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Abstract

In this paper we investigate the regularizing behavior of two-phase Ste-

fan problem near initial Lipschitz data. A description of the regularizing

phenomena is given in terms of the corresponding space-time scale.

1 Introduction

Consider u0(x) : BR(0) → IR with R >> 1 and u0 ≥ −1, |{u0 = 0}| = 0 and
u0(x) = −1 on ∂BR(0). (See Figure 1.) The two-phase Stefan problem can be
formally written as

(ST 2)











































ut −∆u = 0 in {u > 0} ∪ {u < 0}

ut

|Du+| = |Du+| − |Du−| on ∂{u > 0}

u(·, 0) = u0

u = −1 on ∂BR(0).

Here Du denotes the spatial derivative of u. u+ and u− respectively denote the
positive and negative parts of u, i.e,

u+ := max(u, 0) and u− := −min(u, 0).

The classical Stefan problem describes the phase transition between solid/liquid
or liquid/liquid interface (see [M] and also [OPR].) In our setting, we consider
a bounded domain Ω0 ⊂ BR(0) and the initial data u0(x) such that

{u0 > 0} = Ω0 and {u0 < 0} = BR(0)− Ω0.

To avoid complications at the infinity, we consider the problem in the domain
Q = BR(0)× [0,∞). For simplicity we have set u = −1 on ∂BR(0): our analysis

∗Department of Mathematics, University of Arizona
†Department of Mathematics, UCLA. I.K. is partially supported by NSF 0970072

1



R

0

B
0r

u>0
u<0

B

Figure 1: Initial setting of the problem

presented in the paper applies to (ST2) with the generalized Dirichlet condition

u = f(x, t) < 0 on ∂BR(0),

where f(x, t) is smooth.

Since our initial data will be only locally Hölder continuous, we employ the
notion of viscosity solutions to discuss the evolution of the problem. Viscosity
solutions for (ST2) is originally introduced by [ACS1] (also see [CS]). As for
existence and uniqueness of viscosity solutions for (ST2), we refer to [KP].

Note that the second condition of (ST 2) states that the normal velocity Vx,t

at each free boundary point (x, t) ∈ ∂{u > 0} is given by

Vx,t = (|Du+| − |Du−|)(x, t) = (Du+(x, t) −Du−(x, t)) · νx,t,

where νx,t denotes the spatial unit normal vector of ∂{u > 0} at (x, t), pointing
inward with respect to the positive phase {u > 0}.

In this paper we investigate the regularizing behavior of the free boundary
∂{u > 0}. Our main result states that when Γ0 := ∂{u0 > 0} is locally a Lips-
chitz graph with small Lipschitz constant, then the free boundary immediately
regularizes and becomes smooth after t = 0. Moreover we provide a natural
space-time scale for such regularization. More precisely, for x0 ∈ Γ0, we show
that the free boundary regularizes in Bd(x0) by the time t(x0, d) given in (1.3)
(see Theorem 1.1, and also the heuristic discussion below (1.3)). Corresponding
results have been obtained in recent studies on the one-phase free boundary
problems ([CJK1], [CJK2], [CK]), but the presence of two phases poses new
challenges in the analysis. For example there is no generic class of global solu-
tions other than radial solutions where topological changes are ruled out. In the
one-phase setting we relied on the fact that solutions with star-shaped initial
data stay star-shaped over time: this is no longer true in the two-phase setting
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(see Remark 3.1). More importantly, the interface motion is no longer mono-
tone and the competition between positive and negative fluxes across the free
boundary necessitates additional localization procedure (see the remarks below
Theorem 1.1).

The celebrated results of [ACS1]-[ACS2] state that if the solution of (ST 2)
stays close to a Lipschitz profile in the unit space-time neighborhood B1(0) ×
[0, 1], then the solution is indeed smooth in half of the neighborhood B1/2(0)×
[1/2, 1]. The main step in our analysis is to prove that the free boundary
∂{u > 0} stays close to a locally Lipschitz profile in any given scale. Proving
this step corresponds to derivation of several Harnack-type inequalities for our
problem, which are of independent interest.

Before discussing our result in detail, let us introduce precise conditions on
the initial data.

(I-a) Ω0 and u0 are star-shaped with respect to a ball Br0(0) ⊂ Ω0.

Observe that then the Lipschitz constant L of ∂Ω0 is determined by r0 and d0,
where

d0 := sup{dist(x,Br0(0)) : x ∈ ∂Ω0}.
In other words, there exist h = h(r0) and L = L(r0, d0) such that for any
x0 ∈ ∂Ω0, after rotation of coordinates one may represent

Bh(x0) ∩Ω0 = {(x′, xn) : x
′ ∈ IRn−1, xn ≤ f(x)} with Lipf ≤ L. (1.1)

For simplicity of the presentation we set h = 1.

For a locally Lipschitz domain such as Ω0, there exist growth rates 0 < β <
1 < α such that the following holds: let H be a positive harmonic function in
Ω0∩B2(x), x ∈ ∂Ω0, with Dirichlet condition on ∂Ω0∩B2(x), and with value 1
at x− en. (Here let en be the direction of the axis for the Lipschitz graph near
x.) Then for x− sen ∈ Ω0 ∩B1(x)

sα ≤ H(x− sen) ≤ sβ . (1.2)

Below we list conditions on the range of the Lipschitz constant L of the initial
positive phase Ω0.

(I-b) L < Ln for a sufficiently small dimensional constant Ln so that

5/6 ≤ β < α ≤ 7/6.

The remaining conditions are on the regularity of u0.

(I-c) −N0 ≤ ∆u0 ≤ N0 in Ω0 ∪ (BR(0)− Ω0), where N0 is some constant.
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(I-d) For x ∈ ∂Ω0, we may let en = x/|x| after a rotation. Then for small s > 0
(for 0 < s < 1/10),

|Du0(x± sen)| ≥ Csα−1.

Note that (I-c) and (I-d) hold for u0 which is smooth in its positive and
negative phases and is harmonic near the initial free boundary: i.e., −∆u0 = 0
in the set ({u0 > 0} ∪ {u0 < 0}) ∩ {x : dist(x, ∂Ω0) ≤ 1}.

We mention that, roughly speaking, the series of the hypothesis (Ia)-(Id)
suggests that we have in mind the initial positive phase Ω0 whose boundary is
“almost” C1 (that is, a small perturbation of a C1 boundary in its Lipschitz
norm), and the initial data u0 whose re-scaled profile is “almost” harmonic
near ∂Ω0. The smallness assumption on L given in (I-b) is to avoid waiting
time phenomena (see [ACS1] and [CK2]), and is most natural in the spirit of
previous results ([ACS1]-[ACS2]). The assumption on u0 is introduced to ensure
that the initial data does no perturb the initial geometry of Ω0 too much ( see
the discussion in [CK]). We expect that the regularization of the interface over
time should hold for general continuous initial data u0.

For a function u(x, t) : IRn × [0,∞) → IR, let us denote

Ω(u) := {u > 0}, Ωt(u) := {u(·, t) > 0}

and
Γ(u) := ∂{u > 0}, Γt(u) := ∂{u(·, t) > 0}.

Since Γ0 = ∂{u(·, 0) > 0} = ∂{u(·, 0) < 0} in our setting, the property is
preserved for later times, i.e.,

Γt(u) = ∂{u(·, t) > 0} = ∂{u(·, t) < 0} for all t > 0

(see [RB], [GZ], and [KP]).

• For x0 ∈ Γ0 = Γ0(u), we may let en = x0/|x0| after a rotation. Then we
define

t(x0, r) := min{ r2

u+(x0 − ren, 0)
,

r2

u−(x0 + ren, 0)
}. (1.3)

Some remarks concerning t(x0, r) are in order. In one-phase case (where
u− ≡ 0), it was shown in [CJK1] that

t(x0, r) ∼ sup{t > 0 : u(x0 + ren, t) = 0},

i.e. t(x0, r) is the time it takes for the free boundary to reach x0 + ren. In
our (two-phase) case t(x0, r) is the time it takes for the free boundary to reach
x0 + ren if we evolved the free boundary only according to the dominant phase
with bigger size of u. In particular Γ(u) moves at most by distance r by the time
t(x0, r). It turns out that t(x0, r) is the correct time scale for the solutions in
r-neighborhood of x0 to “mix” and regularize the interface (Theorem 1.1 (3)).
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See the paragraph below Theorem 1.1 for further heuristics based on scaling
properties of our problem.

