : ι ∈ I}, if for each 〈B,ψ〉 ∈ S, we
have that ~µ, ~µ′ match ȧ0, . . . , ȧl−1 at B.
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To show that there exists a name ḟ satisfying the assumptions of Lemma 4.19,
and which thereby satisfies Proposition 4.7, we recursively construct the sequence
〈ȧk : k < ω〉 in such a way that for each l < ω, ȧ0, . . . , ȧl−1 have the partition
product preassignment property at γ. More precisely, we show that if ȧ0, . . . , ȧl−1

are total canonical color names with the partition product preassignment property
at γ, then there is a total name ȧl so that ȧ0, . . . , ȧl have the partition product
preassignment property at γ.

For this in turn it is enough to prove that if ȧ0, . . . , ȧl−1 are total canonical color
names, ȧl is a partial canonical color name, ȧ0, . . . , ȧl have the partition product
preassignment property at γ, and p ∈ Pκ is incompatible with all conditions in the
domain of ȧl, then there exist p∗ ≤Pκ p and c ∈ {0, 1} so that ȧ0, . . . , ȧl ∪ {p∗ 7→ c}
have the partition product preassignment property at γ. By a transfinite iteration

of this process we can construct a sequence of names ȧξl with increasing domains,
continuing until we reach a name whose domain is a maximal antichain. This final
name is then total.

To prove the “one condition” extension above, we assume that it fails with c = 0
and prove that it then holds with c = 1. Our assumption is the following:

Assumption 5.3. ȧ0, . . . , ȧl−1 are total canonical color names, ȧl is partial, ȧ0, . . . , ȧl
have the partition product preassignment property at γ, p ∈ Pκ is incompatible with
all conditions in dom(ȧl), but for every p∗ ≤Pκ p, ȧ0, . . . , ȧl∪{p∗ 7→ 0} do not have
the partition product preassignment property at γ.

Our goal is to show that ȧ0, . . . , ȧl ∪ {p 7→ 1} do have the partition product
preassignment property at γ. The following lemma is the key technical result
which allows us to prove that p 7→ 1 works in this sense and thereby continue
the construction of the name ȧl. We note that the lemma is stated in terms of
enriched partition products; the enrichments are used to propagate the induction
hypothesis needed for its proof. After the statement of the lemma, and before its
proof, we make a few remarks about the structure of the proof.

Lemma 5.4. Let (R,B) be an enriched partition product with domain X which is
finitely generated by a κ-suitable collection S = {〈Bι, ψι〉 : ι ∈ I} and auxiliary part
Z, all of which belong to Mγ . Let p̄ be a condition in R, and let ~ν := 〈ν0, . . . , νl〉.
Finally, let S̄ ⊆ S be non-empty. Then there exist the following objects:

(a) an enriched partition product (R∗,B∗) with domain X∗, finitely generated
by a κ-suitable collection S∗ and an auxiliary part Z∗, all of which are in
Mγ ;

(b) a condition p∗ ∈ R∗;
(c) an R∗-name U̇∗ in Mγ for a collection of l + 1-tuples in ω1;
(d) a non-empty, finite collection F in Mγ of embeddings from (R,B) into

(R∗,B∗);
satisfying that for each π ∈ F :

(1) p∗ ≤R∗ π(p̄);

and also satisfying that p∗ forces the following statements in R∗:
(2) ~ν ∈ U̇∗;
(3) for any pairwise distinct tuples ~µ, ~µ′ in U̇∗∩Mγ [Ġ∗], if ~µ, ~µ′ match ȧ0, . . . , ȧl

on S∗, then there is some π ∈ F such that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪{p 7→ 1}
on π

(
S̄
)
.
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Remark 5.5. In the proof of Lemma 5.4, we will proceed by induction, first on
the height (see Definition 4.13) of the suitable subcollection S̄ and second on the
finite size of S̄.

Proving the lemma requires that we embed the initial partition product into a
much larger one in a variety of ways in order to see that the starting condition in R
does not force the negation of the desired conclusion. This larger partition product
will be created through appeals to induction, quite a bit of grafting, and, at the
base, a use of “color 0 counterexamples”; these are partition products witnessing,
for many p∗ ≤Pκ p, that ȧ0, . . . , ȧl ∪ {p∗ 7→ 0} do not have the partition product
preassignment property at γ.

The use of color 0 counterexamples is most clearly seen in the base case of the
induction, namely, where the height is 0. In this case the heart of R∗ is essentially a
product of color 0 counterexamples. The inductive case then combines products of
this kind in more elaborate ways. On a first reading, it may be helpful to think of
its simplest instance, namely when ht(S̄) = 1 and when S̄ has exactly two elements.

Proof. For the remainder of the proof, fix the objects (R,B), X, S, Z, p̄, and S̄ as
in the statement of the lemma. We also set J :=

{
ι ∈ I : 〈Bι, ψι〉 ∈ S̄

}
. Before we

continue, let us introduce the following ad hoc terminology: suppose that p′ ≤Pκ p,
c ∈ {0, 1}, and p̃ ∈ Pκ. We say that p̃ is decisive about the sequence of names
ȧ0, . . . , ȧl ∪ {p′ 7→ c} if for each k < l, p̃ extends a unique element of dom(ȧk), and
if p̃ either extends a unique element of dom(ȧl) ∪ {p′} or is incompatible with all
conditions therein. Note that any p̃ may be extended to a decisive condition, as
dom(ȧk) is a maximal antichain in Pκ, for each k < l.

For each ι ∈ I we set pι to be the condition ψ−1
ι (p̄ � Bι) in Pκ. By extending

p̄ if necessary, we may assume that for each ι ∈ I, pι is decisive about ȧ0, . . . , ȧl ∪
{p 7→ 1}. Let us also define

Jp := {ι ∈ J : pι ≤Pκ p} ,

noting that for each ι ∈ J\Jp, pι is incompatible with p in Pκ, since pι is decisive.
We will prove by induction that there exist objects as in (a)-(d) satisfying (1)-(3).

The induction concerns properties of S̄, which we will refer to as the matching core
of S, in light of the requirement in (3) that the desired matching occurs on the image
of S̄ under some π ∈ F . The induction will be first on the height of S̄, as defined
in Definition 4.13, and then on the finite size of S̄. It is helpful to note here that if
Bι0 6= Bι1 , then the ordinal ht(Bι0 , Bι1) is strictly below ρκ and furthermore that
ht(Bι0 , Bι1) = max {α < ρκ : ψι0 [α] = ψι1 [α]} = sup {ξ + 1 : ψι0(ξ) = ψι1(ξ)} .

Case 1: ht
(
S̄
)

= 0 (note that this includes as a subcase |J | = 1). For each
ι ∈ Jp, pι extends p in Pκ, and so, by Assumption 5.3, ȧ0, . . . , ȧl ∪ {pι 7→ 0} do not
have the partition product preassignment property at γ. For each ι ∈ Jp, we fix
the following objects as witnesses to this:

(1)ι a partition product R∗ι , say with domain X∗ι , which is finitely generated by
the κ-suitable collection S∗ι =

{
〈B∗ι,η, ψ∗ι,η〉 : η ∈ I∗(ι)

}
and auxiliary part

Z∗ι , all of which are in Mγ ;
(2)ι a condition p∗ι in R∗ι ;
(3)ι an R∗ι -name U̇∗ι in Mγ for a set of l + 1-tuples in ω1;

such that p∗ι forces in R∗ι that
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(4)ι ~ν ∈ U̇∗ι , and for any pairwise distinct tuples ~µ, ~µ′ in U̇∗ι ∩Mγ [Ġ∗ι ], ~µ and ~µ′

do not match ȧ0, . . . , ȧl ∪ {pι 7→ 0} on I∗(ι).

For each η ∈ I∗(ι), let pι,η denote the Pκ-condition (ψ∗ι,η)−1
(
p∗ι � B

∗
ι,η

)
, and note

that by extending the condition p∗ι , we may assume that each pι,η is decisive about
ȧ0, . . . , ȧl ∪ {pι 7→ 0}. It is straightforward to check that since each such pι,η is
decisive and since, by Assumption 5.3, ȧ0, . . . , ȧl do have the partition product
preassignment property at γ, we must have that

J∗(ι) := {η ∈ I∗(ι) : pι,η ≤Pκ pι} 6= ∅,
as otherwise we contradict (4)ι.

