All questions have equal value.

1. For this problem, work in ZF (ZFC minus the Axiom of Choice). If κ is a cardinal number and X is a set, then $\mathcal{P}_{\kappa}(X)$ is the set of all subsets of X of size $<\kappa$. Suppose that $f: \mathcal{P}_{\omega_{1}}(\mathbb{R}) \rightarrow \mathbb{R}$ is one-to-one. Prove that there exists a sequence of ω_{1} distinct reals.
2. A subset X of a limit ordinal α is stationary in α if X meets every closed, unbounded subset of α. Let κ be a regular cardinal and let $X \subseteq \kappa$ be stationary in κ. Let M be a transitive class model of ZFC such that $X \in M$. Prove that X is stationary in κ in M.
3. Assume $V=L$. Define $\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ as follows. Let A_{α} be the $<_{L^{-}}$ least $A \subseteq \alpha$ such that $(\forall \beta<\alpha) A \cap \beta \neq A_{\beta}$ if such an A exists and let $A_{\alpha}=\emptyset$ otherwise. Prove that for all $A \subseteq \omega_{1}$ there exists an $\alpha<\omega_{1}$ such that $A \cap \alpha=A_{\alpha}$.
4. As with problem 1, work in ZF. Let $\mathrm{AC}^{\mathrm{fin}}$ be the restriction of the Axiom of Choice to collections of finite sets. Prove that the Compactness Theorem of model theory implies $\mathrm{AC}^{\mathrm{fin}}$.
5. Let $S(n)=n+1$ for $n \in \omega$. Prove that the theory of (ω, S) is not finitely axiomatizable.
6. Let $\kappa=\omega_{1}$ and let $T=\operatorname{Th}\left(V_{\kappa}, \in\right)$. Prove that there is no saturated countable model of T.
7. Let A be an infinite recursively enumerable set. Show that $\left\{e \mid W_{e}=A\right\}$ is many-one complete for Π_{2}. (W_{e} here is the e th r.e. set in some standard enumeration.)
8. Let $\operatorname{Prov}\left(v_{1}, v_{2}\right)$ represent in Peano Arithmetic (PA) the set of all pairs (a, b) such that a is the Gödel number of a sentence τ and b is the Gödel number of a proof of τ from the axioms of PA. Let σ be gotten from the Fixed Point Lemma applied to $\forall v_{2} \neg \operatorname{Prov}\left(v_{1}, v_{2}\right)$. In other words, let σ be a sentence such that $\operatorname{PA} \vdash\left(\sigma \leftrightarrow \forall v_{2} \neg \operatorname{Prov}\left(\mathbf{k}, v_{2}\right)\right)$, where k is the Gödel number of σ. Let T be the theory gotten from PA by adding $\neg \sigma$ as an axiom. Show that T is ω-inconsistent: that there is a formula $\psi\left(v_{1}\right)$ such that $T \vdash \exists v_{1} \psi\left(v_{1}\right)$ and $T \vdash \neg \psi(\mathbf{n})$ for each numeral n.