Suppose u is a solution of (ST2) with initial data u0 satisfying (Ia)-(Id) with
Ω0(u) ⊂ BR(0). Due to (Ia)-(Ib) , for sufficiently small r and given x0 ∈ Γ0 the
initial free boundary Γ0 is given by the graph of a Lipschitz function in Br(x0).
After a rotation if necessary, we may assume that

Ω0 ∩Br(x0) = {x+ x0 : x = (x′, xn), xn ≤ f(x′)}

where f is a Lipschitz function with Lipschitz constant L < Ln.

Theorem 1.1 (Main Theorem I: Theorem 5.6, Theorem 5.7 and Corollary 5.8).
Let u, Ω0, r and f be as given above. Then the following conclusions hold for
u.

With above setting, there exists d0 > 0 depending only on n and N0 such
that the following holds for r ≤ d0:

(1) In Σr := B2r(x0)× [t(x0, r)/2, t(x0, r)], we have

Γ(u) = {(x+ x0, t) : x = (x′, xn), xn ≤ f(x′, t)},

where f(x′, t) is a C1 function in space and time. Moreover, there exists
a positive dimensional constant c0 and 1 < m < 2 such that

|Dx′f(x′, t)−Dx′f(y′, t)| ≤ c0(− log |x
r

′
− y′

r
|)−m,

|∂tf(x′, t)− ∂tf(x
′, s)| ≤ c0(− log | t

t(x0, r)
− s

t(x0, r)
|)−1/3.

(2) u is a classical solution of (ST2) in Σr in the sense that

(i) Du+ exists in Ω(u) and is continuous up to Ω(u);

(ii) Du− exists in Ω(u) and is continuous up to Σr ∩ (IRn − Ω(u));

(iii) the free boundary condition is satisfied in the classical sense, i.e.,

Vx,t = (|Du+| − |Du−|)(x, t) on Γ(u) ∩ Σr.

(3) There exists a positive dimensional constant M such that

M−1u
+(x0 − ren, 0)

r
≤ |Du+|(x, t) ≤ M

u+(x0 − ren, 0)

r

and

M−1u
−(x0 + ren, 0)

r
≤ |Du−|(x, t) ≤ M

u−(x0 + ren, 0)

r

in Σr.
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Remark 1.2. Our result extends to the case where the star-shaped condition
(I-a)-(I-b) is replaced by

(I-ab) Ω0 is locally Lipschitz with a sufficiently small Lipschitz constant.

See the discussion in section 6.

The one phase version of above result has been proved in [CK] (see Theo-
rem 2.16 in section 2). Let us briefly motivate our result below in the context
of existing literature.

For a given reference point (x0, t0) ∈ IRn × [0,∞) and positive constants r
and c, one can re-scale the solution u of (ST2) as follows:

ũ :=
1

c
u(x0 + rx, t0 +

r2

c
t). (1.4)

Then ũ satisfies the following free boundary problem

(P̃ )







rũt −∆ũ = 0 in {ũ > 0} ∪ {ũ < 0};

V = |Dũ+| − |Dũ−| on ∂{ũ > 0}

in a corresponding neighborhood of the origin. Let e1, ...en be the orthonormal
basis of IRn so that x ∈ IRn can be denoted as x = (x′, xn), xn = x · en. Now
choose (x0, t0) = (x0, 0) with x0 ∈ Γ0(u). By our hypothesis, after a change of
coordinates if necessary, there exists a Lipschitz function f : IRn−1 → IR with a
small Lipschitz constant such that

Ω0(u) ∩B2r(x0) = {x : xn ≤ f(x′)}.

Let us choose
c = max{u+(x0 − ren, 0), u

−(x0 + ren, 0)} (1.5)

so that one of ũ+(−en, 0) and ũ−(+en, 0) equals 1, and the other is less than 1.

Now suppose that we can show the following two conditions (A) and (B):

(A) |ũ|(x, t) ≤ C in B1(0) × [0, 1] with a constant C > 0 independent of x0

and r;

(B) The level sets of ũ are Lipschitz graphs in space and time with small
Lipschitz constant in B1(0)× [0, 1].

Then Theorem 1.1 follows from the results of [ACS1] applied to ũ. Indeed,
(B) can be replaced by a relaxed version (B′) as stated below, which is sufficient
to derive Theorem 1.1 due to the results of [ACS2].

(B′) The level sets of ũ are ǫ-monotone with respect to cones of directions
Wx(θ

x, e) and Wt(θ
t, ν) with ν ∈ span(en, et), and π/2 − θx and ǫ suffi-

ciently small.
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(For the definition of ǫ-monotonicity and the space and time cones Wx and
Wt, see Definition 2.1 below.)

In our case (A) can be verified using previously known results in the one-
phase Stefan problem (Lemma 3.3 and Lemma 3.4). Unfortunately, as shown
in [CK], verifying (B′) for all scales r turns out to be as difficult as showing
(B) or the full regularity of u. Since ũ no longer satisfies the heat equation,
one loses control of the change of u over time. In particular for this reason it
is necessary to show (B′) for all level sets of ũ, not just for the free boundary
Γ(ũ). Indeed in this article we will first show that ũ (scaled correspondingly for
the two-phase) is ǫ-monotone in space variable (Lemma 3.1), and then we show
that Γ(ũ) is ǫ-monotone in space-time variables (Corollary 4.4 and Lemma 4.7).
Then in section 5 we use the ǫ-monotonicity obtained from previous sections,
the almost- harmonicity of ũ (Lemma 3.6), as well as the iteration methods
originated from [ACS1]-[ACS2] to show directly that ũ is a classical solution
and u satisfies (B) and (B′) (section 5). The arguments in section 5 are mostly
drawn from [ACS1]-[ACS2] as well as [CJK1]-[CJK2].

Let us now illustrate the underlying ideas in the analysis in section 4, where
we show the ǫ-monotonicity of the solution over time. In terms of the original
solution u, verifying (A)−(B′) corresponds to analyzing u over the time interval
[0, t(x0, r)], where t(x0, r) is given by

t(x0, r) :=
r2

c
.

where c is as given in (1.5). Note that t(x0, r) coincides with the one given by
(1.3).

Heuristically speaking, there are two possible scenarios for interface regular-
ization, depending on its initial configuration in the local neighborhood:

(1) One of the phases has much bigger flux than the other, i.e.,

u+(x0 − sen, 0) >> u−(x0 + sen, 0) or u
−(x0 − sen, 0) << u−(x0 + sen, 0)

for s comparable to r.

In this case one-phase like phenomena (regularization by the dominant
phase as obtained in Theorem 2.16) are expected. As mentioned above,
in this case the time interval for regularization of the free boundary in
r-neighborhood is proportional to the distance it has travelled.

(2) Both phases are in balance, i.e.

u+(x0 − sen, 0) ∼ u−(x0 + sen, 0) (1.6)

for s comparable to r.

7



In this case one expects regularization due to competition between two
phases, resulting in Lipschitz-like behavior over time. Again the corre-
sponding time interval for regularization amounts to t(x0, r) give in (1.3).

To make above heuristics rigorous, in section 4 we will introduce a decom-
position procedure based on Harnack-type inequalities, which illustrates local
dynamics near the free boundary: roughly speaking, for given r > 0 we divide
Br(x0) × {t = 0} into regions where (1.6) holds for 0 < s << r (balanced re-
gion) and the rest of domain (unbalanced region). (See detailed definitions of
these regions in section 4.) Of course the main issue is whether the dynamics of
one region affects the other, in particular whether the one-phase type dynamics
of the unbalanced region breaks the property (1.6) in the balanced region for
future times. We will show that this does not happen (Proposition 4.3), due
to fast regularization property in the unbalanced region (Proposition 3.8 and
Lemma 4.7) as well as Harnack-type inequalities (Lemma 4.5 and 4.6) in the
balanced region.