Let us introduce some further notation which will facilitate the exposition. For
ι ∈ J\Jp, define R∗ι to be some isomorphic copy of Pκ with domain X∗ι , say with
isomorphism ψ∗ι,ι; we will denote X∗ι additionally by B∗ι,ι in order to streamline the

notation in later arguments. For ι ∈ J\Jp, we set S∗ι :=
{
〈B∗ι,ι, ψ∗ι,ι〉

}
with index

set I∗(ι) = {ι} which we also denote by J∗(ι). Next, we define p∗ι to be the image of

pι under the isomorphism ψ∗ι,ι from Pκ onto R∗ι , and we set U̇∗ι to be the R∗ι -name
for all l + 1-tuples in ω1. We remark here for later use that for each ι ∈ J and
η ∈ J∗(ι),

(ψ∗ι,η)−1
(
p∗ι � B

∗
ι,η

)
≤Pκ (ψι)

−1(p̄ � Bι).

Our next step is to amalgamate all of the above into one much larger partition
product. Without loss of generality, by shifting if necessary, we may assume that
the domains X∗ι , for ι ∈ J , are pairwise disjoint. Then, by Corollary 3.20, the
poset R∗(0) :=

∏
ι∈J R∗ι is a partition product with domain

⋃
ι∈J X

∗
ι . It is also a

member of Mγ . Additionally, R∗(0) is finitely generated by the κ-suitable collection
S∗ :=

⋃
ι∈J S∗ι and auxiliary part

⋃
ι∈Jp Z

∗
ι . Let us abbreviate

⋃
ι∈J Bι by X0 and⋃

ι∈J X
∗
ι by X∗0 . We also let p∗(0) be the condition in R∗(0) whose restriction to

X∗ι equals p∗ι , and we let U̇∗ be the R∗(0)-name for the intersection of all the U̇∗ι ,
for ι ∈ J .

Now consider the product of indices

Ĵ :=
∏
ι∈J

J∗(ι);

Ĵ is non-empty, finite, and an element of Mγ , since J and each J∗(ι) are. Let

〈hk : k < n〉 enumerate Ĵ . Each hk selects, for every ι ∈ J , an image of the
Pκ-“branch” Bι inside R∗ι . For each k < n, we define the map πk : X0 −→ X∗0
corresponding to hk by taking πk � Bι to be equal to ψ∗ι,hk(ι) ◦ ψ

−1
ι , for each ι ∈ J .

This is well-defined since, by our assumption that ht
(
S̄
)

= 0, we know that the
sets Bι, for ι ∈ J , are pairwise disjoint. We also see that each πk embeds R � X0

into R∗(0), since it isomorphs R � Bι onto R∗(0) � B∗ι,hk(ι), for each ι ∈ J . In

fact, each πk is (S̄,S∗)-suitable by construction, and hk is the associated map hπk
(see Definition 4.4). Finally, we want to see that p∗(0) extends πk(p̄ � X0) for each
k < n; but this follows by definition of πk and our above observation that for each
ι ∈ J and η ∈ J∗(ι),

(ψ∗ι,η)−1
(
p∗ι � B

∗
ι,η

)
≤Pκ (ψι)

−1(p̄ � Bι).

Using Lemma 4.6, fix an enrichment B∗0 of R∗(0) such that B∗0 contains the
image of B � X0 under each πk and such that

{
〈B∗ι,η, ψ∗ι,η〉 : ι ∈ J ∧ η ∈ J∗(ι)

}
is

κ-suitable with respect to (R∗(0),B∗0). Note that the assumptions of Lemma 4.6
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are satisfied because the sets X∗ι , for ι ∈ J , are pairwise disjoint and {πk : k < n}
is a collection of (S̄,S∗)-suitable maps.

We note that this part of the construction makes use of the Collapse condition
(3) of Definition 2.11, through the appeal to Lemma 4.6.

Before continuing with the main argument, we want to consider an “illustrative
case” in which we make the simplifying assumption that the domain of R is just
X0. The key ideas of the matching argument are present in this illustrative case,
and after working through the details, we will show how to extend the argument
to work in the more general setting wherein the domain of R has elements beyond
X0.

Proceeding, then, under the assumption that the domain of R0 is exactly X0, we
specify the objects from (a)-(d) satisfying (1)-(3). Namely, the finitely generated
partition product (R∗(0),B∗0), generated by S∗ and

⋃
ι∈Jp Z

∗
ι ; the condition p∗(0);

the R∗(0)-name U̇∗; and the collection {πk : k < n} of embeddings are the requisite
objects. From the fact that p̄ = p̄ � X0 we have that p∗(0) is below πk(p̄) for each

k < n. Since p∗ι forces that ~ν ∈ U̇∗ι for each ι ∈ J , we see that p∗(0) forces that

~ν ∈ U̇∗. Thus (3) remains to be checked.
Towards this end, fix a generic G∗ for R∗(0) containing p∗(0), and for each ι ∈ J ,

set G∗ι := G∗ � R∗ι . Also set U∗ := U̇∗[G∗]. Let us also fix two pairwise distinct
tuples ~µ and ~µ′ in U∗ ∩Mγ [G∗] which match ȧ0, . . . , ȧl on S∗. Our goal is to find
some k < n such that ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on πk

(
S̄
)
. We will first

show the following claim.

Claim 5.6. For each ι ∈ Jp, there is some η ∈ J∗(ι) such that

χ̇κ

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
(µl, µ

′
l) = 1.

Proof of Claim 5.6. Recall that for each ι ∈ Jp, by (4)ι above, we know that the

condition p∗ι forces in R∗ι that for any two pairwise distinct tuples ~ξ, ~ξ′ in U̇∗ι ∩
Mγ [Ġ∗ι ],

~ξ and ~ξ′ do not match ȧ0, . . . , ȧl∪{pι 7→ 0} on I∗(ι). Fix some ι ∈ Jp, and

let U∗ι := U̇∗ι [G∗ι ]. Now observe that ~µ and ~µ′ are in U∗ι ∩Mγ [G∗ι ]: first, U∗ ⊆ U∗ι ;
second, all of the posets under consideration are c.c.c. by Assumption 4.1, and
therefore Mγ [G∗] has the same ordinals as Mγ [G∗ι ]. Since ~µ, ~µ′ ∈ U∗ι ∩Mγ [G∗ι ],
~µ, ~µ′ fail to match ȧ0, . . . , ȧl ∪ {pι 7→ 0} at some η ∈ I∗(ι). That is to say, one of
the following holds:

(a) there is some k ≤ l such that

χ̇κ

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
(µk, µ

′
k) = 1− ȧk

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
(and in case k = l, ȧk

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
is defined);

(b) or ({pι 7→ 0})
[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
is defined and

χ̇κ

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
(µl, µ

′
l) = 1− ({pι 7→ 0})

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
.

However, we assumed that ~µ and ~µ′ match ȧ0, . . . , ȧl on S∗. Therefore (a) is
false and (b) holds. This implies in particular that ψ∗ι,η(pι) ∈ G∗ι � B∗ι,η and that
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({pι 7→ 0})
[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
= 0. Thus

χ̇κ

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
(µl, µ

′
l) = 1− (ȧl ∪ {pι 7→ 0})

[(
ψ∗ι,η

)−1 (
G∗ι � B

∗
ι,η

)]
= 1.

Since p∗ι ∈ G∗ι , p
∗
ι and ψ∗ι,η(pι) are compatible, and therefore p∗ι , being decisive,

extends ψ∗ι,η(pι). Thus η ∈ J∗(ι). �

This completes the proof of the above claim. As a result, we fix some function h
on Jp such that for each ι ∈ Jp, h(ι) ∈ J∗(ι) provides a witness to the claim for ι.
Let k < n such that h = hk � Jp. We now check that ~µ, ~µ′ match ȧ0, . . . , ȧl∪{p 7→ 1}
on πk

(
S̄
)
.

Observe that since ~µ and ~µ′ match ȧ0, . . . , ȧl on S∗, we only need to check that

for each ι ∈ J , if p ∈ (ψ∗ι,hk(ι))
−1
(
G∗ � B∗ι,hk(ι)

)
, then

χ̇κ

[(
ψ∗ι,hk(ι)

)−1 (
G∗ι � B

∗
ι,hk(ι)

)]
(µl, µ

′
l) = 1.

But this is clear: for ι ∈ Jp, the conclusion of the implication holds, by the last
claim and the choice of hk. For ι 6∈ Jp the hypothesis of the implication fails, since
(ψ∗ι,hk(ι))

−1(p∗(0)) extends pι which, for ι 6∈ Jp, is incompatible with p.

