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Abstract: We study the 1D contracting Stefan problem with two moving boundaries that describes

the freezing of a supercooled liquid. The problem is borderline ill–posed with a density in excess

of unity indicative of the dividing line. We show that if the initial density, ρ0(x) does not exceed

one and is not too close to one in the vicinity of the boundaries, then there is a unique solution

for all times which is smooth for all positive times. Conversely if the initial density is too large,

singularities may occur. Here the situation is more complex: the solution may suddenly freeze

without any hope of continuation or may continue to evolve after a local instant freezing but,

sometimes, with the loss of uniqueness.

1 Introduction

The dynamical behavior of certain systems that are out of equilibrium has been described since
time immemorial by a free boundary problem known as the Stefan equation. In the simplest
case, namely d = 1 and a single boundary, the classical description consists of a function ρ(x, t)
and a boundary L(t): For x > L(t), ρ obeys the diffusion equation, typically with vanishing
Dirichlet boundary conditions at x = L(t). Furthermore there is a Stefan condition which relates
the motion of the (free) boundary to the flux of ρ at L(t) i.e. L̇ = ϑ∇ρ(L, t). It is emphasized
that the sign of ϑ is seminal: Indeed, ϑ = −1 corresponds to a melting – and receding –
boundary and is readily handled as a generalized non–linear diffusion problem (c.f. [12]) which
is inherently stable. By contrast, ϑ = +1 corresponds to a freezing boundary which encroaches
on the interior. In particular, the problem is borderline ill posed: Despite the Dirichlet boundary
condition at L(t), if the initial density gets “too large”, there are circumstances where there is
no classical solutions; see [4]. Also see [10] and [11] respectively for finite time blow-up of one
dimensional solutions and singularity development of multi-dimensional solutions. A possible
regularization scheme for these problems has been discussed in [7].

For the melting problem there has been a vast literature (c.f. the book [13]): in particular in
one dimension there exists a unique classical solution under the mere condition that the initial
data is integrable (c.f. [12]). For the freezing problem with Dirichlet boundary condition, the
existence and uniqueness of classical solutions which last as long as the free boundary speed
stays finite, are shown in [6] for small initial data. Using integral transformation methods, [2]
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establishes existence of weak solution for 0 ≤ t ≤ T given the information that the solution
at t = T is regular. Some related topics were treated in [9] and [8] in the context of the two-
phase Stefan problem which, in a certain sense, is a generalization of the problem considered
here. In particular existence (but not uniqueness) as well as certain regularity properties were
established. All of the above mentioned concerns only the problem of a single boundary.

The problem of a single boundary – the one–sided problem – was studied in [4] (and also [3]).
Here, the underlying “scheme” was based on stochastic particles obeying exclusion dynamics
and existence of weak solutions was straightforward. Moreover due to the exclusion interactions
the pivotal nature of critical density was, to an extent, elucidated. In the work [4] it was found
that for the problem on [L0, a] with ρ0 = ρ(x, 0) satisfying ρ0 ≤ 1 – and less than some c0 < 1 in
a neighborhood of L0, there is a unique solution to the augmented weak version (c.f. discussion
below) of this Stefan equation which, for t > 0, is C∞. By contrast, in some cases when these
stipulations on the initial conditions are violated, (e.g. the mild circumstances that the average
of the density exceed one and that the density at x = a is always as large as the maximum initial
value) there is no classical solution: The boundary reaches a particular point at a particular
time and then “disappears”, sometimes with no possibility for a continuation of the solution.

While the one–sided problems were studied in [4] and [3], they were actually an auxiliary
device to examine a certain two–sided problem. In particular, there was a second boundary R(t)
with R0 = R(0) > L0. In the aforementioned references, where the conditions at the boundaries
were motivated by the study of certain 2D interfaces, the boundary condition at x = R(t) was
ρ(R, t) ≡ 1 and here Ṙ = −∇ρ(R, t). It is noted that, with the initial density in [0,1] this
exactly the analog of the condition on the left under the exchange ρ→ 1− ρ. On occasion this
will be referred to as the zero–one Stefan problem. Due to the afore-mentioned symmetry and
certain inherent monotonicities, an essentially complete analysis of the zero-one problems was
possible in [3] and [4]. However the boundary condition on the right is not pertinent for the
study of a single (simple) fluid that has become supercooled. And, it turns out, the zero–one
boundary conditions are seminal in the monotonicity based approach of [4]. Thus, an analysis
of alternative forms of the two–boundary 1D Stefan problem will require the introduction of
additional techniques.

In this note we will study the two–sided problem in its own right: the zero–zero Stefan
problem. While this problem may be devoid of any immediate applications to 2D interfaces, it
is manifestly relevant for the description of a supercooled liquid in a 1D context. The formal
description of the problem, at the classical level, is provided by a triple: 〈ρ(x, t), L(t), R(t)〉
with

L0 = L(0) ≤ L(t) ≤ R(t) ≤ R(0) = R0, and ρ(x, 0) = ρ0(x)

satisfying the free boundary problem
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ρt −∆ρ = 0 in {(x, t)|L(t) < x < R(t), t ≥ 0}

ρ(L(t), t) = 0, L̇(t) = ρx(L(t), t)

ρ(R(t), t) = 0, Ṙ(t) = ρx(R(t), t).