Let us finish this section with an outline of the paper. In section 2 we in-
troduce preliminary results and notations including the regularity results in the
one-phase Stefan problem (Theorem 2.16). Sections 3 to 5 consist of the proof of
Theorem 1.1: in section 3 we prove some properties on the evolution of solutions
of (ST2) with star-shaped data. In addition to Harnack inequalities, we show
that the solution stays near the star-shaped profile for a unit time (Lemma 3.1),
which in turn yields that the solution stays very close to harmonic functions
(Lemma 3.6). This establishes that (B′) holds in space variable. Making use of
the results in section 3, we perform a decomposition procedure in section 4, to
show that (A) holds for ũ (Proposition 4.3) and that (B′) holds for Γ(ũ) (Corol-
lary 4.4). This completes our main step in the analysis. In section 5 we describe
the rather technical iteration procedure leading to further regularization, and
we complete the proof of Theorem 1.1 by combining arguments from previous
arguments in [ACS1], [ACS2], [CJK1]-[CJK2] (Theorem 5.7 and Corollary 5.8).
In section 6 we discuss a generalized proof of the corresponding regularization
result (Theorem 6.1) when the star-shapedness of the initial data (I-a) and (I-b)
are replaced by a local version (I-ab).

2 Preliminary lemmas and notations

We introduce some notations.

• For x ∈ IRn, denote x = (x′, xn) ∈ IRn−1 × IR where xn = x · en.
• Let Br(x) be the space ball of radius r, centered at x.

• Let Qr := Br(0)× [−r2, r2] be the parabolic cube and let Kr := Br(0)× [−r, r]
be the hyperbolic cube.
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• A caloric function in Ω ∩ Qr will denote a nonnegative solution of the heat
equation, vanishing along the lateral boundary of Ω.

• For x0 ∈ Γ0 and en = x0/|x0|, define

t(x0, d) := min{ d2

u+(x0 − den, 0)
,

d2

u−(x0 + den, 0)
}.

• C is called an universal constant if it depends only on the dimension n and
the regularity constant N0 of u0.

• We say a ∼ b if there exists a dimensional constant C > 0 such that
C−1b ≤ a ≤ Cb.

Lastly let us recall the definition of ǫ-monotonicity.

• Let Wx(θ
x, e) and Wt(θ

t, ν) with e ∈ IRn and ν ∈ span(en, et) respectively
denote a spatial circular cone of aperture 2θx and axis in the direction of e, and
a two-dimensional space-time cone in (en, et) plane of aperture 2θt and axis in
the direction of ν.

Definition 2.1. (a) Given ǫ > 0, a function w is called ǫ-monotone in the
direction τ if

u(p+ λτ) ≥ u(p) for any λ ≥ ǫ.

(b) w is ǫ-monotone in a cone of directions Wx(θ
x, e) or Wt(θ

t, ν) if w is
ǫ-monotone in every direction in the cone.

Next we state preliminary results that are important in our analysis. The
first lemma is a direct consequence of the interior Harnack inequalities proved
in [C-C].

Lemma 2.2 ([C-C]). Suppose w(x) : IRn → IR has bounded Laplacian. Then
w is Hölder continuous with its constant depending on the Laplacian bound.

Lemma 2.3 ([FGS1], Theorem 3). Let Ω be a domain in IRn × IR such that
(0, 0) is on its lateral boundary. Suppose Ω is a Lip1,1/2 domain, i.e.,

Ω = {(x′, xn, t) : |x′| < 1, |xn| < 2L, |t| < 1, xn ≤ f(x′, t)},

where f satisfies |f(x′, t) − f(y′, s)| ≤ L(|x′ − y′|+ |t − s|1/2.) If u is a caloric
function in Ω, then there exists C = C(n, L), where L is the Lipschitz constant
for Ω, such that

u(x, t)

v(x, t)
≤ C

u(−Len, 1/2)

v(−Len,−1/2)
.

for (x, t) ∈ Q1/2.

9



Lemma 2.4 ([ACS1], Theorem 1). Let Ω be a Lipschitz domain in IRn × IR,
i.e.,

Q1 ∩ Ω = Q1 ∩ {(x, t) : xn ≤ f(x′, t)},
where f satisfies |f(x, t) − f(y, s)| ≤ L(|x − y| + |t − s|). Let u be a caloric
function in Q1 ∩ Ω with (0, 0) ∈ ∂Ω and u(−en, 0) = m > 0 and supQ1

u = M .
Then there exists a constant C, depending only on n, L, m

M such that

u(x, t+ ρ2) ≤ Cu(x, t− ρ2)

for all (x, t) ∈ Q1/2 ∩ Ω and for 0 ≤ ρ ≤ dx,t.

Lemma 2.5 ([ACS1], Lemma 5). Let u and Ω be as in Lemma 2.4. Then there
exist a, δ > 0 depending only on n, L, m

M such that

w+ := u+ u1+a and w− := u− u1+a

are subharmonic and superharmonic, respectively, in Qδ ∩ Ω ∩ {t = 0}.

Next we state several properties of harmonic functions:

Lemma 2.6 ([D]). Let u1, u2 be two nonnegative harmonic functions in a do-
main D of IRn of the form

D = {(x′, xn) ∈ IRn−1 × IR : |x′| < 2, |xn| < 2L, xn > f(x′)}

with f a Lipschitz function with constant less than L and f(0) = 0. Assume
further that u1 = u2 = 0 along the graph of f . Then in

D1/2 = {|x′| < 1, |xn| < L, xn > f(x′)}

we have

0 < C1 ≤ u1(x
′, xn)

u2(x′, xn)
· u2(0, L)

u1(0, L)
≤ C2

with C1, C2 depending only on L.

Lemma 2.7 ([JK]). Let D, u1 and u2 be as in Lemma 2.6. Assume further
that

u1(0, L/2)

u2(0, L/2)
= 1.

Then, u1(x
′, xn)/u2(x

′, xn) is Hölder continuous in D̄1/2 for some coefficient α,
both α and the Cα norm of u1/u2 depending only on L.

Lemma 2.8 ([C2]). Let u be as in Lemma 2.6. Then there exists c > 0 depend-
ing only on L such that for 0 < d < c, ∂

∂xn
u(0, d) ≥ 0 and

C1
u(0, d)

d
≤ ∂u

∂xn
(0, d) ≤ C2

u(0, d)

d

where Ci = Ci(M).
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Lemma 2.9 ([JK], Lemma 4.1). Let Ω be Lipschitz domain contained in B10(0).
There exists a dimensional constant βn > 0 such that for any ζ ∈ ∂Ω, 0 < 2r < 1
and positive harmonic function u in Ω ∩ B2r(ζ), if u vanishes continuously on
B2r(ζ) ∩ ∂Ω, then for x ∈ Ω ∩Br(ζ),

u(x) ≤ C(
|x− ζ|

r
)βnsup{u(y) : y ∈ ∂B2r(ζ) ∩ Ω}

where C depends only on the Lipchitz constants of Ω.

Next, we point out that we use the notion of viscosity solutions for our
investigation. When {u0 = 0} is of zero Lebesgue measure, it was proved
in [KP] that the viscosity solution of (ST 2) is unique and coincides with the
usual weak solutions. (See [KP] for the definition as well as other properties of
viscosity solutions.) Below we state important properties of viscosity solutions
for (ST2) which relates our solutions to the one-phase version of our problem:

(ST 1)



























ut −∆u = 0 in {u > 0}

ut

|Du| = |Du| on ∂{u > 0}

u(·, 0) = u0 ≥ 0.