We have now completed our discussion of the illustrative case when the domain
of R consists entirely of X0. We next work in full generality to finish with this
case; we will proceed by grafting multiple copies of the part of R outside X0 onto
R∗(0). In more detail, recall that the maps πk each embed (R � X0,B � X0) into
(R∗(0),B∗0). Thus we may apply Lemma 3.18 in Mγ , once for each k < n, to
construct a sequence of enriched partition products 〈(R∗(k + 1),B∗k+1) : k < n〉
such that for each k < n, letting X∗k denote the domain of R∗(k), X∗k ⊆ X∗k+1,
R∗(k + 1) � X∗k = R∗(k), B∗k ⊆ B∗k+1, and such that πk extends to an embedding,
which we call π∗k, of (R,B) into (R∗(k + 1),B∗k+1). We remark that by the grafting
construction, for each k < n,

π∗k[X\X0] = X∗k+1\X∗k .

Let us now use R∗ to denote R∗(n), X∗ to denote the domain of R∗, and B∗ to
denote B∗n. Also, observe that π∗k embeds (R,B) into (R∗,B∗), since it embeds
(R,B) into (R∗(k+ 1),Bk+1) and since Bk+1 ⊆ B∗ and R∗(k+ 1) = R∗ � X∗k+1. We
claim that (R∗,B∗) witnesses the lemma in this case.

We first address item (a). Since (R∗(0),B∗0) and (R,B) are both finitely generated
and since (R∗,B∗) was constructed from them by finitely-many applications of the
Grafting Lemma, (R∗,B∗) is itself finitely generated by Lemma 4.14. Moreover, as
all of the partition products under consideration are in Mγ , the suitable collection
and auxiliary part for (R∗,B∗) are also in Mγ .

For (b), we define a sequence of conditions in R∗ by recursion, beginning with
p∗(0). Suppose that we have constructed the condition p∗(k) in R∗(k) such that if
k > 0, then p∗(k) � R∗(k− 1) = p∗(k− 1) and p∗(k) extends π∗k−1(p̄). To construct
p∗(k + 1), note that p∗(k) extends πk(p̄ � X0), since p∗(0) does, as observed before
the illustrative case, and since p∗(k) � R∗(0) = p∗(0). Moreover,

π∗k[X\X0] ∩ dom(p∗(k)) = ∅,
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as dom(p∗(k)) ⊆ X∗k , and as π∗k[X\X0] ∩X∗k = ∅. Thus we see that

p∗(k + 1) := p∗(k) ∪ π∗k (p̄ � (X\X0))

is a condition in R∗(k + 1) which extends π∗k(p̄). This completes the construction
of the sequence of conditions, and so we now let p∗ be the condition p∗(n) in R∗.

We take the same R∗(0)-name U̇∗ for (c). To address (d), we let F := {π∗k : k < n}.
Each π∗k, as noted above, is an embedding of (R,B) into (R∗,B∗) and a member of
Mγ .

This now defines the objects from (a)-(d), and so we check that conditions (1)-
(3) hold. By the construction of p∗ above, p∗ extends π∗k(p̄) for each k < n, so (1) is

satisfied. Moreover, we already know that p∗ R∗ ~ν ∈ U̇∗, since p∗(0) R∗(0) ~ν ∈ U̇∗
and since R∗ � X∗0 = R∗(0). And finally, the proof of condition (3) is the same as
in the illustrative case, using the fact that each π∗k extends πk. This completes the
proof of the lemma in the case that ht(S̄) = 0.

Case 2: ht
(
S̄
)
> 0 (in particular, S̄ has at least 2 elements). We abbreviate

ht
(
S̄
)

by δ in what follows. Fix ι0, ι1 ∈ J which satisfy δ = ht(Bι0 , Bι1), and set

Ĵ := J\ {ι0}.
By Lemma 4.3, X̂0 :=

⋃
ι∈Ĵ Bι coheres with (R,B). Let R̂ be the partition

product R � X̂0, and set B̂ := B � X̂0, which, by Lemma 3.13, is an enrichment
of R̂. Furthermore, R̂ is finitely generated with an empty auxiliary part and with

Ŝ :=
{
〈Bι, ψι〉 : ι ∈ Ĵ

}
as κ-suitable with respect to (R̂, B̂). We also let p̂ be the

condition p̄ � X̂0 ∈ R̂. Finally, we let R̄ := R �
⋃
ι∈J Bι, and B̄ = B �

⋃
ι∈J Bι, so

that (R̄, B̄) is also an enriched partition product.

Since |Ŝ| < |S̄| and ht(Ŝ) ≤ ht(S̄), we may apply the induction hypothesis to

(R̂, B̂), the condition p̂, the R̂-name for all l + 1-tuples in ω1, and with Ŝ as the
matching core. This produces the following objects:

(a)∗ an enriched partition product (R∗,B∗) with domain X∗, say, finitely gen-
erated by a κ-suitable collection S∗ and an auxiliary part Z∗, all of which
are in Mγ ;

(b)∗ a condition p∗ ∈ R∗;
(c)∗ an R∗-name Ẇ ∗ in Mγ for a collection of l + 1-tuples in ω1;

(d)∗ a nonempty, finite collection F in Mγ of embeddings of (R̂, B̂) into (R∗,B∗);
satisfying that for each π ∈ F :

(1)∗ p∗ extends π(p̂) in R∗;
and also satisfying that p∗ forces the following statements in R∗ :

(2)∗ ~ν ∈ Ẇ ∗;
(3)∗ for any pairwise distinct l+ 1-tuples ~µ and ~µ′ in Ẇ ∗ ∩Mγ [Ġ∗], if ~µ and ~µ′

match ȧ0, . . . , ȧl on S∗, then there is some π ∈ F such that ~µ and ~µ′ match

ȧ0, . . . , ȧl ∪ {p 7→ 1} on π
(
Ŝ
)

.

Our next step is to restore many copies of the segment ψι0 [ρκ\δ] of the lost
branch Bι0 in such a way that the restored copies form a κ-suitable collection
with smaller height than δ; this will allow another application of the induction
hypothesis. Towards this end, define

R := {π ◦ ψι1 [δ] : π ∈ F} ,
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and, recalling that F is finite, let x0, . . . , xd−1 enumerate R. We choose, for each
k < d, a map πk ∈ F so that πk ◦ ψι1 [δ] = xk.

We now work in Mγ to graft one copy of ψι0 [ρκ\δ] onto (R∗,B∗) over πk, for each

k < n. Indeed, since πk embeds (R̂, B̂) into (R∗,B∗), we may successively apply the
Grafting Lemma to find an enriched partition product (R∗∗,B∗∗) on a domain X∗∗

so that R∗∗ � X∗ = R∗, B∗ ⊆ B∗∗, and so that for each k < d, πk extends to an
embedding π∗k of (R̄, B̄) into (R∗∗,B∗∗). Since (R∗∗,B∗∗) is finitely generated, by
Lemma 4.14, we may let S∗∗ denote the finite, κ-suitable collection for (R∗∗,B∗∗).

Let us make a number of observations about the above situation. First, we want
to see that for each π ∈ F , we may extend π to embed (R̄, B̄) into (R∗∗,B∗∗). Thus
fix π ∈ F , and let k < d such that π ◦ ψι1 [δ] = xk. We want to apply Lemma
3.21, with (following the notation of the lemma) X0 =

⋃
ι∈Ĵ Bι and X1 = Bι0 .

For this we need to see that π[X0 ∩ Bι0 ] = πk[X0 ∩ Bι0 ]. To verify this, we first
claim that X0 ∩ Bι0 = Bι1 ∩ Bι0 . Suppose that this is false, for a contradiction.

Then there is some α ∈ X0 ∩ Bι0\Bι1 . Fix ι ∈ Ĵ s.t. α ∈ Bι ∩ Bι0 . Then
ψ−1
ι0 [Bι ∩Bι0 ] ≤ ht(S̄) = δ, and so α ∈ ψι0 [δ]. But ψι0 � δ = ψι1 � δ, and therefore
α ∈ Bι1 , a contradiction.

Thus X0 ∩Bι0 = Bι1 ∩Bι0 . But Bι1 ∩Bι0 = ψι1 [δ], and therefore

π[Bι1 ∩Bι0 ] = π ◦ ψι1 [δ] = xk = πk ◦ ψι1 [δ] = πk[Bι1 ∩Bι0 ].