(1.1)

The weak version of this system actually involves two functions ρ and a the second of which
may be interpreted as the enthalpy. The weak equation which – formally – accounts for all the
conditions at the boundaries is simply∫ R0

L0

[a(x, s)G(x, s)− ρ0(x)G(x, 0)]dx =
∫ R0

L0

∫ s

0
[a(x, t)Gt(x, t) + ρ(x, t)Gxx(x, t)] dtdx, (1.2)

where G(x, t) is any smooth function and, it is tacitly assumed, ρ0 is supported in [L0, R0].
Thus: a solution to the weak equation is a pair 〈a, ρ〉 of L1

loc([L0, R0] × [0,∞)) which, for
a.e. time s satisfies Eqn.(1.2). What is not evident in the above formulation is the presumed
existence of two regions: one where a ≡ 1 and where ρ vanishes and another where a = ρ.
Thus, a moving boundary e.g. L(t) is a dividing point between these the two regions. In this
formulation, the region of a = ρ is the (remaining) supercooled fluid while a ≡ 1 represents the
equilibrium crystal or fluid. Since, as it turns out, there is overall conservation of a (as is seen
by using G ≡ 1 in Eqn.(1.2)) it is already clear from the weak formulation – where a(x, t) has
the interpretation of enthalpy – that ρ > 1 spells a potential for irregular behavior.

It should be stressed that Eqn.(1.2) or its one-sided analogue (see [4], Eqn. (2.1)) on its own
is an underdetermined system. Pertinently, the nature of a(x, t) when a 6= ρ leads to drastically
different behaviors in the solutions. Consider, for example, the one-sided problem on [0, `] with
` > 1, initial density ρ0 = x and fixed boundary data ρF (l, t) = `. The weak equation can be
augmented with the auxiliary stipulation that for x < L(t) (where a 6= ρ) a ≡ 2, just as easily
as a ≡ 1. Both systems can be produced by limits of particle models and, it is emphasized,
both satisfy the one–sided version of Eqn.(1.2). In the later case a smooth solution exists up
to the time when the free boundary reaches `, and in the former case there is a catastrophic
discontinuity of the interface well before it reaches the terminal point. At this time it does not
seem that there is a reasonable mathematical description of the behavior after this blow-up.

The sort of issue illustrated above is not the only source of non-uniqueness in the system
(1.2) or its one-sided analogue. In [4] various hypotheses were spelled out which appear to be
required. It is (re)emphasized that all the hypotheses below are satisfied by continuum limits
of the particle system studied in [3] and [4]; similar to the above, additional particle systems
can be constructed which (in the limit) satisfy the same weak equation but modified versions
of these hypotheses leading to drastically different behaviors.
Hypotheses H.
• The function ρ(x, t) ≥ 0 for a.e. (x, t).
• Whenever ρ 6= a, then a ≡ 1.
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• For all t, the region {x | ρ(x, t) = a(x, t)} is simply connected.
In addition, for technical reasons we shall assume

◦ The function ρ0(x) (assumed measurable) satisfies 0 ≤ ρ0 ≤ 1 for a.e. x and is bounded away
from one in a neighborhood of L0 and a neighborhood of of R0

◦ There is a specific constant c0 and an ε0 such that, in the integral sense, the initial data is
less than c0 in all neighborhoods of the points L0, R0 that are of size less than ε0.

The outcome of this and the previous investigation is that under the stated conditions, there
are no solutions other than those produced by these particle systems. But on the other hand,
violation of these conditions most likely will produce other solutions – which in turn could be
implemented by other particle systems. There is further discussion of these matters in [4].

The final (technical) items of Hypotheses H are of a more technical nature. The first of these
is too strong – but something along these lines is genuinely required. This will be discussed in
the context of Lemma 4.1. As for the second, the value c0 that we use is certainly not optimal.
Again, some condition along these lines is required; it may be presumed that the “c0” employed
in [4] could be replaced by any constant smaller than unity. Here, for additional technical
reasons which will unfold below, the value of c0 will be smaller still.

The principal result can now be stated:

Theorem 1.1 Consider the 1D Stefan problem with two free boundaries as described in
Eqs.(1.1) – (1.2) and satisfying the hypotheses H. Then there is a unique solution to this
system. Moreover, the boundary speed is bounded by C max(1, t−1/2) where C <∞ depends on
the initial data. For positive times, the boundaries are C∞.

We close this section with an outline of the topics treated:

In Section 2, we define the separatrix x?, and derive a formula for its location; the point x? is
the ideal place to break the two–sided problem into a pair of one–sided problems where some
results [4] and [3] may be brought to bear. It is also proved in this section that, if ρ0 < 1,
there is no finite-time extinction for the unfrozen phase {ρ > 0}; indeed a neighborhood of x?

remains unfrozen at all times.

In Section 3, we define a map Φ – taking the set of boundary datum at x = x? into itself –
and demonstrate that, for a reasonable interval of times, Φ is a contraction map. We use the
contraction properties of the map Φ to provide a proof of Theorem 1.1 and also to establish
additional results.
In section 4 we discuss the onset of singularities when local averages of ρ0 are bigger than
one. Moreover we discuss possibilities of continuation of the boundary after a jump, sometimes
uniquely and sometimes non-uniquely.