Lemma 2.10. Suppose u is a viscosity solution of (ST2). Then

(a) u is caloric in its positive and negative phases.

(b) −u is also a viscosity solution of (ST2) with boundary data −g.

(c) u+ = max(u, 0) (or u− = −min(u, 0)) is a viscosity subsolution of (ST1)
with initial data u+

0 (or u−
0 ).

We say that a pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated
(denoted by u0 ≺ v0) in D ⊂ IRn if:

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii) u0(x) < v0(x) in supp(u0) ∩ D̄.

Lemma 2.11 (Comparison principle, [KP]). Let u, v be respectively viscosity
sub- and supersolutions of (ST2) in D× (0, T ) ⊂ Q with initial data u0 ≺ v0 in
D. If u ≤ v on ∂D and u < v on ∂D ∩ Ω̄(u) for 0 ≤ t < T , then u(·, t) ≺ v(·, t)
in D for t ∈ [0, T ).

Below we state a distance estimate for the free boundary and Harnack in-
equality for the one-phase solution u of (ST1).

Lemma 2.12 ([CK], Lemma 2.2). Let u be given as in Theorem 2.16. There
exists t0 = t0(N0,M0, n) > 0 such that if x0 ∈ Γ0 and t ≤ t0, then

1

C
t1/(2−α) ≤ d(x0, t) ≤ Ct1/(2−β) (2.1)
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where α and β are given in (1.2), C depends on N0, M0 and n, and d(x0, t)
denotes the distance that Γ moved from the point x0 during the time t, i.e.,

d(x0, t) := sup{d : u(x0 + den, t) > 0}.

Lemma 2.13 ([CK], Lemma 2.3). Let u be given as in Theorem 2.16. There
exists d0 depending on N0, M0 and n such that if x0 ∈ Γ0 and d ≤ d0, then

u(x0 − den, t) ≤ Cu(x0 − den, 0) for 0 ≤ t ≤ t(x0, d)

where C depends on N0, M0 and n.

The following monotonicity formula by Alt-Caffarelli-Friedman prevents the
scenario that both phases compete with large pressure in our problem.

Lemma 2.14 ([ACF]). Let h+ and h− be nonnegative continuous functions in
B1(0) such that ∆h± ≥ 0 and h+ · h− = 0 in B1(0). Then the functional

φ(r) =
1

r4

∫

Br(0)

|Dh+|2
|x|n−2

dx

∫

Br(0)

|Dh−|2
|x|n−2

dx

is monotone increasing in r, 0 < r < 1.

Corollary 2.15. Let ∂Ω0 ⊂ IRn be star-shaped with respect to B1(0) ⊂ Ω0 and
suppose B4/3(0) ⊂ Ω0 ⊂ B5/3(0). Let h+ be the harmonic function in Ω0−B1(0)
with boundary values h+ = 0 on ∂Ω0, and h+ = 1 on ∂B1(0). Let h− be the
harmonic function in B2(0) − Ω0 with boundary values h− = 0 on ∂Ω0, and
h− = 1 on ∂B2(0). Then there exists a sufficiently large dimensional constant
M > 0 such that

h+(x0 − ren)

r
≥ M implies

h−(x0 + ren)

r
≤ 1

for x0 ∈ ∂Ω0, en = x/|x| and 0 ≤ r ≤ 1/6.

Proof. It follows from Lemma 2.14 since

(

h+(x0 − ren)

r
· h−(x0 + ren)

r

)2

∼ 1

(2r)4

∫

Br/2(x0−ren)

|Dh+|2
|x− x0|n−2

dx ·
∫

Br/2(x0+ren)

|Dh−|2
|x− x0|n−2

dx

≤ 1

(2r)4

∫

B2r(x0)

|Dh+|2
|x− x0|n−2

dx ·
∫

B2r(x0)

|Dh−|2
|x− x0|n−2

dx

= φ(2r) ≤ φ(1/3) ≤ Cn.
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Lastly, let us finish this section with stating the results obtained in [CK] for
the one-phase version of our problem in the local setting:

(ST 1)











ut −∆u = 0 in {u > 0};

ut

|Du| = |Du| on ∂{u > 0}.

Theorem 2.16 ([CK], Theorem 0.1). Suppose a nonnegative function u(x, t)
is a solution of (ST 1) in B2(0) × [0, 1], 0 ∈ Γ0(u), with the initial data u0 ≥ 0
satisfying (I-b), (I-c) and (I-d) in B2(0). Suppose the initial data satisfies

{u(x, 0) ≥ 0} = {x+ x0 : xn ≤ f(x′)}
in B1(0) where f is a Lipschitz function with Lipschitz constant L < Ln. Fur-
ther, suppose u0(−en) = 1 and supB2(0)×[0,1] u ≤ M0.

For given r > 0, let us define

t(x0, r) :=
r2

u(x0 + ren, 0)
.

Then there exists a small c0 > 0 depending on M0 and n such that the following
holds in Σr = Br(x0)× [t(x0, r)/2, t(x0, r)] for r ≤ c0:

(1) Theorem 1.1 (1) holds for u.

(2) u is a classical solution of (ST1) in Σr in the sense that the spatial deriva-
tive Du exists in Ω(u) and is continuous up to Ω(u), and the free boundary
condition is satisfied in the classical sense, i.e.,

Vx,t = |Du|(x, t) on Γ(u) ∩ Σr.

(2) There exists a positive constant M depending on M0 and n such that

M−1u(x0 − ren, 0)

r
≤ |Du|(x, t) ≤ M

u(x0 − ren, 0)

r
.

(3) If x ∈ Γ0(u) ∩Bc0(0) and x+ ren ∈ Γt(u) ∩Bc0(0), then

M−1u(x− ren, 0)

r
≤ |Du(x+ ren, t)| = Vx+ren,t ≤ M

u(x− ren, 0)

r

where M depends on n and M0. In particular

r

t
∼ |Du(x+ ren, t)| ∼

u(x− ren, 0)

r
.

Theorem 2.16 states that the free boundary regularizes in a scale propor-
tional to the distance it has traveled. Note that the regularity results hold up
to the initial time and all the regularity assumptions are imposed only on the
initial data.
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3 Properties of solutions with star-shaped ini-

tial data

Lemma 3.1. If Ω0 and u0 are star-shaped with respect to the ball Br0(0) ⊂ Ω0,
then Ωt(u) and u(·, t) stays σ-close to star-shaped for all 0 ≤ t ≤ 1

3σ
1/5. (See

Figure 2)

Proof. 1. Observe that, for any a > 0, the parabolic scaling (x, t) → (ax, a2t)
preserves both the heat operator and the boundary motion law in (ST 2). There-
fore, for any σ > 0 the function

u1(x, t) := u((1 + σ)(x − x0) + x0, (1 + σ)2t)

is also a viscosity solution of (ST2) with corresponding initial data.

2. Choose x0 ∈ Br0(0). Take a small c0 > 0 such that Br0+c0(0) ⊂ Ω0. We
claim that for 0 ≤ δ ≤ σ6/5,

u1(x, 0) ≤ u(x, δ) in BR(0)−Br0+c0(0) (3.1)

if σ is small enough. To show (3.1), let us introduce another function

ũ(x, 0) := u((1 +
σ

2
)(x − x0) + x0, 0).

Also let v∗ be the solution of the one phase problem (ST1) with initial data
u−
0 , and with v∗ = 1 on ∂BR(0). Note also that , due to Lemma 2.10, u− is a

subsolution of (ST1) with initial data v∗(x, 0) = u−(x, 0).
Thus by Theorem 2.11, v∗ ≤ u−. It follows that that Ωt(v

∗) ⊂ Ωt(u) ⊂
Ωt(u). Hence by Lemma 2.12 applied for −v∗,

Ω0(ũ) ⊂ Ωt(u) for 0 ≤ t ≤ σ7/6.

Moreover, due to our assumption,

ũ(x, 0) ≤ u0(x).