Hence π[X0 ∩Bι0 ] = πk[X0 ∩Bι0 ]. By Lemma 3.21, the map

π∗ := π ∪ π∗k � (ψι0 [ρκ\δ])

is an extension of π which embeds (R̄, B̄) into (R∗∗,B∗∗). We make the observation
that π∗[Bι0 ] = π∗k[Bι0 ], which will be useful later.

For each k < d, we use x∗k to denote the image of Bι0 under the map π∗k. Let
S̄∗∗ := {〈x∗k, π∗k ◦ ψι0 , κ〉 : k < d}. Then S̄∗∗ ⊆ S∗∗, and in particular, S̄∗∗ is κ-
suitable. For k 6= m we have

(π∗k ◦ ψι0)[δ] = xk 6= xm = (π∗m ◦ ψι0)[δ],

and hence ht(x∗k, x
∗
m) < δ. Therefore ht(S̄∗∗) < δ, since S̄∗∗ is finite.

We now have a collection F∗ := {π∗ : π ∈ F} of embeddings of (R̄, B̄) into
(R∗∗,B∗∗) and a finite, κ-suitable subcollection S̄∗∗ of S∗∗ such that the height
of S̄∗∗ is less than δ. But before we apply the induction hypothesis, we need to
extend (R∗∗,B∗∗) to add generics for the full R and to also define a few more ob-
jects. Towards this end, we work in Mγ to successively apply the Grafting Lemma
to each map π∗ in F∗ to graft (R,B) onto (R∗∗,B∗∗) over π∗. This results in a
partition product (R∗∗∗,B∗∗∗) in Mγ with domain X∗∗∗ so that R∗∗∗ � X∗∗ = R∗∗,
B∗∗ ⊆ B∗∗∗, and so that each map π∗ ∈ F∗ extends to an embedding π∗∗∗ of (R,B)
into (R∗∗∗,B∗∗∗). By Lemma 4.14, (R∗∗∗,B∗∗∗) is still finitely generated, say with
κ-suitable collection S∗∗∗.

We now want to define a condition p∗∗∗ in R∗∗∗ by adding further coordinates
to the condition p∗ ∈ R∗ ⊆ R∗∗∗ from (a)∗. By the grafting construction of R∗∗, if
k < m < d, then the images of ψι0 [ρκ\δ] under π∗k and π∗m are disjoint. Thus

p∗∗ := p∗ ∪
⋃
k<d

π∗k (p̄ � ψι0 [ρκ\δ])

is a condition in R∗∗. Since by (1)∗, p∗ extends π(p̂) in R∗ for each π ∈ F ,
we conclude that p∗∗ extends π∗k(p̄ �

⋃
ι∈J Bι) for each k < d. Furthermore, if
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π∗ ∈ F∗, then for some k < d, π∗ agrees with π∗k on Bι0 , as observed above. It is
straightforward to see that this implies that p∗∗ in fact extends π∗(p̄ �

⋃
ι∈J Bι) for

each π∗ ∈ F∗. And finally, by the grafting construction of R∗∗∗, we know that if
π and σ are distinct embeddings in F , then the images of X\

⋃
ι∈J Bι under π∗∗∗

and σ∗∗∗ are disjoint. Consequently,

p∗∗∗ := p∗∗ ∪
⋃
π∈F

π∗∗∗

(
p̄ �

(
X\

⋃
ι∈J

Bι

))
is a condition in R∗∗∗ which extends π∗∗∗(p̄) for each π ∈ F .

We are now ready to apply the induction hypothesis to the partition product
(R∗∗∗,B∗∗∗), the condition p∗∗∗ ∈ R∗∗∗, and the matching core S̄∗∗, which has
height below δ. This results in the following objects:

(a)∗∗ an enriched partition product (R∗∗∗∗,B∗∗∗∗) on a set X∗∗∗∗ which is finitely
generated, say with κ-suitable collection S∗∗∗∗ and auxiliary part Z∗∗∗∗, all
of which are in Mγ ;

(b)∗∗ a condition p∗∗∗∗ in R∗∗∗∗;
(c)∗∗ an R∗∗∗∗-name U̇∗∗∗∗ in Mγ for a collection of l + 1 tuples in ω1;
(d)∗∗ a nonempty, finite collection G in Mγ of embeddings of (R∗∗∗,B∗∗∗) into

(R∗∗∗∗,B∗∗∗∗);
satisfying that for each σ ∈ G

(1)∗∗ p∗∗∗∗ extends σ(p∗∗∗) in R∗∗∗∗;
and such that p∗∗∗∗ forces in R∗∗∗∗ that

(2)∗∗ ~ν ∈ U̇∗∗∗∗;
(3)∗∗ for any pairwise distinct tuples ~µ, ~µ′ in Mγ [Ġ∗∗∗∗] ∩ U̇∗∗∗∗ such that ~µ, ~µ′

match ȧ0, . . . , ȧl on S∗∗∗∗, there is some σ ∈ G such that ~µ, ~µ′ match
ȧ0, . . . , ȧl ∪ {p 7→ 1} on σ

(
S̄∗∗
)
.

This completes the construction of our final partition product. To finish the
proof, we will need to define a number of embeddings from our original partition
product (R,B) into (R∗∗∗∗,B∗∗∗∗) and check that the appropriate matching obtains.
For σ ∈ G and π ∈ F , we define the map τ(π, σ) to be the composition σ ◦ π∗∗∗,
which embeds (R,B) into (R∗∗∗∗,B∗∗∗∗). We also observe that p∗∗∗∗ ≤ τ(π, σ)(p̄)
for each such π and σ since p∗∗∗∗ extends σ(p∗∗∗) in R∗∗∗∗, and since p∗∗∗ extends

π∗∗∗(p̄) in R∗∗∗. Now define the R∗∗∗∗-name V̇ ∗ to be

U̇∗∗∗∗ ∩
⋂
σ∈G

Ẇ ∗
[
σ−1

(
Ġ∗∗∗∗

)
� X∗

]
.

We observe that this is well-defined, since for each σ ∈ G and generic G∗∗∗∗ for
R∗∗∗∗, σ−1 (G∗∗∗∗) is generic for R∗∗∗, and hence its restriction to X∗ is generic for

R∗. We also see that p∗∗∗∗ forces that ~ν ∈ V̇ ∗ because p∗∗∗∗ forces ~ν ∈ U̇∗∗∗∗, p∗
is in σ−1 (G∗∗∗∗) for any generic G∗∗∗∗ containing p∗∗∗∗, and p∗ forces in R∗ that

~ν ∈ Ẇ ∗.
We finish the proof of Lemma 5.4 in this case by showing that the partition

product (R∗∗∗∗,B∗∗∗∗), the condition p∗∗∗∗ ∈ R∗∗∗∗, the name V̇ ∗, and the collection
{τ(π, σ) : π ∈ F ∧ σ ∈ G} of embeddings satisfy (1)-(3). We already know that

p∗∗∗∗ extends τ(π, σ)(p̄) for each π and σ and that p∗∗∗∗  ~ν ∈ V̇ ∗. So now we
check the matching condition. Towards this end, fix a generic H for R∗∗∗∗ and two
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pairwise distinct tuples ~µ, ~µ′ in V̇ ∗[H]∩Mγ [H] which match ȧ0, . . . , ȧl on S∗∗∗∗. We
need to find some π and σ such that ~µ, ~µ′ match ȧ0, . . . , ȧl∪{p 7→ 1} on τ(π, σ)

(
S̄
)
.

By (3)∗∗, we know that we can find some σ such that

(i) ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on σ
(
S̄∗∗
)
.

Let t denote the triple 〈Bι0 , ψι0 , κ〉. By construction of the maps π∗, for each π ∈ F ,
there is some k so that π∗∗∗(t) = π∗(t) = π∗k(t) ∈ S̄∗∗. Using (i) it follows that:

(ii) for every π ∈ F , ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} at σ ◦ π∗∗∗(t) =
τ(π, σ)(t).

Now consider the filter G∗σ := σ−1 (H) � X∗, which is generic for R∗ and contains
p∗. By Assumption 4.1, we know that all the posets under consideration are c.c.c.,
and therefore the models Mγ [H] and Mγ [G∗σ] have the same ordinals, namely those

of Mγ . Thus ~µ, ~µ′ ∈ Mγ [G∗σ]. Furthermore, by definition of V̇ ∗[H], we have that

~µ, ~µ′ ∈ Ẇ ∗[G∗σ], and as a result ~µ, ~µ′ ∈ Mγ [G∗σ] ∩ Ẇ ∗[G∗σ]. Thus by (3)∗, we can

find some π ∈ F so that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on π
(
Ŝ
)

. Because π∗∗∗

extends π, we may rephrase this to say that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on

π∗∗∗
(
Ŝ
)

. Since σ embeds (R∗∗∗,B∗∗∗) into (R∗∗∗∗,B∗∗∗∗),

(iii) ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on τ(π, σ)
(
Ŝ
)

.