We point out that our iteration scheme also applies to the zero–one Stefan problem studied
in [4], to provide existence and uniqueness results. Notwithstanding, the monotone scheme
constructed in [4] is simpler and provides additional stability to the problem in terms of flux
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order preservation (see Lemma 3.2 in [4]).
Finally we remark that, in the one–dimensional context, the current work covers any other

scenario involving multiple seeding points – a possible alternative to the third hypothesis.
Indeed the stipulation of n additional boundary seeds – intermediate between L0 and R0 –
simply breaks the system into n+ 1 decoupled problems of the type treated here.

2 The Separatrix

The model at hand has a well defined separatrix, namely an x? ∈ (L0, R0) with the property
(roughly speaking) that all the mass to the left of x? is transported to the left boundary and
the rest goes to the right. (Of course if ρ0 vanishes identically in a neighborhood of x? then
any other point in this neighborhood shares this property. Otherwise, x? is uniquely specified.)

We start with some definitions:
Definition For q ∈ (L0, R0) let Lq be defined by

Lq = L0 +
∫ q

L0

ρ0(x)dx. (2.1)

The quantity L0 has the interpretation as the location of the left boundary if all the material
in [L0, q] (and nothing else) is transported into the boundary region. Similarly

Rq = R0 −
∫ R0

q
ρ0(x)dx (2.2)

Next, we define the transports TL(q) and TR(q):

TL(q) =
∫ q

L0

(x− Lx)ρ0(x)dx = −1
2

(L2
q − L2

0) +
∫ q

L0

xρ0(x)dx (2.3)

and similarly

TR(q) =
∫ R0

q
(Rx − x)ρ0(x)dx =

1
2

(R2
0 −R2

q)−
∫ R0

q
xρ0(x)dx. (2.4)

Note that these objects are non–negative and indeed strictly positive unless e.g. ρ0 vanishes
a.e. on [L0, q]. These represent the amount of “transport currency” expended to get the specified
masses into the respective boundaries.

The characterization of the separatrix is as follows:

Lemma 2.1 Let TL(q), TR(q) etc. denote the quantities as described above. Then ∃ x? ∈
(L0, R0) that satisfies TL(x?) = TR(x?); unless ρ0 vanishes a.e. in a neighborhood of x?, the
point is unique (and otherwise the whole interval serves as the separatrix). Let 〈ρ, L,R〉 denote
a classical solution the the system in Equ.(1.1) and let L? = limt→∞ L(t) and similarly for R?.
Then x? has the following properties:
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(i) L? = Lx?.

(ii) TL(x?) = lim
t→∞

∫ x?

L0
x[a(x, t)− ρ0(x)]dx and similarly for TR(x?).

(iii) 0 = lim
T→∞

∫ T
0 ∇ρ(x?, t)dt.

Proof. We first establish that such an x? exists. Indeed for q = L0, TL = 0 and similarly for
TR at R0 while TL(R0) and TR(L0) are both seen to be positive. Since, manefestly, these are
continuous functions, the existence of an x? is established. Moreover

dTL
dq

= −Lq
dLq
dq

+ qρ0(q) = (Lq − q)ρ0(q) (2.5)

and similarly
dTR
dq

= (q −Rq)ρ0(q). (2.6)

The first of these is non–negative and the second non–positive – with everything strict un-
less ρ0(q) vanishes. Thus x? is unique modulo the possibility that ρ0 vanishes in an interval
containing x? – in which case anywhere in the interval suffices.

Next we note, after a small calculation, that

d

dt

∫ R0

L0

−xa(x, t)dx = − d

dt
[
1
2
L2 − 1

2
L2

0 +
∫ R

L
xρ(x, t)dx+

1
2
R2

0 −
1
2
R2] = 0 (2.7)

due to the Stefan conditions and boundary conditions at x = L and x = R. Thence

−1
2

(L2
? − L2

0) +
1
2

(R2
0 −R2

?) = lim
t→∞

∫ R0

L0

−xa(x, t)dx = −
∫ R0

L0

xρ0(x)dx. (2.8)

Moreover as mentioned earlier, there is mass conservation:

0 =
d

dt

∫ R0

L0

a(x, t)dx (2.9)

i.e.

(L(t)− L0) + (R0 −R(t)) +
∫ R(t)

L(t)
ρ(x, t)dx =

∫ R0

L0

ρ0(x)dx. (2.10)

In particular, (L? − L0) + (R0 −R?) =
∫ R0

L0
ρ0dx.

Now let q? satisfy L? = Lq? . Then, with the preceding in mind,

L? − L0 −
∫ q?

L0

ρ0(x)dx = 0 = R? −R0 +
∫ R0

q?

ρ0(x)dx (2.11)

so it follows that Rq? = R? as well. Similarly splitting the integral on the right hand side of
Equ.(2.8) at q? we find

TL(q?) = −1
2

(L2
? − L2

0) +
∫ q?

L0

xρ0dx =
1
2

(R2
0 −R2

?)−
∫ R0

q?

xρ0dx = TR(q?) (2.12)
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Evidently q? = x? (or belongs to the appropriate interval if ρ0 vanishes in a neighborhood of
q?) and we have proved item (i). Item (ii) follows immediatly from Equ.(2.12). To obtain item
(iii), we note that by mass conservation,

L(t)− L0 +
∫ x?

L
ρ(x, t)dx −

∫ x?

L
ρ0(x)dx =

∫ t

0
∇ρ(x?, t′)dt′. (2.13)

Taking t→∞ forces ρ(x, t)→ 0 and L(t) to L?. Using L? = Lx? = L0 −
∫ x?