Therefore, the maximum principle for caloric functions implies

w(x, t) ≤ u(x, t)

where w solves the heat equation in the cylindrical domain D = Ω0(ũ)× [0, σ7/6]
with initial data ũ(x, 0) and zero boundary data on ∂Ω0(ũ)× [0, σ7/6].

Now wt solves the heat equation in D,

wt = ∆w ≥ −C at t = 0, and wt = 0 on ∂Ω0(ũ).

Therefore we conclude that wt ≥ −C in D. In particular

w(x, δ) ≥ ũ(x, 0)− Cδ. (3.2)

14



Next we compare u1(x, 0) with w(x, δ). Observe that for x ∈ BR(0)−Br0+c0(0),

u1(x, 0) = ũ(x, 0) +
∫ σ

σ/2((x − x0) ·Du((1 + s)(x− x0) + x0, 0))ds

≤ ũ(x, 0)− c0σ
7/6

≤ ũ(x, 0)− Cσ6/5

≤ w(x, δ) ≤ u(x, δ)

for 0 ≤ δ ≤ σ6/5, where the first inequality follows from our assumption (I-
d) on u0, the second inequality follows if σ is sufficiently small, and the third
inequality follows from (3.2). Hence we conclude (3.1).

3. Our goal is to prove that for 0 ≤ δ ≤ σ6/5,

u1(x, t) ≤ u2(x, t) := u(x, t+ δ) (3.3)

in (BR(0)−Br0+c0(0))× [0, σ1/5]. Note that the inequality holds at t = 0 by step
2. However, we needs a bit more arguments since we do not know yet whether
the lateral boundary data on ∂Br0+c0(0) is properly ordered.

Suppose
Ω(u1) ⊂ Ω(u) for 0 ≤ t ≤ t0

and Ω(u1) contacts ∂Ω(u) for the first time at t = t0. Observe then that

f(x, t) := u(x, t+ δ)− u1(x, t)

solves the heat equation in Ω(u1) with nonnegative boundary data for 0 ≤ t ≤ t0,
with

f(x, 0) ≥ 0 in BR(0)−Br0+c0(0).

Indeed following the computation given above, it follows that

f(x, 0) ≥ c0σ in Br0+c0(0)−Br0+
c0
2
(0).

On the other hand, due to the fact that wt ≥ −C and δ ≤ σ6/5, we have

f(x, 0) ≥ (w(x, δ) − w(x, 0)) + (w(x, 0) − u1(x, 0)) ≥ −Cσ6/5 in Br0+
c0
2
(0).

Therefore we have

f(x, t) > 0 on ∂Br0+c0(0)× [0, t0]

if t0 << 1. But then this contradicts Theorem 2.11 applied to the region
(BR(0)−Br0+c0(0))× [0, t0].

4. From (3.3) of step 3, we obtain

u((1 + σ)(x − x0) + x0, (1 + σ)2t) ≤ u(x, t+ δ) (3.4)
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in (BR(0) − Br0+c0(0)) × [0, σ1/5] for any x0 ∈ Br0(0), as long as σ and δ are
sufficiently small and satisfy 0 ≤ δ ≤ σ6/5. As a result, for 0 ≤ t ≤ 1

3σ
1/5, we

can choose δ = σ(2 + σ)t ≤ σ6/5 such that

(1 + σ)2t = t+ δ.

It follows then from (3.4) that the function u(·, t) is σ-monotone with respect
to the cone of directions Wx in (BR(0)−Br0+c0(0)) for t ∈ [0, 13σ

1/5].

( Here Wx = {ν ∈ Sn : ν =
x− x0

|x− x0|
for some x0 ∈ Br0(0)}.)

Remark 3.2. For x ∈ Γ0, we may let en = x/|x| after a rotation. Then due to
(I − b),

t(x, d) := min{ r2

u+(x− ren, 0)
,

r2

u−(x+ ren, 0)
} ∈ [r7/6, r5/6] << r4/5 (3.5)

where t(x, r) is the time it takes for the free boundary to regularize in Br(0).
Therefore, we have, for 0 ≤ t ≤ t(x0, r),

u(·, t) is r4-monotone with respect to Wx in (BR(0)−Br0+c0(0)).

This property will ensure that our solution u has its level sets close to Lips-
chitz graphs in space variable in appropriate scale, which serves as the first step
towards the regularization argument: see Lemma 3.6.

Lemma 3.3. (Harnack at t = 0) Let u be as in Theorem 1.1. For x ∈ Γ0, we
may set en = x/|x| after a rotation. Then for all s > 0 and for 0 ≤ t ≤ t(x, s)
we have

u+(x − sen, t) ≤ C1u
+(x − sen, 0)

and
u−(x + sen, t) ≤ C1u

−(x+ sen, 0)

where en = x/|x|.
Proof. Let v∗∗ solve the one-phase Stefan problem (ST1) with initial data
v∗∗0 (x) = u+

0 (x). Then v∗∗ is also a solution of (ST2) with u0(x) ≤ v∗∗0 (x),
and thus by Theorem 2.11 we have

u(x, t) ≤ v∗∗(x, t).

Therefore it follows from one-phase Harnack inequality applied for v∗∗(x, t) that

u+(x− sen, t) ≤ v∗∗(x− sen, t) ≤ C1v
∗∗(x− sen, 0) = C1u(x− sen, 0)

for 0 ≤ t ≤ t0 where t0 = s2/u(x− sen, 0) ≥ t(x, s).
As for u−(x, t), we compare u− with the solution v∗ of (ST1) with initial

data v∗0(x) = u−
0 (x) and with boundary data v∗ = 1 on ∂BR(0). The rest of the

argument is parallel to above.
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Lemma 3.4. (Backward Harnack at t = 0) Let u be as in Theorem 1.1. Let
x ∈ Γ0 and let en = x/|x| after a rotation. Then for s > 0 and for 0 ≤ t ≤ t(x, s)

u+(x − sen, 0) ≤ C1u
+(x− sen, t)

and
u−(x + sen, 0) ≤ C1u

−(x+ sen, t)

Proof. We will only show the lemma for u+. The other part follows by a parallel
argument. Let v∗ solve the one phase problem (ST1) with initial data u−

0 and
with boundary data 1 on ∂BR(0). Then −v∗ is also a solution of (ST2) with
−v∗0 ≤ u0, and thus by Theorem 2.11, −v∗ ≤ u. This inequality implies that

{v∗ = 0} ⊂ {u ≥ 0}.

Note that Ω(v∗) moves according to the one-phase dynamics, which has
been studied in detail by [CK2]. In particular we know that Ω(v∗) will be
Lipschitz at each time. Moreover, for a boundary point (x, t) ∈ Γ(v∗) and
d := dist(x,Γ0(v

∗)), the normal velocity Vx,t satisfies

Vx,t = |Dv∗(x, t)| ∼ v∗(x + 2den, 0)

2d
≤ dβ−1 ≤ t

β−1
2−α (3.6)

where the last inequality follows from Lemma 2.12. Let v∗(x, t) solve the heat
equation in {v∗ = 0} with initial data u0(x) and boundary data 0 on the lateral
boundary of ∂{v∗ = 0}, i.e., v∗ solves























∂tv∗ −∆v∗ = 0 in {v∗ = 0} = BR(0)× [0, 1]− Ω(v∗)

v∗(x, 0) = u0(x) on {v∗ = 0} ∩ {t = 0}

v∗ = 0 on ∂{v∗ = 0} ∩ {t > 0}.

Since
Ω(v∗) = {v∗ = 0} ⊂ {u ≥ 0},

we have v∗(x, t) ≤ u(x, t) in {v∗ = 0}. Moreover, for any given t > 0, ṽ−(x, s) :=
v∗(

√
tx, ts) satisfies the assumptions of Lemma 2.5. Thus it follows that v∗(·, t)

is ta-close to a harmonic function in B√
t(x) for some a > 0, where x ∈ Γ0.

Moreover, due to the assumption on the initial data, (v∗)t = ∆v∗ ≥ −C at
t = 0. Also on Γ(v∗),

(v∗)t/|Dv∗| = −(v∗)t/|Dv∗| = −|Dv∗| ≥ −t
β−1
2−α .