Finally, (ii) and (iii) imply that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on τ(π, σ)
(
S̄
)
, as

S̄ = Ŝ ∪ {t}. This completes the proof of Lemma 5.4.
�

Corollary 5.7. Under the assumptions of Lemma 5.4, suppose that U̇ is an R-name
in Mγ for a set of l+ 1-tuples in ω1 such that p̄ R ~ν ∈ U̇ . Then the conclusion of

Lemma 5.4 may be strengthened to say that p∗ R∗ U̇∗ ⊆
⋂
π∈F U̇

[
π−1

(
Ġ∗
)]

.

Proof. Let U̇ be fixed, and let U̇∗ be as in the conclusion of Lemma 5.4. Define

U̇∗∗ to be the name U̇∗∩
⋂
π∈F U̇

[
π−1

(
Ġ∗
)]

, and observe that this name is still in

Mγ . By condition (1) of Lemma 5.4, we know that p∗ forces that p̄ is in π−1
(
Ġ∗
)

,

for each π ∈ F . Since each such π−1
(
Ġ∗
)

is forced to be V -generic for R and

since p̄ R ~ν ∈ U̇ , this implies that p∗ forces that ~ν is a member of U̇∗∗. Finally,
condition (3) of Lemma 5.4 still holds, since U̇∗∗ is forced to be a subset of U̇∗. �

Corollary 5.8. (Under Assumption 5.3) ȧ0, . . . , ȧl ∪ {p 7→ 1} have the partition
product preassignment property at γ.

Proof. Suppose otherwise, for a contradiction. Then there exists a partition product
R, say with domain X, finitely generated by S = {〈Bι, ψι〉 : ι ∈ I} and an auxiliary

part Z, all of which are in Mγ ; an R-name U̇ in Mγ ; and a condition p̄ ∈ R (not

necessarily in Mγ), such that p̄ forces that ~ν ∈ U̇ , but also that for any pairwise

distinct tuples ~µ, ~µ′ in U̇ ∩Mγ [Ġ], there exists some ι0 ∈ I such that ~µ, ~µ′ fail to
match ȧ0, . . . , ȧl ∪ {p 7→ 1} at ι0. Apply Lemma 5.4 and Corollary 5.7 to these
objects, with S̄ := S and with the enrichment

B := {〈b(ξ), πξ, index(ξ)〉 : ξ ∈ X} ∪ S,
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to construct the objects as in the conclusions of Lemma 5.4 and Corollary 5.7. Also,
fix a generic G∗ for R∗ which contains the condition p∗.

We now apply the fact that ȧ0, . . . , ȧl have the partition product preassignment
property at γ to the objects in the conclusion of Lemma 5.4: since ~ν ∈ U∗ :=
U̇∗[G∗], we can find two pairwise distinct tuples ~µ, ~µ′ in U∗ ∩Mγ [G∗] which match
ȧ0, . . . , ȧl on S∗. Thus by (3) of Lemma 5.4, there is some embedding π of (R,B)
into (R∗,B∗) so that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on π (S). Now consider G :=
π−1 (G∗), which is generic for R and contains the condition p̄, since p∗ ≤R∗ π(p̄).
Since ~µ, ~µ′ match ȧ0, . . . , ȧl ∪{p 7→ 1} on π (S) and π is an embedding, ~µ, ~µ′ match
ȧ0, . . . , ȧl ∪ {p 7→ 1} on S with respect to the filter G. Finally, observe that ~µ and

~µ′ are both in U̇ [G]∩Mγ [G]: they are in U̇ [G] by Corollary 5.7, since U∗ is a subset

of U̇ [G]. They are both in Mγ , hence in Mγ [G], since by Assumption 4.1, R∗ is
c.c.c. However, this contradicts what we assumed about p̄. �

5.2. Putting it together. Let us now put together the results so far.

Lemma 5.9. Suppose that ȧ0, . . . , ȧl−1 are total canonical color names which have
the partition product preassignment property at γ. Then there is a total canonical
color name ȧl so that ȧ0, . . . , ȧl have the partition product preassignment property
at γ.

Proof. We recursively construct a sequence ȧξl of names, taking unions at limit

stages, and starting with the empty name ȧ0
l = ∅. If ȧξl has been constructed

and dom(ȧξl ) is a maximal antichain in Pκ, we set ȧl = ȧξl . Otherwise, we pick
some condition p ∈ Pκ incompatible with all conditions therein. If there is some

extension p∗ ≤Pκ p so that ȧ0, . . . , ȧl−1, ȧ
ξ
l ∪ {p∗ 7→ 0} have the partition product

preassignment property at γ, we pick some such p∗ and set ȧξ+1
l := ȧξl ∪ {p∗ 7→ 0}.

Otherwise, Assumption 5.3 is satisfied, and hence by Corollary 5.8, ȧ0, . . . , ȧl−1, ȧ
ξ
l ∪

{p 7→ 1} have the partition product preassignment property at γ. In this case we

set ȧξ+1
l := ȧξl ∪ {p 7→ 1}. Note that the construction of the sequence ȧζl halts at

some countable stage, since Pκ is c.c.c., by Assumption 4.1. �

We now prove Proposition 4.7:

Proof of Proposition 4.7. Recall that for each γ < ω1, 〈νγ,l : l < ω〉 enumerates the
slice [Mγ ∩ ω1,Mγ+1 ∩ ω1). By Lemma 5.9, we may construct, for each γ < ω1,
a sequence of Pκ-names 〈ȧγ,l : l < ω〉 such that for each l < ω, ȧγ,0, . . . , ȧγ,l have

the partition product preassignment property at γ. We now define a function ḟ
by taking ḟ(νγ,l) = ȧγ,l, for each γ < ω1 and l < ω. The values of ḟ on ordinals

ν < M0 ∩ ω1 are irrelevant, so we simply set ḟ(ν) to name 0 for each such ν. Then

ḟ satisfies the assumptions of Lemma 4.19 and hence satisfies Proposition 4.7. �

6. Constructing Partition Products in L

In this section, we show how to construct the desired partition products in L. In
particular, we will construct a partition product Pω2

, which will have domain ω3.
Forcing with Pω2

will provide the model which witnesses our theorem. We assume
for this section that V = L.

Before we introduce some more definitions, let us fix a finite fragment F of
ZFC − Powerset (hence satisfied in H(ω3)) large enough to prove the existence
and bijectability with X of elementary Skolem hulls of X in levels of L, and to
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construct the partition product Pκ � γ of Subsection 6.2 for γ < γ(κ), from γ and
the sequences 〈δi(κ) : i < γ〉 and A � κ. We will spell out exactly what F needs
to prove in Remark 6.9, after we establish the relevant notation. It is not hard
to check that these constructions (including the rearrangements that go into the
construction in Subsection 6.2) use only ZFC− Powerset.

As a matter of notation, by the Gödel pairing function, we view each ordinal γ as
coding a pair of ordinals (γ)0 and (γ)1. We will use this for bookkeeping arguments
later, where (γ)0 will select elements under <L and where (γ)1 will select various
prior stages in an iteration.

6.1. Local ω2’s and Witnesses.

Definition 6.1. Let ω1 < κ ≤ ω2, and let A be a sequence of elements of Lκ so
that dom(A) ⊆ κ. We say that κ is a local ω2 with respect to A if there is some
δ > κ such that Lδ is closed under ω-sequences, contains A as an element, and such
that

Lδ |= κ = ℵ2 ∧ F ∧ κ is the largest cardinal.

If κ is a local ω2 with respect to A, we will refer to any such δ as above as
a witness for κ with respect to A or simply as a witness for κ if A is clear from
context.

The symbol “A” in the above definition stands for “alphabet,” and it will later
represent some initial segment of the sequence of alphabetical partition products.

Fix some k ≥ 2, large enough that all statements in F are Σk. We will use
Σk hulls and Σk elementarity throughout the section. The fact that k ≥ 2 allows
reflecting basic statements into the hulls, such as being a largest cardinal, and the
fact that all statements in F are Σk allows reflecting F .

We begin our discussion with the following lemma. The proof is straightforward
using the closure of Lω1 under countable sequences and the fact that Σk admits a
universal formula.