L0
ρ0dx we conclude

that
0 =

∫ ∞
0
∇ρ(x?, t)dt. (2.14)

Remark 1. We remark (since L? = Lx? and ρ0 is not identically one) that R?−L? > 0. I.e. there
is always a gap between the boundaries with the separatrix lying strictly between. It is not
difficult to see that, if the solution stays regular, it will persist for all time. The situation is
therefore in sharp contrast to the one-side problems where, usually, the solution extinguishes
in finite time.

3 A contraction principle

Let x? (as defined in Lemma 2.1) be the separatrix; it is emphasized that if the classical solution
exists for all times then x? is the “actual” spot with all the properties described; in particular,
the moving boundaries are always a finite distance from x?. Below we will show that, under
the hypotheses H this is indeed the case and, in fact the classical solution is the unique weak
solution of (1.2). In greater generality, we show that the solution is unique as long as it is regular
e.g. with a finite propagation speed. All of this will be accomplished by the construction of a
contraction map Φ which is described as follows:

Consider the one-sided problem with fixed density at x = x? given by ρF (t). It is assumed
that ρF is non–negative and, temporarily, ρF (t) ≤ 1. Formally, this one–sided Stefan problem
reads 

ρt −∆ρ = 0 in {(x, t)|L(t) < x < x?, t ≥ 0}

ρ(L(t), t) = 0, L̇(t) = ρx(L(t), t)

ρ(x?, t) = ρF (t)

(3.1)

and, from our perspective, generates the left boundary L(t). A right boundary R(t) is produced
independently in the same fashion with the same ρF (t). We remark [3], [4] that (depending on
the large t behavior of

∫ t
0 ρF (s)ds) both problems “survive” up to particular times at which the

boundaries coincide with x?; c.f. Eqn.(3). This is most likely to be of secondary importance

7



since, ostensibly, we shall only be concerned with short times. However, for future technical
convenience we shall always restrict to time intervals t < T with T small enough so that on the
left, the boundaries never get further, then 1

2 [x? + L?] and similarly on the right.
The next step is to solve the heat equation in the domain

(L,R) := ∪
0<t<T

(L(t), R(t))× {t}

with Dirchlet conditions at the boundaries and ρ0 as the initial condition. Denoting this solution
by P (x, t), the mapping Φ is defined by

Φ(ρF (t)) = P (x?, t).

It is again stressed that the initial data ρ0(x) will be kept fixed throughout the construction
and iteration of the map Φ. The key result is as follows:

Proposition 3.1 Suppose that the initial data satisfies the relevant properties in hypotheses
H. Then there is a T0 > 0 such that Φ is a contraction map in L∞([0, T0]). The quantity T0

only depends only on c0, ε0, |L0 −R0| and sup ρ0.

For the proof, we shall borrow a result from [1]

Lemma 3.2 Let Σ = {(x, t) : x ≥ f(t)}, where f is Lipschitz with Lipschitz norm M and
with f(0) = 0. Suppose ρ(x, t) is a positive solution of the heat equation in Σ ∩ Q1, where
Qr = Br(0)×(−r, r), which vanishes on the boundary {x = f(t)} and further that ρ(1/2, 0) = 1.
Then there exist positive constants 0 < ε, δ < 1 , depending only on M and the supremum of ρ
in Q2, such that

ρ+ ρ1+ε is convex and ρ− ρ1−ε is concave in Qδ.

Proof. This is the 1D version of Lemma 5 in [1].

Proof of Proposition 3.1. For what is to follow, we shall let C denote a constant of order unity
whose value may evolve as the equations progress. Let σ(t), θ(t) be functions in [0, 1]. We
would like to show that

sup
0≤t≤s

|Φ(θ)(s)− Φ(σ)(s)| ≤ m(t) sup
0≤t≤s

|θ(s)− σ(s)| (3.2)

where m(t)→ 0 as t→ 0.
Let 〈ρσ, Lσ〉, 〈ρθ, Lθ〉 solve the one–sided Stefan problems on [L0, x

?] with initial value ρ0

and, respectively, lateral boundary data σ(t) and θ(t) at x = x?. As a consequence of [4],
Lemma 3.7, the boundaries are smooth, except at t = 0 and for all t, have boundary speed
bounded above by Ct−1/2. (Here C depends on c0 ε0 and, in general on the supremum of ρ0

which for present purposes can be taken as unity. Obviously, C only diminishes with c0 – and,
also, as ε0 increases.) In other words the domains under consideration are Lipschitz in time
with the parabolic scaling.

8



Suppose Lσ(t) ≤ Lθ(t). Then due to Lemma 3.2 we have

ρσ(Lθ(t), t) ≤ C
Lθ(t)− Lσ(t)

t1/2
ρσ(Lσ(t) + bt1/2, t) ≤ Cc0

L2(t)− L1(t)
t1/2

. (3.3)

where b is an intermediate constant. A parallel argument for the case Lσ ≥ Lθ therefore gives
us

max{ρσ, ρθ}(max{Lσ, Lθ}) ≤ Cc0
|Lσ(t)− Lθ(t)|

t1/2
(3.4)

We now let

K(t) := sup
0≤s≤t

(|Lσ(s)− Lθ(s)|), K2(t) := sup
0≤s≤t

|σ(s)− θ(s)|

and let
u(x, t) := |ρσ − ρθ|

First it is noted that u is a subsolution of the heat equation in the contracting domain Σ :=
(Lσ, x?) ∩ (Lθ, x?) with zero initial data and data on the left side lateral boundary which, by
Eqn.(3.3) is less than

Cc0t
−1/2|Lσ(t)− Lθ(t)|

and data at x = x? given by |σ(t) − θ(t)|. Hence u(x, t) is less than any nonnegative solution
v(x, t) of the heat equation in the domain Σ with these boundary conditions.

