
Math 33A, Midterm 1 solutions

1. We first write the augmented coefficient matrix and then perform Gauss-Jordan elimi-
nations (row operations):

(
1 2 −1 2 | 3
3 6 −1 0 | 5

)

subtract 3 times row I from row II(
1 2 −1 2 | 3
0 0 2 −6 | −4

)

divide row II by 2(
1 2 −1 2 | 3
0 0 1 −3 | −2

)

add row II to row I(
1 2 0 −1 | 1
0 0 1 −3 | −2

)

From the RREF we see that variables y and w are going to be arbitrary parameters,
while x and z are going to be expressed in terms of these parameters. We successively
write:

w = s, z = 3s− 2, y = t, x = −2t + s + 1,

for arbitrary real parameters s and t. We can also write the solution in the form




x
y
z
w


 =




−2t + s + 1
t

3s− 2
s


.

2. The result is: 


0 −1 −2
1 2 3
2 5 8




3. First observe that

A =

(
1
2

−
√

3
2√

3
2

1
2

)
=

1

2

(
1 −√3√
3 1

)

although this is not crucial and we could have left A in the trigonometric form. Now
we compute both products:

BA =
1

2

(
a b
c d

)(
1 −√3√
3 1

)
=

1

2

(
a + b

√
3 −a

√
3 + b

c + d
√

3 −c
√

3 + d

)

AB =
1

2

(
1 −√3√
3 1

)(
a b
c d

)
=

1

2

(
a− c

√
3 b− d

√
3

a
√

3 + c b
√

3 + d

)

1



Comparing corresponding entries in the first column, we obtain a+ b
√

3 = a− c
√

3 and
c + d

√
3 = a

√
3 + c, which gives b = −c and d = a. In that case entries in the second

column are automatically equal. We conclude that B has the form

B =

(
a −c
c a

)

for arbitrary numbers a and c.

As in class we conclude that this matrix represents the composition of a rotation and
a dilation. To see this, it is enough to take r =

√
a2 + c2, and find an angle θ so that

a = r cos θ, c = r sin θ. Then we have:

B =

(
r 0
0 r

)(
cos θ − sin θ
sin θ cos θ

)
.

4. We perform the algorithm given in class:



1 1 1 | 1 0 0
3 2 0 | 0 1 0
0 0 1 | 0 0 1




subtract 3 times row I from row II


1 1 1 | 1 0 0
0 −1 −3 | −3 1 0
0 0 1 | 0 0 1




multiply row II by −1


1 1 1 | 1 0 0
0 1 3 | 3 −1 0
0 0 1 | 0 0 1




subtract row II from row I


1 0 −2 | −2 1 0
0 1 3 | 3 −1 0
0 0 1 | 0 0 1




add 2 times row III to row I
subtract 3 times row III from row II


1 0 0 | −2 1 2
0 1 0 | 3 −1 −3
0 0 1 | 0 0 1




Therefore the inverse is: 

−2 1 2
3 −1 −3
0 0 1


.

5. The transformation A maps an arbitrary point

(
x
y

)
to a point

(
x′

y′

)
on the line

y = 3x. (We do not need the actual formula for x′ and y′.) Since the two lines are

perpendicular, B maps every point from the line y = 3x to

(
0
0

)
, and in particular it

maps

(
x′

y′

)
to the origin

(
0
0

)
.
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In short, we can write (
x
y

)
A7→

(
x′

y′

)
B7→

(
0
0

)
.

Since the matrix product BA corresponds to the composition of A followed by B, we
conclude

BA

(
x
y

)
=

(
0
0

)
,

and BA must be the zero-matrix 0, i.e.

BA =

(
0 0
0 0

)
.

6. The transformation A maps an arbitrary point

(
x
y

)
to some point

(
x′

y′

)
, and then

B maps it further to some point

(
x′′

y′′

)
.

0
0( )

_
3

1_

( )

)(

)(

y=3x

y=      x

y''
x''

y'
x'

y
x
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In short, we can write (
x
y

)
A7→

(
x′

y′

)
B7→

(
x′′

y′′

)
.