Lemma 6.2. Suppose that Lδ is closed under ω-sequences, and let p ∈ Lδ. Then
HullLδk (ω1 ∪ {p}) is also closed under ω-sequences.

The next lemma shows how a local ω2 with respect to one parameter can project
to another.

Lemma 6.3. Suppose that δ is a witness for κ with respect to A, and define H :=
HullLδk (ω1 ∪ {A}). Suppose further that H ∩ κ = κ̄ < κ. Then κ̄ is a local ω2 with
respect to A � κ̄, and ot(H ∩ δ) is a witness for κ̄ with respect to A � κ̄.

Proof. Let π : H −→ Lδ̄ be the transitive collapse, so that π(κ) = κ̄ and δ̄ =
ot(H ∩ δ). Since H is closed under ω-sequences, by Lemma 6.2, Lδ̄ is too. Since π
is Σk elementary, we will be done once we verify that π(A) = A � κ̄. Indeed, by the
elementarity of π, π(A) is a sequence with domain dom(A) ∩ κ̄. Furthermore, for
each i ∈ dom(A), since A(i) ∈ Lκ and since Lδ satisfies that κ = ℵ2, we have that
A(i) has size ≤ ℵ1 in Lδ. Thus for each i ∈ dom(A) ∩ κ̄, A(i) is not moved by π,
and consequently π(A) = A � κ̄. �

If κ is a local ω2 with respect to A, we define the canonical sequence of witnesses
for κ with respect to A, denoted 〈δi(κ,A) : i < γ(κ,A)〉. We set δ0(κ,A) to be the
least witness for κ. Suppose that 〈δi(κ,A) : i < γ〉 is defined, for some γ. If there
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exists a witness δ̃ for κ such that δ̃ > supi<γ δi(κ,A), then we set δγ(κ,A) to be the
least such. Otherwise, we halt the construction and set γ(κ,A) := γ. If we have
γ < γ(κ,A), then we also define H(κ, γ,A) to be

H(κ, γ,A) := Hull
Lδγ (κ,A)

k (ω1 ∪ {A}).

Remark 6.4. It is straightforward to check that if κ is a local ω2 with respect to
A and γ < γ(κ,A), then because Lδγ(κ,A) is countably closed, being a witness for κ
with respect to A is absolute between Lδγ(κ,A) and V . Indeed, the requirements on
Lδ for a witness δ, other than countable closure, are ∆0 in Lδ. Thus the sequence
〈δi(κ,A) : i < γ〉 is definable in Lδγ(κ,A) as the longest sequence of witnesses for
κ with respect to A. The defining formula is Π2, so the sequence is absolute to
H(κ, γ,A). Consequently both the sequence and γ belong to this hull. Furthermore,
in the case that κ = ω2, we see that γ(ω2,A) = ω3.

For the rest of the subsection, we fix κ and A; for the sake of readability, we will
often drop explicit mention of the parameter A in notation of the from δγ(κ,A) and
H(κ, γ,A), preferring instead to write, respectively, δγ(κ) and H(κ, γ).

Suppose that κ is such that γ(κ) is a successor, say γ + 1, and further suppose
that H(κ, γ) contains κ as a subset. Then we refer to δγ(κ), the final element on
the canonical sequence of witnesses for κ with respect to A, as the stable witness
for κ with respect to A. It is stable in the sense that we cannot condense the hull
further.

Lemma 6.5. Suppose that γ + 1 < γ(κ). Then H(κ, γ) ∩ κ ∈ κ.

Proof. Suppose otherwise. Then κ ⊆ H(κ, γ). Since γ + 1 < γ(κ), we know

that δ̂ := δγ+1(κ) exists, and in particular, δγ(κ) < δ̂. Observe that H(κ, γ) is a
member of Lδ̂; this follows from the choice of the finite fragment F and the facts
that δ(γ, κ),A ∈ Lδ̂ and Lδ̂ |= F . Therefore, again using the fact that Lδ̂ |= F ,
we may find a surjection from ω1 onto H(κ, γ) in Lδ̂. Since κ ⊆ H(κ, γ), this
contradicts our assumption that Lδ̂ satisfies that κ is ℵ2. �

If γ+1 < γ(κ), then the collapse of H(κ, γ) moves κ. The level to which H(κ, γ)
collapses is then the stable witness for the images of κ and A, as shown in the
following lemma.

Lemma 6.6. Suppose that γ + 1 < γ(κ), and set κ̄ := H(κ, γ) ∩ κ. Let j denote
the collapse map of H(κ, γ) and τ the level to which H(κ, γ) collapses. Finally, set
γ̄ := j(γ). Then γ̄ + 1 = γ(κ̄) and τ = δγ̄(κ̄) is the stable witness for κ̄ and A � κ̄.

Proof. Let us abbreviate H(κ, γ) by H. By Remark 6.4, we have that 〈δi(κ) : i <
γ〉 ∈ H(κ, γ); let 〈δi : i < γ̄〉 denote the image of this sequence under j. By the
elementarity of j and the absoluteness of Remark 6.4, 〈δi : i < γ̄〉 is exactly equal
to 〈δi(κ̄) : i < γ̄〉, the canonical sequence of witnesses for κ̄ with respect to A � κ̄.

We next verify that τ = δγ̄(κ̄). By Lemma 6.3, we know that τ is a witness for κ̄
with respect to A � κ̄. Furthermore, τ is the least witness for κ̄ above supi<γ̄ δi(κ̄):

suppose that there were a witness δ̄ for κ̄ between supi<γ̄ δi(κ̄) and τ . Then Lτ
satisfies that δ̄ is a witness for κ̄. By the elementarity of j−1, setting δ := j−1(δ̄),
we see that Lδγ(κ) satisfies that δ is a witness for κ. Since Lδγ(κ) is closed under
ω-sequences, δ is in fact a witness for κ (with respect to A). As δ is between
supi<γ δi(κ) and δγ(κ), this is a contradiction. Therefore τ is the least witness for
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κ̄ with respect to A � κ̄ which is above supi<γ̄ δi(κ̄). However, because Lτ is the

collapse of H, we see that HullLτk (ω1 ∪ {A � κ̄}) is all of Lτ . Therefore τ is the
stable witness for κ̄ with respect to A � κ̄. �

6.2. Building the Partition Products. In this subsection, we construct the set
C, the alphabet P = 〈Pδ : δ ∈ C〉, Q̇ = 〈Q̇δ : δ ∈ C〉, and the collapsing system ~ϕ,
that we will use to prove Theorem 1.3. At the same time we will construct Pω2 , a

partition product based upon P, Q̇. Pω2
will force OCAARS and 2ℵ0 = ℵ3. We will

also show how to adapt our construction so that our model additionally satisfies
FA(ℵ2,Knaster(ℵ1)); recall that this axiom asserts that we can meet any ℵ2-many
dense subsets of an ≤ ℵ1-sized poset with the Knaster property.

The collapsing system ~ϕ can be specified right away: for each κ ∈ C and γ < ρκ,
we take ϕκ,γ to be the <L-least surjection of κ onto γ.

The remaining objects are defined by recursion. Suppose that we’ve defined the
set C up to an ordinal κ ≤ ω2 as well as P � κ and Q̇ � κ in such a way that
the following recursive assumptions are satisfied, where A � κ denotes the alphabet
sequence 〈〈Pκ̄, Q̇κ̄〉 : κ̄ ∈ C ∩ κ〉:

(a) for each κ̄ ∈ C ∩ κ, κ̄ is a local ω2 with respect to A � κ̄, Pκ̄ is a partition

product based upon P � κ̄ and Q̇ � κ̄, and Q̇κ̄ is a Pκ̄-name;

(b) every partition product based upon P � κ and Q̇ � κ is c.c.c.

At limit points κ, condition (a) trivially follows from the same condition below κ,
and condition (b) follows by Lemma 2.28. Thus we need only work on the successor
case.

If κ is not a local ω2 with respect to A � κ, then we do not place κ in C, thus
leaving Pκ and Q̇κ undefined. Observe that as a result, P � (κ + 1) = P � κ, and

similarly for Q̇ � κ and A � κ. Suppose, on the other hand, that κ is a local ω2

with respect to A � κ. We aim to define the partition product Pκ and, in the
case that κ < ω2, to place κ in C and define the Pκ-name Q̇κ; defining Q̇κ will
involve selecting a Pκ-name χ̇κ for a coloring and, by appealing to the results of the
previous two sections, constructing the name ḟκ for a preassignment. We then need
to prove (b), namely that every partition product based on P � κ+ 1 and Q̇ � κ+ 1
is c.c.c.