Next, we will use the explicit well-known formula for the Green’s function (see for example
p 87 in [5]):

w(x, t) :=
x√
4π

∫ t

0

1
(t− s)3/2

exp−
x2

4(t−s) g(s)ds (3.5)

so that w(x, t) solves the boundary Dirichlet problem in R+ × [0,∞):
wt − wxx = 0 in R+ × (0,∞)
w(0, t) = g(t) in {x = 0} × [0,∞)
w(x, 0) = 0.

For our purposes, we shall actually use two functions based on Eqn.(3.5) – one to account
for the data on the left and the other on the right. The two functions will be denoted by wD
and wx? respectively; wx? is just (the reflection of) the formula in Eqn.(3.5) with g given by
K2. As for wD, let D(τ) := max{Lσ(τ), Lθ(τ)}. Then, in the domain

{x > D(τ)} × [0, τ ]

we use Eqn.(3.5) as though all the data, c0Ct
−1/2K(t) occurred on the line x = D(τ). On the

basis of straightforward monotonicity/positivity considerations

9



v(x, t) ≤ wD(x, t) + wx?(x, t) in (D(τ), x?)× [0, τ ].

Let us proceed with some estimates: Suppose g(s) increases in time. Then, by a straightforward
computation,

w(x, t) ≤ g(t)
∫ t

0

x

(t− s)3/2
e−

x2

(t−s)ds

(z = x2

4(t−s)) ≤ g(t)
∫∞
x2/4t z

−1/2e−zdz

≤ g(t)e−x
2/4t.

Therefore
wx?(x, t) ≤ K2(t)e−

(x−x?)2

4t

and ∫ x?

L0
(x? − x)wx?(x, t)dx ≤ K2(t)

∫ x?−L0

0 ze−z
2/4tdz ≤ tCK2(t).

On the other hand, using t = τ (and D = D(t) as in the previous display) we have

∫
Σ(t)wD(x, t)dx ≤ Cc0

∫ x?

D

∫ t
0

x−D
(t− s)3/2

e−
(x−D)2

4(t−s) s−1/2K(s)dsdx

(z = x−D
4(t−s)1/2 ) ≤ Cc0

∫ t
0 (

∫∞
0 ze−z

2
dz)(t− s)−1/2s−1/2K(s)ds

≤ Cc0K(t)(
∫∞

0 ze−z
2
dz)(

∫ t
0 (t− s)−1/2s−1/2ds)

≤ c0CK(t),

where in the last step, having pulled out the K(t), what remains of the integral is of order unity
and independent of t.

Assume, temporarily for convenience, that the initial position of the left boundary was
L0 = 0. Due to above computations it follows that∫ x?

0 (x? − x)u(x, t)dx ≤ x?
∫

Σ(t)wD(x, t)dx+
∫ x?

0 (x? − x)wx?(x, t)dx

≤ x?Cc0K(t) + tK2(t)

On the other hand, ρσ(x, t) and ρθ(x, t) satisfy the transport equations, e.g.

x?Lσ(t)− 1
2
L2
σ(t) +

∫ x?

0
(x? − x)ρσ(x, t0) =

∫ t

0
σ(s)ds+

∫ x?

0
(x? − x)ρ0(x)dx.

(which may be obtained by plugging G(x, t) = (x? − x) into the weak formulation of the one-
phase Stefan problem). Therefore, by taking differences between these equations for ρσ and ρθ,
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and recalling that Lσ, Lθ ≤ 1
2 [x? + L?] we have

1
2

[x? − L?]|Lσ(t)− Lθ(t)| ≤
∫ x?

0
(x? − x)u(x, t)dx+

∫ t

0
|σ(s)− θ(s)|ds.

Taking the supremum for the left hand side and using above estimate on
∫ x?

0 (x? − x)u(x, t)dx,
we have

1
2

[x? − L? − c0Cx
?]K(t) ≤ 2tK2(t)

We now insist that, all along, c0 was small enough so that the coefficient of K is positive
and of order unity. We run a parallel argument for the right and redesignate K to mean the
maximum of the objects from the left and right. Thus, all in all we now have

K(t) ≤ CtK2(t). (3.6)

Lastly, let Pσ and Pθ respectively solve the heat equation in (Lσ, Rσ) and (Lθ, Rθ) with zero
lateral boundary data. Once again using (3.5) we obtain

|Pσ(x?, t)− Pθ(x?, t)| ≤ Ce−
d2

t K(t) (3.7)

where
d = min(|R? − x?|, |L? − x?|).

Equations (3.6) and (3.7) yields our claim, (3.2), with

m(t) = Ct

for sufficiently small t.