Here the first equality follows since (v∗)t/|Dv∗| and −(v∗)t/|Dv∗| are the normal
velocity of their respective level sets Γ(v∗) and Γ(v∗), but Γ(v∗) = Γ(v∗) by
definition. The second equality follows since v∗ solves the one phase problem
(ST1), and the last inequality follows from (3.6).
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Since Ω(v∗) is Lipschitz and Γt(v∗) = Γt(v
∗) is regularized in space over time

(see Theorem 2.16), (3.6) also holds for |Dv∗|.

Hence on Γ(v∗),

(v∗)t = −|Dv∗||Dv∗| ≥ −t
2(β−1)
2−α > −t−2/5.

where α and β are the growth rates defined in (1.2), and the last inequality
follows from the assumption (I-b). Since (v∗)t solves a heat equation in Ω(v∗),
it follows that for x ∈ Γ0,

(v∗)t ≥ −t−2/5 in B√
t/2(x−

√
ten)× [0, t]. (3.7)

Then since v∗(x −
√
ten, 0) ≥ (

√
t)α ≥ (

√
t)7/6 = t7/12, for x ∈ Γ0 we have

v∗(x−
√
ten, t) = v∗(x−

√
ten, 0) +

∫ t

0 (v∗)t(x−√
sen, s)ds

≥ v∗(x−
√
ten, 0)− 5

3 t
3/5

≥ 1
2v∗(x−

√
ten, 0) +

1
2 t

7/12 − 5
3 t

3/5

≥ 1
2v∗(x−

√
ten, 0)

if t is sufficiently small. It follows that

u+(x−
√
ten, 0) = v∗(x−

√
ten, 0) ≤ 2v∗(x−

√
ten, t)

≤ 2u+(x −
√
ten, t)

where the first inequality follows from (3.7).
Since Γ(v∗) = Γ(v∗) is Lipschitz in a parabolic scaling, v∗ is almost harmonic.

Hence v∗(·, t) is bigger than the harmonic function ωt(x) in Ωt(v∗)∩B√
t(x) with

its value
ωt(x−

√
ten) = (C1)

−1u+(x−
√
ten, 0).

Note that if 0 ≤ t ≤ t(x, s), then s <
√
t. Hence for 0 ≤ t ≤ t(x, s),

C1u
+(x− sen, t) ≥ C1v∗(x − sen, t) ≥ C1ω

t(x− sen) ≥ Cu+(x− sen, 0),

where the last inequality follows since the one-phase result implies a power law
on the movement of Γ(v∗) = Γ(v∗) (see Lemma 2.5 of [CJK1]), and this yields
a bound on u+(x− sen, 0)/ω

t(x− sen).

Similar arguments apply to u−, if we consider the function v∗∗ solving (ST1)
with initial data u+

0 , and the function v⋆ solving the heat equation in {v∗∗ = 0}
with initial data u0 and with boundary data 0 on Γ(v∗∗) and −1 on ∂BR(0).
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Lemma 3.5. (Distance estimate at t = 0) Let u be as in Theorem 1.1. Let
x ∈ Γ0 and let en = x/|x| after a rotation. Let s be a sufficiently small positive
constant. If

|u+(x − sen, 0)|
s

≤ m and
|u−(x+ sen, 0)|

s
≤ m,

then for t ∈ [0, s
m ],

d(x, t) = sup{r : x+ ren or x− ren ∈ Γt(u)} ≤ s.

Proof. Let v∗∗ solve (ST1) with initial data u+
0 , and let v∗ solve (ST1) with

initial data u−
0 and with v∗ = 1 on ∂BR(0). Then by comparison, −v∗ ≤ u ≤ v∗∗

and the lemma follows from the one-phase result Theorem 2.16.

In the following lemma, we approximate our solution by harmonic functions.

Note that, due to Lemma 3.1, We know that the re-scaled function ũ(x, t)
as given (1.4) satisfies condition (B′) in space variable. On the other hand, it
is not clear whether the level sets of u are close to Lipschitz graphs in time
variable. The approximation by harmonic functions given by Lemma 3.6 as well
as Harnack-type inequalities obtained at t = 0 and at future times will ensure
us that Γ(u) is almost Lipschitz in time variable as well (Corollary 4.4). This
fact would serve as the first step towards the regularization procedure in section
5.

Lemma 3.6. (Spatial regularity in the whole domain) Let u be as in
Theorem 1.1. Then there exists r0: a positive constant depending only on n
such that the following holds: For x0 ∈ Γ0 and 0 < r < r0, there exists a
function ω(x, t) := ω+(x, t)− ω−(x, t) such that

(a) ω(·, t) is harmonic in its positive and negative phase in
(1+r)Ωt(u)−(1−r)Ωt(u), and Ω(ω+), Ω(ω−) are star-shaped with respect
to Br0(0) given in (I-a) ;

(b) For a dimensional constant C > 0, we have

ω+(x, t) ≤ u+(x, t) ≤ Cω+((1− r5/4)x, t)

and
ω−(x, t) ≤ u−(x, t) ≤ Cω−((1 + r5/4)x, t)

in Br(x0)× [r2, t(x0, r)].

Note that t(x0, r) ≥ r7/6 ≥ r2, and ∂{ω+ > 0} need not be ∂{ω− > 0}.

Proof. 1. We will only show the lemma for u+. For given x0 ∈ Γ0, we may
assume that en = x0

|x0| after a rotation.

First we will construct a barrier function v1 which will serve as a super-
solution of (ST2). For this, let us first consider u⋆: the viscosity solution of
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(ST1) with the initial data u+
0 for 0 ≤ t ≤ t0. We may assume that for t0 small

compared to R the support of u⋆ stays inside BR(0). Let us define

Ω⋆
+ := {u⋆ > 0}, Γ⋆ := ∂{u⋆ = 0}, Ω⋆

− := BR(0)× [0, t0]− Ω⋆
+.

Now let v1 solve the heat equation in Ω⋆
+ and in Ω⋆

−, with initial data u0

and with v1 = −1 on ∂BR(0). In other words, v1 = v+1 − v−1 where






















∂tv
+
1 −∆v+1 = 0 in Ω⋆

+

v+1 (x, 0) = u+
0 (x) on {t = 0}

v+1 = 0 on Γ⋆

and






































∂tv
−
1 −∆v−1 = 0 in Ω⋆

−

v−1 (x, 0) = u−
0 (x) on {t = 0}

v−1 = 0 on Γ⋆

v−1 = 1 on ∂BR(0)× [0, 1].

Note that v1 solves the heat equation in two regions Ω⋆
+ and Ω⋆

−, with free
boundary Γ⋆. Also note that v+1 = u⋆ and ∂tv

+
1 = |Dv+1 |2 on Γ⋆ since the

boundary Γ⋆ is obtained from the one phase problem with initial data u+
0 . Hence

we can observe that v1 is a supersolution of the two-phase problem (ST2).

Similarly one can construct a subsolution of (ST2): let us consider ũ⋆: the
viscosity solution of (ST1) in BR(0)× [0, t0] with the initial data u−

0 and fixed
boundary data 1 on ∂BR(0)× [0, t0]. Let us define

Ω̃⋆
− := {ũ⋆ > 0}, Γ̃⋆ := ∂{ũ⋆ = 0}, Ω̃⋆

+ := BR(0)× [0, t0]− Ω̃⋆
−.