We begin by defining Pκ. Fix γ and assume inductively that Pκ � γ has been
defined, as well as the base and index functions baseκ � γ and indexκ � γ. We
divide the definition at γ into two cases.

Case 1: γ + 1 = γ(κ), or γ = γ(κ) is a limit.

If Case 1 obtains, then we halt the construction, setting ρκ = γ and Pκ = Pκ � γ.
If κ < ω2, then we need to define the name Q̇κ. Recall from the beginning of this
section that for an ordinal ξ, (ξ)0 and (ξ)1 are the two ordinals coded by ξ under
the Gödel pairing function. Suppose that the (γ)0-th element under <L is a pair

〈Ṡκ, χ̇κ〉 of Pκ-names, where Ṡκ names a countable basis for a second countable,
Hausdorff topology on ω1 and χ̇κ names a coloring on ω1 which is open with respect
to the topology generated by Ṡκ. Then let ḟκ be the <L-least Pκ-name satisfying
Proposition 4.7, and set Q̇κ := Q(χ̇κ, ḟκ), so that by Corollary 4.9, any partition

product based upon P � (κ+1) and Q̇ � (κ+1) is c.c.c. If (γ)0 does not code such a
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pair, then we simply let Q̇κ name Cohen forcing for adding a single real. It is clear
in this case also, by Lemma 2.26, that any partition product based upon P � (κ+1)

and Q̇ � (κ+ 1) is c.c.c.
On the other hand, if κ = ω2, then the partition product Pω2

is defined. After
completing the rest of the construction, we show that forcing with Pω2

provides the
desired model witnessing our theorem.

Case 2: γ + 1 < γ(κ).

In this case, we continue the construction of Pκ, extending from Pκ � γ, which
inductively we already know, to Pκ � γ + 1. Let κ̄ := H(κ, γ) ∩ κ, which is below
κ by Lemma 6.5; recall that we are suppressing explicit mention of the parameter
A � κ. We also let j be the transitive collapse map of H(κ, γ) and set γ̄ := j(γ).
We halt the construction if either Pκ � γ is not a member of H(κ, γ), or if it is a
member of H(κ, γ) and either κ̄ /∈ C or Pκ � γ is not mapped to Pκ̄ � γ̄ by j (we
will later show that this does not in fact occur).

Suppose, on the other hand, that κ̄ ∈ C and that Pκ � γ is a member of H(κ, γ)

which is mapped by j to Pκ̄ � γ̄. We shall specify the next name U̇γ , which will
be the γth iterand in Pκ � γ + 1, as well as the values baseκ(γ) and indexκ(γ).
By Lemma 6.6, we have that γ̄ + 1 = γ(κ̄,A � κ̄). By recursion, this means that
γ̄ = ρκ̄, i.e., that Pκ̄ = Pκ̄ � γ̄. We now pull these objects back along j−1.

In more detail, we observe that, setting πγ := j−1, πγ � ρκ̄ provides an acceptable
rearrangement of Pκ̄, since πγ is order-preserving. In fact, the πγ-rearrangement of
Pκ̄ is exactly equal to (Pκ � γ) � πγ [ρκ̄], by Lemma 2.22; this Lemma applies since

for each δ ∈ C ∩ κ̄, πγ is the identity on Pδ ∗ Q̇δ ∪
{
Pδ, Q̇δ

}
. Let U̇γ be the πγ-

rearrangement of Q̇κ̄ (see Lemma 2.20 or Definition 2.4). Note that this rearrange-
ment need not be an element of Lδγ(κ). We now set baseκ(γ) := (πγ [ρκ̄], πγ � ρκ̄)
and set indexκ(γ) := κ̄. In particular, we observe that

bκ(γ) = H(κ, γ) ∩ γ

is an initial segment of the ordinals of H(κ, γ).

Claim 6.7. baseκ � (γ + 1) and indexκ � (γ + 1) support a partition product based

upon P � κ and Q̇ � κ.

Proof of Claim 6.7. Condition (1) of Definition 2.16 follows from the comments in
the above paragraph. Condition (2) holds at γ by the elementarity of πγ and at all
smaller ordinals by recursion. So we need to check condition (3), where it suffices to
verify the coherent collapse condition for γ and some β < γ. So suppose that there
is some ξ ∈ bκ(β) ∩ bκ(γ). We define κ̄∗ to be H(κ, β) ∩ κ, so that κ̄∗ = indexκ(β).
We also let jκ,β denote the transitive collapse map of H(κ, β) and jκ,γ the transitive

collapse map of H(κ, γ). Finally, let πβ denote j−1
κ,β .

In both of the models H(κ, β) and H(κ, γ), κ is the largest cardinal. Moreover,
each of them is closed under the map which takes an ordinal ζ to ϕκ,ζ , the <L-least
surjection from κ onto ζ. As a result,

H(κ, γ) ∩ ξ = ϕκ,ξ[H(κ, γ) ∩ κ] = ϕκ,ξ[κ̄],

and therefore bκ(γ) ∩ ξ = ϕκ,ξ[κ̄]. Similarly, bκ(β) ∩ ξ = ϕκ,ξ[κ̄
∗].
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With this observation in mind, we now verify that item (3) of Definition 2.16
holds for γ and β. Suppose that κ̄∗ ≤ κ̄; the proof in case κ̄ ≤ κ̄∗ is similar.
Let ζ0 := π−1

β (ξ) and ζ1 := π−1
γ (ξ). If κ̄∗ = κ̄, then by the calculations in the

previous paragraph, (3) holds trivially, since the models H(κ, β) and H(κ, γ) have
the same intersection with ξ + 1. Thus we proceed under the assumption that
κ̄∗ < κ̄. Since the above paragraph shows that πβ [ζ0] ⊆ πγ [ζ1], we need to check
that A := π−1

γ [πβ [ζ0]] coherently collapses 〈κ̄, ζ1〉 to 〈κ̄∗, ζ0〉.
Now πβ [ζ0] = bκ(β) ∩ ξ has the form ϕκ,ξ[κ̄

∗]. Since κ̄∗ < κ̄, we have that
κ, ξ, and κ̄∗ are all in H(κ, γ). Thus so is πβ [ζ0]. Applying the elementarity of
jκ,γ = π−1

γ , we see that π−1
γ ◦ ϕκ,ξ � κ̄∗ = ϕκ̄,ζ1 � κ̄∗, which shows that A has the

form ϕκ̄,ζ1 [κ̄∗]. Therefore condition (1) in Definition 2.11 holds. Additionally, if we
let σ denote the transitive collapse of A, then we see that σ ◦ π−1

γ is the transitive

collapse of πβ [ζ0] = ϕκ,ξ[κ̄
∗], which is just π−1

β = jκ,β . However, the elementarity of

π−1
β implies that π−1

β ◦ϕκ,ξ � κ̄∗ = ϕκ̄∗,ζ0 , and therefore σ◦ϕκ̄,ζ1 � κ̄∗ = ϕκ̄∗,ζ0 . This

gives condition (3) of Definition 2.11. And finally, to see that (2) of the definition
holds, we first observe that bκ(β) ∩ ξ is closed under limit points of cofinality ω
below its supremum, because H(κ, β) is closed under ω-sequences. Since bκ(β) ∩ ξ
is in H(κ, γ), by applying jκ,γ , we conclude that the collapse of H(κ, γ), denoted
Lτ , satisfies that A is closed under limit points of cofinality ω below its supremum.
However, Lτ is closed under ω-sequences, and therefore A is in fact closed under
limit points of cofinality ω below its supremum. Thus (2) is satisfied. This completes
the proof of the claim. �

We have now completed the construction of the desired sequence of partition
products. Before we prove our main theorem, we need to verify that for each
κ ∈ C ∪ {ω2}, we obtain a partition product of the appropriate length, i.e., that
the construction does not halt prematurely, as described at the beginning of Case
2.

Lemma 6.8. For each κ ∈ C∪{ω2}, ρκ = γ(κ) if γ(κ) is a limit or equals γ(κ)−1
if γ(κ) is a successor.