Next will use Proposition 3.1 to construct the unique solution of Eqn.(1.1) – or Eqn.(1.2)
for the initial data etc. satisfying hypotheses H.
Proof of Theorem 1.1. We start by fixing a T0 which, certainly, is small enough so that even with
ρF (t) ≡ 1, for the problem described in Eqn.(3.1), and its analog on the right, the boundaries
stay well away from x? as discussed earlier. Then, making T0 smaller still (if necessary) we can
guarantee that Φ is a contraction mapping in L∞([0, T0]). Starting then with some arbitrary
initial lateral data e.g. positive and not in excess of unity, we converge to some limiting density
and, as is clear from the fixed point property, and the estimates (e.g. Eqn.(3.6)) that have
preceded, this represents the density at x = x? of what is evidently the unique solution of
Eqn.(1.1) and/or Eqn.(1.2) for the interval [0, T0].

Now we iterate above process to extend the time interval during which the unique solution
exists. Let (L,R) denote the Stefan boundary of the unique solution for the time interval
0 ≤ t ≤ T . In [4] a bound of the form

sup
0≤t≤T

(|L̇|, |Ṙ|) ≤ C max{1, t−1/2}. (3.8)
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was established in the context of the “zero-one” two-sided problem described in the introduction.
(C.f. [4] Lemmas 3.10 – 3.11 and the formula following Eqn.(3.50).) For this problem, the
boundaries ultimately collide at a finite time T̃ and T < T̃ was introduced to ensure a finite
distance between the boundaries and thus C = C(T ). (Indeed, the boundary velocities again
become singular at the moment of collision.) Here, since the boundaries are always well apart,
we may take over the arguments of [4] directly with no T -dependence in the constant; we shall
omit the details.

Let T∞ be the maximum time extension one can obtain via the iteration process. If T∞ =∞
then we are done, so suppose T∞ is finite. Due to Eqn.(3.8) we have u(·, T∞) continuously vanish
on the boundary x = L(T∞), R(T∞). This enables us to iterate the process yet once more to
extend the solution on a slightly longer interval, contradicting the definition of T∞.

We now turn to some auxiliary problems where the hypothesis ρ0 ≤ 1 is relaxed. We shall
still assume bounded data and, for technical reasons previously discussed, that ρ0 ≤ c0 in the
neighborhood of the boundaries L0 and R0. However, it is worth mentioning that here c0 must
be adjusted “smaller still” to account for a larger sup ρ0. With this in mind:

Theorem 3.3 Suppose u(x, t) and v(x, t) are both solutions of (1.1) for 0 ≤ t ≤ T with ρ0

satisfying all the conditions stated in H except the condition ρ0 ≤ 1 replaced by ρ0 ≤ C0, and
with c0 adjusted accordingly. Further suppose that u(x, t) and v(x, t) have continuous boundaries
with vanishing lateral boundary value. Then u = v for 0 ≤ t ≤ T .

Proof. We start with the remark that, going all the way back to [3], the use of the condition
ρF ≤ 1 was for the constructive purpose of producing a solution. In the present context, the
existence of the solutions comes with the statement of the theorem. Using the fact that u and
v are fixed points of the mapping Φ and applying Proposition 3.1 over time intervals short
enough to guarantee the contraction property we realize, starting from t = 0, that u = v over
the whole time interval under consideration.

The above is used in conjunction with our final observation of this section:

Theorem 3.4 Let ρ0 be as in Theorem 3.3. Then there exists a unique continuous solution ρ

of (1.1) in the time interval [0, t2), where t2 ≥ t1(c0, ε0, C0). Moreover

t2 = sup{t : lim sup
x→L(t−),s→t−

ρ(x, s) < c0}.

Sketch of the proof. Consider points close to the initial boundary points L0 and R0 i.e. at
x = L0 + ` and R0 − r. By comparison with the solution of heat equation in [L0, R0]× [0,∞)
with initial data ρ0 we can guarantee that for a short time interval 0 ≤ t ≤ t0, where t0 =
t0(c0, ε0, C0), the solution of the heat equation in any domain with contracting boundaries is
less than one at points at x = L0 + 2` and R0− 2r, if ` and r is chosen small enough depending
on c0, ε0 and C0. We now apply a double-barrel version of the map Φ described earlier with
updates of the fixed boundary data at x = L0 + 2` and x = R0 − 2r.
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By comparison with the ρ ≡ 1 at x = L0 + 2` and x = R0−2r, we know that the amount of
time it takes for the boundaries to reach half-way (e.g. x = L0 + ` and x = R0− r) is uniformly
bounded from below throughout the iteration, depending on c0, ε0 and C0. Our stopping time
t1 is the earliest time the boundaries reach x = ` or x = r. The proof that, for some time
0 < t̃1 ≤ t1, there is a contraction follows, mutatis mutandis the proof of Lemma 3.1 and the
rest follows. Indeed via iteration process one can continue the solution up to the time that
the boundary jumps. Lastly, due to Theorem 1.1 the boundary will never jump up to t = t2:
indeed the density vanishes at the boundary.

Obviously at t = t2 the system is exhibiting some form of irregular behavior: these matters
will be discussed in the next section.

4 Irregular behavior

In this final section, we will provide illustrations (and stratagem) for circumstances where
the initial density is allowed to exceed the critical value of one. As illustrated in the preceding
results, these singularities are neither immediate nor inevitable – they come about if the density
gets large in the vicinity of the boundary. Indeed because of the Dirichlet condition at the
boundary, it is often enough the case that a certain excess of density can be processed which
will ward off the jump. Evidently it is a finite (i.e. sufficiently strong) excess that causes the
singularities and thus the situation is “complicated”: beyond the criterion of unit density, it is
unlikely that substantial progress towards characterization will be made.