Now let v2 solve the heat equation in two regions Ω̃⋆
− and Ω̃⋆

+, with boundary

data 0 on Γ̃⋆ and −1 on ∂BR(0), and with initial data u0. Note that v−2 = ũ⋆.
Then v2 is a subsolution of (ST2), and by comparison,

v2 ≤ u ≤ v1. (3.8)

Hence the free boundary of u is trapped between the free boundaries of v1 and v2.
Note that the free boundaries Γ⋆ and Γ̃⋆ of v1 and v2 are obtained from the one-
phase problem (ST1). Hence by (a) of Theorem 2.16, Γ⋆ and Γ̃⋆ are Lipschitz
in space in Bd(x0) for a small constant d > 0. Also, (c) of Theorem 2.16 implies
that for δ ∈ [d/2, d] and x0 + δen ∈ Γ⋆

t , the normal velocity Vx0+δen,t of Γ
⋆ at

(x0 + δen, t) satisfies

Vx0+δen,t = |Dv+1 (x0 + δen, t)| ∼
d

t
∼ u+

0 (x0 − den)

d
≤ dβ−1.
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Since d/t ≤ dβ−1, we obtain

t ≥ d2−β > d2.

Hence the above speed bound of Γ⋆ implies that Ω⋆
+ and Ω⋆

− are Lipschitz in
space and time, in parabolic scaling. Then by Lemma 2.5, v+1 and and v−1
are almost harmonic up to d-neighborhood of their free boundaries for t ≥ d2.
Similarly, we obtain that v+2 and v−2 are almost harmonic up to d-neighborhood
of their free boundaries for t ≥ d2.

Next we fix r ≤ d. Note that if t ≤ t(x0, r), then by (c) of Theorem 2.16,
both of the sets Γt(v1) and Γt(v2) are within distance r of Γ0(u) in Br(x0)
during this time. In particular, parallel arguments as in the proof of Lemmas
2.1 and 2.3 in [CK] yields that

sup{u(y, s) : (y, s) ∈ Bd(x0)× [0, d2]} ∼ u(x− den, 0).

Now using the almost harmonicity of v+1 and v+2 , we conclude that for 0 ≤
t ≤ t(x0, r)

v2(x0 − 2ren, t) ∼ u0(x0 − 2ren, 0) ∼ v1(x0 − 2ren, t). (3.9)

2. Observe that by the definition of t(x0, r) and the assumption on the
growth rates of u0,

r2−β ≤ t(x0, r) ≤ r2−α ≤ r5/6 := τ. (3.10)

Due to Lemma 3.1, we know that at each time, Ωt(u) is τ
5 -close to a star-shaped

domain Dt up to the time t = τ , i.e.,

Dt ⊂ Ωt(u) ⊂ (1 + τ5)Dt ⊂ (1 + r4)Dt (3.11)

for 0 ≤ t ≤ τ . Also note that by the first inequality of (3.10) with β ≥ 5/6,

t(z, r13/20) ≥ r13(2−β)/20 > τ for any z ∈ Γ0.

Hence we can apply Lemma 3.3 for s = r13/20 up to the time τ . Then by
Lemma 3.3 and (3.11) with β ≥ 5/6,

u(x, t) ≤ r(13/20)(5/6) = r13/24

for x ∈ ∂(1− r13/20)D0 and for 0 ≤ t ≤ τ . Then by the τ5-monotonicity of u,

u(x, t) ≤ r13/24 on BR(0)− (1 − r13/20 + r4)D0 (3.12)

for 0 ≤ t ≤ τ . Since Γt(u) is located between Γ⋆ and Γ̃⋆; the free boundaries
of one-phase problem, Lemma 2.12 with β ≥ 5/6 implies that Γ(u) stays in
the τ6/7-neighborhood of Γ0(u) up to τ . Also (3.11) implies that ∂Dt stays in
the τ5-neighborhood of Γt(u) up to τ . Hence we obtain that ∂Dt stays in the
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Figure 2: Approximation of the positive phase by a star-shaped domain

τ5/6-neighborhood of ∂D0 up to the time τ . Since τ5/6 = r25/36 < r13/20, (3.12)
implies

u(x, t) ≤ r13/24 on BR(0)−Ds (3.13)

for any 0 ≤ s, t ≤ τ .

3. Let
t0 = 0 ≤ t1 = r2 ≤ t2 = 2r2 ≤ ... ≤ tk0 = k0r

2 ≤ τ

and fix a number b such that

5/4 ≤ b < 61/48.

We will construct a supersolution of (ST2) in

(BR(0)− (1 + rb)Dtk)× [tk, tk+1].

Let wk(x) be the harmonic function in

Σ := (1 + 4rb)Dtk −Dtk

with boundary data zero on ∂(1 + 4rb)Dtk and Cnr
13/24 on ∂Dtk , where Cn is

a sufficiently large dimensional constant. Extend wk(x) = 0 in IRn − Σ. Next
define

Φk(x, t) := inf{wk(y) : |x− y| ≤ rb − (t− tk)
rb−2

2
}

in (BR(0) − (1 + rb)Dtk) × [tk, tk+1]. We claim that Φk is a supersolution of
(ST2) in (BR(0)− (1 + rb)Dtk)× [tk, tk+1], since our constant b satisfies

rb−2 > r
13
24−b. (3.14)

For simplicity, denote Φ = Φk. To check that Φ is a supersolution, first note
that Φ(·, t) is superharmonic in its positive set and Φt ≥ 0. Hence we only need
to show that

Φt

|DΦ| ≥ |DΦ| on Γ(Φ). (3.15)
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Due to the definition of Φ, Γt(Φ) has an interior ball of radius at least rb/2 for
tk ≤ t ≤ tk+1. This and the superharmonicity of Φ in the positive set yield that

|DΦ| ≤ Cr13/24

rb
on Γ(Φ)

for a dimensional constant C > 0. Moreover Γ(Φ) evolves with normal velocity
1
2r

b−2. Since (3.14) holds for our choice of b (i.e., for 5/4 ≤ b < 61/48), we
conclude (3.15) for r smaller than a dimensional constant r(n). Now we compare
u with Φ in

(BR(0)− (1 + rb)Dtk)× [tk, tk+1].

Note that by (3.13),
u+ ≤ Φ on ∂(1 + rb)Dtk

if Cn is chosen sufficiently large. Also at t = tk, (3.11) implies

u(·, tk) ≤ 0 ≤ Φ(·, tk) on BR(0)− (1 + rb)Dtk .

Hence we get u ≤ Φ in (IRn − (1 + rb)Dtk)× [tk, tk+1]. This implies

Ω(u) ⊂ Ω(Φ) ∪ ((1 + rb)Dtk × [tk, tk+1]) := Ω̃(Φ) (3.16)

for tk ≤ t ≤ tk+1.

4. Next we let v(x, t) solve the heat equation in

Ω̃(Φ)− ((1 − 3r)Ω0(u)× [tk, tk+1])

with initial data v(·, tk) = u(·, tk) and boundary data zero on Γ(Φ) and v = u
on (1− 3r)Γ0(u). Observe that, due to (3.16), we have

u+ ≤ v for tk ≤ t ≤ tk+1. (3.17)

Since Ω̃(Φ) is star-shaped and expands with its normal velocity < rb−2 which
is less than r−1, Lemma 2.5 applies to ṽ(x, t) := v(rx, r2t). In particular there
exists a constant C > 0 such that

(1/C)v(x, t) ≤ h1(x, t) ≤ Cv(x, t)

for (tk + tk+1)/2 ≤ t ≤ tk+1, where h1(·, t) is the harmonic function in
Ωt(v)− (1−2r)Ω0(u) with boundary data zero on Γt(v) and v on (1−2r)Γ0(u).

Hence we conclude that
u+ ≤ v ≤ Ch1

in (BR(0)− (1− 2r)Ω0(u))× [(tk + tk+1)/2, tk+1].

5. Similar arguments, now pushing the boundary purely by the minus phase
given by the harmonic function yield that

Πt := {x ∈ Dtk : dist(x, ∂Dtk) ≥ 3rb +
rb−2

2
(t− tk)} ⊂ Ωt(u)
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for tk ≤ t ≤ tk+1. Let w(x, t) solve the heat equation in

Π− ((1 − 3r)Ω0(u)× [tk, tk+1]))

with initial data u(·, tk) and boundary data zero on ∂Π, and u on (1−3r)Γ0(u).
Then u ≥ w(x, t). Since Π is star-shaped and it shrinks with its normal velocity
< rb−2 which is less than r−1, Lemma 2.5 applies to w̃(x, t) := w(rx, r2t). In
particular there exists C > 0 such that

u+ ≥ w ≥ (1/C)h2

for (tk + tk+1)/2 ≤ t ≤ tk+1, where h2(·, t) is the harmonic function in
Πt − (1− 2r)Ω0(u) with boundary data coinciding with that of w.