Since the two lines are perpendicular, we see from the picture that these 3 points are
vertices of a right-angled triangle and that the origin is at the midpoint of its hypotenuse.
Thus (

x′′

y′′

)
= −

(
x
y

)
=

( −x
−y

)
.

Since the matrix product BA corresponds to the composition of A followed by B, we
conclude

BA

(
x
y

)
=

( −x
−y

)
,

so BA is the rotation by 180◦. Now we can write the matrix:

BA =

(
cos(180◦) − sin(180◦)
sin(180◦) cos(180◦)

)
=

( −1 0
0 −1

)
.

This can also be seen from

BA

(
x
y

)
=

( −x
−y

)
=

( −1 0
0 −1

)(
x
y

)
.

7. (a) An example of such matrix is A =

(
0 1
0 0

)
. To verify the property we first find

the kernel by solving the linear system

(
0 1
0 0

)(
x1

x2

)
=

(
0
0

)

Its solution can be read off immediately:

(
x1

x2

)
=

(
t
0

)
= t

(
1
0

)
,

so

kernel(A) = span

(
1
0

)
.

On the other hand

A

(
x1

x2

)
= x1

(
0
0

)
+ x2

(
1
0

)
= x2

(
1
0

)
,

so also

image(A) = span

(
1
0

)
.
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(b) Here we have to find a linear system whose solution is




x1

x2

x3


 = t




5
2
3


 =




5t
2t
3t


.

From the last row we read off t = 1
3
x3 so that x1 = 5t = 5

3
x3, and x2 = 2t = 2

3
x3.

This system can be written more nicely as

{
3x1 − 5x3 = 0

3x2 − 2x3 = 0

and corresponds to the matrix (i.e. linear transformation)

T =

(
3 0 −5
0 3 −2

)
.

8. We first write the augmented coefficient matrix and then perform Gauss-Jordan elimi-
nations (row operations):




1 1 1 | 1
1 2 k | 2
1 4 k2 | 3




subtract row I from row II
subtract row I from row III


1 1 1 | 1
0 1 k − 1 | 1
0 3 k2 − 1 | 2




subtract row II from row I
subtract 3 times row II from row III


1 0 −k + 2 | 0
0 1 k − 1 | 1
0 0 k2 − 3k + 2 | −1




Let us observe that k2 − 3k + 2 = 0 has the solutions k = 1 and k = 2.

Case 1. k 6= 1, 2
In this case we can divide the third row by k2− 3k + 2, and then use the obtained
1 to annihilate all other elements in the third column. The first 3 columns of
the RREF are thus the identity 3 × 3 matrix, and so the system has a unique
solution.

Case 2. k = 1 or k = 2
For both of these values of k the last row of RREF reads

(
0 0 0 | −1

)
,

which shows that the system is inconsistent, i.e. has no solutions.
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9. Let −→v1 ,
−→v2 ,

−→v3 be columns of A, i.e. A = [−→v1
−→v2
−→v3 ].

Since A




0
0
1


 is just −→v3 , from the first equation we get −→v3 =




2
1
0


 .

After that, since A




3
0
1


 = 3−→v1 +−→v3 , we obtain from the second equation

−→v1 =
1

3




0
0
1


− 1

3
−→v3 =

1

3




0
0
1


− 1

3




2
1
0


 =



−2

3

−1
3

1
3


.

Finally, from A




2
1
0


 = 2−→v1 +−→v2 , and the third equation we get:

−→v2 =




3
0
1


− 2−→v1 =




3
0
1


− 2



−2

3

−1
3

1
3


 =




13
3
2
3
1
3


.

Therefore

A =



−2

3
13
3

2

−1
3

2
3

1
1
3

1
3

0


.

10. The line y = 5x is spanned (determined) for instance by the vector −→w =

(
w1

w2

)
=

(
1
5

)
. The general formula for the matrix of the orthogonal projection onto the line

spanned by −→w is
1

w2
1 + w2

2

(
w2

1 w1w2

w1w2 w2
2

)
,

so in our particular case the matrix becomes

1

26

(
1 5
5 25

)
=

( 1
26

5
26

5
26

25
26

)
.

This can also be derived using the formula for the orthogonal projection:

proj−→w (−→v ) =
1

|−→w |2 (−→v ·−→w )−→w .

V.K.
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