4.1 Blow-up with an overloaded initial data

To demonstrate the borderline ill-posedness of the problem (1.1), here we discuss the cases
where the Stefan boundary disappears instantly (or the liquid instantly freezes) at some finite
time. This happens when the initial data has high density; in the current context, it is sufficient
that the average initial density exceeds unity, a situation that we call overloaded.

Lemma 4.1 Consider the problem as described in Eqn.(1.1) with initial density ρ0 ∈ L1 a
function with strictly positive overload, namely,∫ R0

L0

ρ0dx− (R0 − L0) = ∆ > 0

Then any solution of Eqn.(1.2) will exhibit non–classical behavior at a finite time.

Proof. Let ρ(x, t) denote the purported solution and let ϕ(x, t) denote the solution of the
diffusion equation with the same initial conditions but with fixed boundaries L ≡ L0, R ≡ R0

at which ϕ vanishes. Then, ϕ ≥ ρ and, moreover,
∫ R0

L0
ϕ(x, t)dx→ 0 at large times. By material
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conservation, ∫ R

L
ρ(x, t)dx− (R(t)− L(t)) =

∫ R0

L0

ρ0(x)dx− (R0 − L0) = ∆ > 0 (4.1)

Thence

∆ + (R(t)− L(t)) =
∫ R

L
ρ(x, t)dx ≤

∫ R

L
ϕ(x, t)dx→ 0 (4.2)

which is obviously impossible. Thus, at some finite time there will be an exhibition of non–
classical behavior.

4.2 Local overload without global overload.

Here we construct an example where
∫ R0

L0
ρ0dx < R0 − L0 but the solution has a jump. This

demonstrates that the phenomena under discussion is genuinely an immediate response to stress
and not caused by some sort of “violation” of global constraints.

As a background, we recapitulate a result from [4] Lemma A.3: Suppose we have the one-
phase Stefan problem on [0, 1] × [0,∞] with L0 = 0, fixed boundary data ρF (t) at x = 1 and∫ 1

0 ρ0(x)dx > 1. Then, it turns out, that if ∇ρ(1, t) ≥ 0 for all t > 0 (which is easily arranged)
then, at some finite time before the boundary reaches x = 1, the solution “vanishes”.

Consider then an initial density ρ0 supported in [0, R0], where

ρ0(x) =

{
M(9− (x− 3)2); for 0 ≤ x ≤ 3,
max[M(9− (x− 3)2), ε0]; for 3 ≤ x ≤ R0

with a sufficiently small constant ε0.

Lemma 4.2 If M and R0 are chosen sufficiently large then the left Stefan boundary, associated
with the initial data ρ0 given above, jumps before it reaches x = 1.

Proof. Let ρ(x, t) be the corresponding solution of Eqn.(1.1) with initial data ρ0. Also let (L,R)
denote the Stefan boundary. Set R0 ≥ 6 large enough that L reaches x = 1 before R reaches
x = 3.
Let T = T (M,R0) be the time that L reaches x = 1. Note that and T → 0 as M →∞ and T

stays bounded as R0 →∞. Also observe, by fiat, that (1, 3) ⊂ (L(t), R(t)) for 0 ≤ t ≤ T .
Now suppose that the boundary moves continuously up to t = T . If M is large enough such

that T is sufficiently small, then we claim that

∇ρ(2, t) ≥ 0 for 0 ≤ t ≤ T. (4.3)

To prove the claim, first note that, due to interior regularity estimate for solutions of heat
equation (for example see Theorem 9 in Chapter 2.3 of [5]),

|∇ρ|(x, t) ≤ CMt−1/2 in Σ := (
3
2
,
5
2

)× [0, T ].
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Hence ∇ρ solves the heat equation in Σ with initial data −2M(x−3) ≥M and lateral boundary
data of size less than Mt−1/2. Considering the heat kernel formula using the fact that x = 2
is a fixed distance away from the lateral boundaries of Σ, we conclude that if T is sufficiently
small then (4.3) holds.

Now, of course ∇ρ also satisfies the heat equation in the larger (moving) domain

∪
0≤t≤T

(L(t), 2)× {t}.

Moreover it is positive at t = 0 and cannot be negative at x = L(t) so it follows from Eqn.(4.3)
that ∇ρ(1, t) ≥ 0 for all t ∈ [0, T ]. But now, assuming that M is already large enough so that∫ 1

0 ρ0dx > 1, we are in the domain of Lemma A.3 in [4] which takes us to the desired result.
Finally, it is noted that R0 can be chosen as large as we want. So, in particular we can

choose R0 so that there is no global overload:
∫ R0

0 ρ0(x) < R0 .

4.3 Continuation of the solution after a jump.

Here we show that the Stefan boundary may continue to evolve after a finite jump. Let us
further discuss the example from the previous subsection. Keep in mind that M and R0 can be
chosen as large as we want, and the upper bound of T only depends on M (once R0 is large).
For this example, consider the weak equation, Eqn.(1.2) at time s1 subtracted from that at
time s2 > s1∫ R0

L0

[a(x, s2)G(x, s2)− a(x, s1)G(x, s1)]dx =
∫ R0

L0

∫ s2

s1

[a(x, t)Gt(x, t) + ρ(x, t)Gxx(x, t)] dtdx.