Proof. Suppose that κ ∈ C ∪ {ω2} and that γ + 1 < γ(κ). We need to show that
Pκ � γ is a member of H(κ, γ), that κ̄ ∈ C, and that Pκ � γ gets mapped by j,
the collapse map of H(κ, γ), to Pκ̄ � γ̄, where κ̄ = j(κ) and γ̄ = j(γ). By choice
of F , since Lδγ(κ) |= F , and since 〈δi(κ) : i < γ〉 and A � κ belong to Lδγ(κ), we
have Pκ � γ ∈ Lδγ(κ). Since j(A � κ) = A � κ̄, it is also straightforward to verify
that κ̄ is a local ω2 with respect to the sequence A � κ̄, and hence κ̄ ∈ C. Finally,
Case 2 of the construction of partition products is uniform, in the sense that Pκ � γ
is definable in Lδγ(κ) from 〈δi(κ) : i < γ〉 and A � κ by the same definition which
defines Pκ̄ � γ̄ in Lδγ̄(κ̄) from 〈δi(κ̄) : i < γ̄〉, and A � κ̄. Thus Pκ � γ is a member
of H(κ, γ) and gets mapped to Pκ̄ � γ̄ by j. �

Remark 6.9. We now have the notation and context to specify exactly what the
finite fragment F of ZFC−Powerset, that we fixed at the start of the section, needs
to prove. We fix F that proves that for every collapsing system ~ϕ and alphabet
A = 〈Pκ, Q̇κ | κ ∈ C ⊆ ω2〉 with respect to ~ϕ, both in L, for every n < ω, for every
ordinal γ, and for every sequence of ordinals 〈δi | i < γ〉 with ω1,A ∈ Lδi :

(1) Each of the hulls H(ω2, i) = Hull
Lδi
n (ω1 ∪ {A}) exists, a bijection between

the hull and ω1 exists, and the sequence 〈H(ω2, i) | i < γ〉 exists.
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(2) The transitive collapse Mi of H(ω2, i), the collapse embedding ji, and its
inverse πi all exist, as do the corresponding sequences over i < γ.

(3) Let κi = ji(ω2) and suppose that κi ∈ C and the domain ρκi of Pκi is

contained in Mi, for each i. Then the rearranged poset name πi(Q̇κi)
exists, and so does the sequence 〈πi(Q̇κi) | i < γ〉.

(4) The function i 7→ κi and the sequence 〈〈πi[ρκi ], πi � ρκi〉 | i < γ〉 exist.
(5) If i 7→ κi as index function, 〈〈πi[ρκi ], πi � ρκi〉 | i < γ〉 as base function,

and 〈πi(Q̇κi) | i < γ〉 as the sequence of iterands satisfy the requirements
for determining a partition product based on A with respect to ~ϕ, then this
partition product exists.

Note that the complexity of these statements is independent of n; indeed, condition
(1) is expressed by a Σ1 formula with n among its variables.

We finish by proving Theorem 1.3.

Proof of Theorem 1.3. We force over L with Pω2
. By Lemma 6.8, Pω2

is a partition
product with domain γ(ω2), and by Remark 6.4, γ(ω2) = ω3 (we suppress mention
of the parameter A). Let us denote the sequence of names used to form Pω2 by

〈U̇γ : γ < ω3〉. Since Pω2
is a partition product based upon P � ω2 and Q̇, it is c.c.c.

Hence all cardinals are preserved. Since Pω2
has size ℵ3 and is c.c.c., it forces that

the continuum has size no more than ℵ3. However, Pω2
adds ℵ3-many reals, and

to see this, we first recall that by Remark 2.2, Pω2
is a dense subset of the finite

support iteration of the names 〈U̇γ : γ < ω3〉. Next, each U̇γ either names Cohen
forcing or one of the homogeneous set posets, and each of the latter adds a real.
Thus Pω2

forces that the continuum has size exactly ℵ3. We now want to see that
Pω2

forces that OCAARS holds.

Towards this end, let 〈Ṡ, χ̇〉 be a pair of Pω2
-names, where Ṡ names a countable

basis for a second countable, Hausdorff topology on ω1 and χ̇ names a coloring
which is open with respect to the topology generated by Ṡ. Let γ < ω3 so that
〈Ṡ, χ̇〉 is the (γ)0-th element under <L and so that 〈Ṡ, χ̇〉 is a Pω2

� (γ)1-name. Note

that 〈Ṡ, χ̇〉 is an element of H(ω2, γ) since, by Remark 6.4, γ is, and also notice that

H(ω2, γ) satisfies that 〈Ṡ, χ̇〉 is a Pω2 � γ-name. Let j denote the transitive collapse
map of H(ω2, γ) and let π := j−1 denote the anticollapse map. Set γ̄ := j(γ) and
κ := j(ω2), and observe that by Lemma 6.6, j collapses H(ω2, γ) onto Lδγ̄(κ), and
γ(κ) = γ̄ + 1. The latter implies that Pκ = Pκ � γ̄.

We will be done if we can show that G adds a partition of ω1 into countably-
many χ̇[G]-homogeneous sets, and towards this end, let G be V -generic over Pω2

.

We use Gγ to denote the generic G adds for U̇γ [G � γ] over V [G � γ]. Set Ḡ to
be j [(G � γ) ∩H(ω2, γ)], and observe that Ḡ is generic for the poset j(Pω2

� γ) =
Pκ � γ̄ = Pκ over Lδγ̄(κ). Since Pκ is c.c.c. and Lδγ̄(κ) is countably closed, Ḡ is also
V -generic over Pκ. In particular, π extends to a Σk elementary embedding

π∗ : Lδγ̄(κ)[Ḡ] −→ Lδγ(ω2)[G],

and since crit(π∗) > ω1, we see that Ṡ[G] = j(Ṡ)[Ḡ] and χ̇[G] = j(χ̇)[Ḡ].

By the elementarity of π∗ and absoluteness, 〈j(Ṡ), j(χ̇)〉 is the (γ̄)0-th element
under <L and is a pair of Pκ-names where the first coordinate names a countable
basis for a second countable, Hausdorff topology on ω1 and the second names a
coloring which is open with respect to the topology generated by that basis. By
the construction of Q̇κ, this means that Q̇κ names the poset to decompose ω1 into
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countably-many j(χ̇)-homogeneous sets with respect to the preassignment ḟκ. Thus

forcing with Q̇κ[Ḡ] adds a decomposition of ω1 into countably-many j(χ̇)[Ḡ] = χ̇[G]-

homogeneous sets. We will be done if we can show that G adds a generic for Q̇κ[Ḡ].

To see this, we recall from Case 2 of the construction that U̇γ is the π � ρκ-

rearrangement of Q̇κ. Moreover, as also described in Case 2, Lemma 2.22 applies.
Thus Q̇κ[Ḡ] = U̇γ [G]. Gγ is therefore V [G � γ]-generic for Q̇κ[Ḡ], which finishes
the proof. �

We wrap up by sketching a proof of Theorem 1.4.

Proof Sketch of Theorem 1.4. We first describe how to build the names on the se-
quence Q̇. The only modification to the construction for the previous theorem is
that if, in Case 1 above, the (γ)0-th element under <L names a Knaster poset of

size ℵ1, then we set Q̇κ to be this Knaster poset. With this modification to the
sequence Q̇, we still maintain the recursive assumption that for each κ ∈ C, any

partition product based upon P � κ and Q̇ � κ is c.c.c.; this follows by Lemma 2.26,
Lemma 2.20, and since the product of Knaster and c.c.c. posets is still c.c.c.

Now we want to see that forcing with this modified Pω2 gives the desired model.
The proof that the extension satisfies OCAARS and 2ℵ0 = ℵ3 is the same as before.
To prove that it satisfies FA(ℵ2,Knaster(ℵ1)), suppose that K̇ is forced in Pω2 to

be a Knaster poset of size ℵ1. We may assume without loss of generality that K̇
is forced to be a subset of ω1. Fix γ so that (γ)0 codes K̇, making γ large enough

so that K̇ is a (Pω2
� γ)-name and so that all the dense sets we need to meet

belong to V [G � γ]. Next, arguing as in the proof of Theorem 1.3, we have κ < ω2,
j : H(ω2, γ) −→ Lδγ̄(κ), and an extension

π∗ : Lδγ̄(κ)[Ḡ] −→ Lδγ(ω2)[G � γ]

of the inverse π of j. By the modified Case 1 construction we have that Q̇κ = j(K̇).

By Case 2 in the construction of Pω2
, U̇γ is the rearrangement of Q̇κ by π � ρκ.

However, by the final clause in Lemma 2.22, and since Q̇κ names a poset contained
in ω1 < κ = crit(π), this rearrangement is exactly π(Q̇κ) = K̇. So Gγ is generic for

K̇[G � γ] over V [G � γ], and hence Gγ is a filter in V [G] for K̇[G � γ] which meets
the desired dense sets. �
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