In the example from the previous subsection suppose the left boundary jumps from A =
L(t−0 ) to B = L(t+0 ) > A at t = t0. From the above equation, it is not hard to see that ρ(x, t)
needs to satisfy ∫ B

A

ρ(x, t−0 )dx = B− A. (4.4)

Indeed, assuming for simplicity that ρ is classical before and after the jump. Then a(x, t)
and ρ(x, t) satisfy Eqn.(1.2) iff ρ satisfies Eqn.(1.1) for 0 ≤ t < T and t > T with the additional
condition in Eq.(4.4). So, the problem of resolving the jumps boils down to the question of
whether or not we can find a spot B > A at which Eqn.(4.4) holds. It is not hard to see that in
the cases with global overload, (or the example Lemma A.3 of [4]) no such B exists.

Going back to our example, via a barrier argument we see that ρ(·, T ) < 2ε0 at the time
of jump t = T in [1

2R0, R0] if R0 is large enough compared to M . Also we showed that the
boundary jump occurs before the left boundary hits x = 1. Next, via comparison with solution
of heat equation in the cylindrical domain in [1, 4]× [0, T ] with initial data M(x− 1), it can be
deduced that ρ(x, T ) ≥ b0M(x − 1) in [2, 3] where b0 is a universal constant. Therefore then∫ 3

2 ρ(x, t) ≥ b0M at t = T .
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L0 R0

!
0(x)

Figure: Initial data with non-unique, discontinuous Stefan boundaries in near future

The following lemma, whose proof we postpone to the end of the section, gives us a better
idea for the profile of ρ at t = T : in fact the lemma yields that there is a unique spot where
the boundary may jump and continue itself.

Lemma 4.3 ∇ρ ≤ 0 in the region [4,∞)× [0 ≤ t ≤ T ].

Thanks to above lemma, ρ(·, T ) is large in [2, 3] but decreases in [4, R0] and stays near ε0 in
[6, R0]. Therefore if R0 is sufficiently large compared to M and if ε0 > 0 is small, there exists
a unique point x0 ∈ [3, R(t)] such that

(x0 − A)−1

∫ x0

A

ρ(x, T )dx = 1.

Note that 0 ≤ A ≤ 1 and thus

1 = (x0 − A)−1

∫ x0

A

ρ(x, T )dx ≥ (x0 − A)−1

∫ 3

1
ρ(x, T )dx ≥ 2c0

3(x0 − A)
M

we obtain that 2
3c0M + A ≤ 2

3c0M ≤ x0.
Now, via comparison with the global solution with initial data ρ0, we obtain that

ρ(x0, T ) ∼M exp−M/T .

Hence if M is sufficiently large, one can continue this solution.

Remark 2. Note that there may be more than one way to continue the left boundary, demon-
strating non-uniqueness of solutions; for example imagine that we attach additional initial mass
ρ0 = M for R0 ≤ x ≤ R0 + 2 and ρ0 = ε0 for 2R0 ≤ x ≤ 4R0 and so on (see Figure above)
to create a bumpy initial data. Then there will be multiple points x0 at which (4.4) holds and
where the solution can be continued. Moreover, in the present context, extra work has to be
done to ensure that the c0–condition is satisfied when/where the classical solution is ready to
recommence. This technical condition could presumably be removed and, as a consequence,
non–uniqueness in these systems is in fact generic. The problem of a natural selection principle
for this problem is currently under investigation by the authors.
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Proof of Lemma 4.3 Note that ∇ρ solves the heat equation in Σ := ∪0<t≤T [4, R(t)]×{t} with

∇ρ0 ≤ −M for 7/2 ≤ x ≤ 6− o(ε0) and ∇ρ0 = 0 for x ≥ 6− o(ε0).

Since ε0 is chosen sufficiently small and C1 is sufficienty large, the right Stefan boundary R(t)
moves continuously at least for 0 ≤ t ≤ T ; in factR(t)−R(0) = ε0O(t1/2). Therefore ρ(R(t), t) =
0 and ∇ρ(R(t), t) ≤ 0 for 0 ≤ t ≤ T . Consequently it suffices to prove that

∇ρ(x, t) ≤ 0 at {x = 4} × [0, T ]. (4.5)

To prove (4.5), note that, via integration by part using Stefan boundary condition,∫ t

0
∇ρ(7/2, s)ds ≤

∫ ∞
7/2

(ρ0(x)− ρ(x, t))dx+R(0)−R(t) ≤MO(t1/2) + ε0O(t1/2) (4.6)

(In the last inequality, the term MO(t1/2) bounds the diffusion of the solution, and the second
term bounds R(0)−R(t).)

Now let us write ∇ρ = u1 + u2, where u1 solves the heat equation in Σ with initial data
zero and lateral boundary data u1 = ∇ρ at x = 2, x = R0. Since R0 is large, using (3.5) and
(4.6) a striaghtforward computation yields that

u1(4, t) ≤MO(t−1 exp−1/2t).

On the other hand, by comparing u2 with solutions of the heat equation in [5/2, C1] × [0, T ]
with initial data −Mχ2≤x≤7/2 and lateral boundary data zero one obtains

u2(3, t) ≤ −M +MO(t1/2).

Putting above estimates together, we conclude that ∇ρ(3, t) stays negative for 0 ≤ t ≤ T if
T is sufficiently small. This concludes the lemma. �
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[8] I. G. Götz, M. Primicerio and J.J. L. Velázquez, Asymptotic behaviour (t → +0) of the
interface for the critical case of undercooled Stefan problem. Atti Accad. Naz. Lincei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 2, 143–148.
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