6. Lastly we will show that h1 and h2 are not too far away, i.e.

h1(x, t) ≤ Ch2(x− 8rben, t) (3.18)

with a dimensional constant C > 0. Since u is between (1/C)h2 and Ch1, this
will conclude our lemma for (tk + tk+1)/2 ≤ t ≤ tk+1. Then by changing the
time intervals [tk, tk+1] to [tk + r2/2, tk+1 + r2/2], we obtain lemma for any
t ∈ [r2, t(x0, r)].

To prove (3.18), observe that by the construction of v and w,

Ωt(w) ⊂ Ωt(v) ⊂ (1 + 8rb)Ωt(w).

On the other hand, since tk+1 − tk = r2, Lemma 2.12 implies

sup{d(x,Γt(u)) : x ∈ Γtk(u)} ≤ r12/7

for t ∈ [tk, tk+1]. Then by (3.11),

sup{d(x,Γt(u)) : x ∈ ∂Dtk} ≤ r12/7 + r4 ≪ rb (3.19)

for t ∈ [tk, tk+1]. Then we obtain

v2(x, t) ≤ v(x, t) ≤ v1((1− 4rb)x, (1 − 4rb)2(t− tk) + tk) (3.20)

for tk ≤ t ≤ tk+1, where the first inequality follows from (3.8) and (3.17),
and the second inequality follows from the comparison principle with (3.8),
v(·, tk) = u(·, tk) and (3.19). Similarly,

v2((1 + 4rb)x, (1 + 4rb)2(t− tk) + tk) ≤ w(x, t) ≤ v1(x, t). (3.21)

Combing (3.20) and (3.21), we get

v2((1 + 4rb)x, (1 + 4rb)2(t− tk) + tk) ≤ w(x, t), v(x, t)

≤ v1((1 − 4rb)x, (1 − 4rb)2(t− tk) + tk).

This and (3.9) yield

v(x0 − 2ren, t) ∼ w(x0 − 2ren, t) ∼ u(x0 − 2ren, 0).
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It follows that

w(x, t) ≤ v(x, t) ≤ Cw(x − 8rben, t) on (1− 2r)Γ0 × [tk, tk+1].

Hence due to Dahlberg’s lemma, we conclude that

h1(x, t) ≤ C1v(x, t) ≤ C2w(x − 8rben, t) ≤ C3h2(x− 8rben, t)

in Br(x0) × [(tk + tk+1)/2, tk+1]. Since the inequality holds for any 5/4 ≤ b <
61/48, we can conclude the lemma.

Next we show that in the “unbalanced” region, where one phase has much
larger flux than the other, the regularization process occurs similarly to the one
in the one-phase problem. This observation will be useful for the analysis in
section 4.

Proposition 3.7. (Regularization in unbalanced region I) Let u be as
given in Theorem 1.1. For a fixed x0 ∈ Γ0(u), we may let en = x0/|x0| after a
rotation. Suppose that either

u+(x0 − ren, 0) ≥ Mu−(x0 + ren, 0)

or
u−(x0 + ren, 0) ≥ Mu+(x0 − ren, 0)

for M > Mn, where Mn is a sufficiently large dimensional constant. Then for
r ≤ 1/Mn, there exists a dimensional constant C > 0 such that

|Du+(x, t)| ≤ C
u+(x0 − ren, 0)

r
and |Du−(x, t)| ≤ C

u−(x0 + ren, 0)

r

in Br(x0)× [t(x0, r)/2, t(x0, r)].

Remark 3.8. 1. In the next section, we will extend Proposition 3.7 for later
times, i.e., for x0 ∈ Γt0 . (See Lemma 4.7.)

2. Note that the situation given in Proposition 3.7 is essentially a perturba-
tion of the one-phase case in [CK]. The main step in the proof is in verification
of this observation: i.e., by barrier arguments we will show that our solution is
very close to a re-scaled version of the one-phase solution, for which the regu-
larity of solutions are well-understood (see Theorem 2.16).

Proof. Without loss of generality, we may assume that

u+(x0 − ren, 0) ≥ Mu−(x0 + ren, 0).

1. First we will show that after a small amount of time u becomes almost
harmonic near the free bounadry. Lemmas 3.3 and 3.4 imply that for 0 ≤ t ≤
t(x0, r),

u+(x0 − ren, t) ∼ u+(x0 − ren, 0), u−(x0 + ren, t) ∼ u−(x0 + ren, 0) (3.22)
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Also note that, by the assumption on the initial data u0, Lemma 3.6 holds at
t = 0. In other words, there exists a function ω(x, 0) = ω0(x) such that

(a) ω0 is harmonic in its positive and negative phases in
(1 + r)Ω0(u)− (1 − r)Ω0(u);

(b) Ω(ω+
0 ) and Ω(ω−

0 ) are star-shaped;

(c) In Br(x0) , we have

ω+
0 (x) ≤ u+

0 (x) ≤ Cω+
0 ((1 − r5/4)x) (3.23)

and
ω−
0 (x) ≤ u−

0 (x) ≤ Cω−
0 ((1 + r5/4)x). (3.24)

Next we will improve (3.23) and (3.24) for later times to obtain the inequal-
ities with C = (1 + ra) for t ≥ r3/2. By the distance estimate-Lemma 2.12, the
free boundary of u moves less that r9/7 < r5/4 during the time t = r3/2. Then
we let v1 solve







































































∂tv1 = ∆v1 in (1 + 2r5/4)Ω0(ω
+)× [0, r3/2]

∂tv1 = ∆v1 in (BR(0)− (1 + 2r5/4)Ω0(ω
+))× [0, r3/2]

v1(·, 0) = u+
0 on (1 + 2r5/4)Ω0(ω

+)

v1(·, 0) = −u−
0 on BR(0)− (1 + 2r5/4)Ω0(ω

+)

v1 = 0 on (1 + 2r5/4)Γ0(ω
+)× [0, r3/2]

v1 = −1 on ∂BR(0)× [0, r3/2].

Similarly, we let v2 solve the heat equation in two cylindrical regions

(1− 2r5/4)Ω0(ω
+)× [0, r3/2] and (BR(0)− (1− 2r5/4)Ω0(ω

+))× [0, r3/2]

with initial data u+
0 and −u−

0 , and with lateral boundary data zero on
(1−2r5/4)Γ0(ω

+)× [0, r3/2] and −1 on ∂BR(0)× [0, r3/2]. Then by comparison,

v2 < u < v1. (3.25)

Also by Lemma 2.5 with β ≥ 5/6,

|v1 − v2| ≤ r
5
4× 5

6 = r25/24.

Note that on (1− r6/7)Γ0(ω
+),

|v1| ≥ r
6
7α ≥ r

6
7× 7

6 = r
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and thus for a1 = 1/24,

|v1 − v2| ≤ ra1 |v1| on (1− r6/7)Γ0(ω
+). (3.26)

Similarly,
|v1 − v2| ≤ ra1 |v2| on (1 + r6/7)Γ0(ω

+). (3.27)

By Lemma 2.5, v1 and v2 are almost harmonic in the r3/4-neighborhood of their
boundaries for 1

2r
3/2 ≤ t ≤ r3/2. Then the almost harmonicity of v1 and v2 with

(3.25), (3.26) and (3.27) imply the following: for 1
2r

3/2 ≤ t ≤ r3/2, there exist
positive harmonic functions ω̃+(·, t) and ω̃−(·, t) defined respectively in

Ωt(v
+
2 ) ∩ (BR(0)− (1− r1−b)Ω0(ω

+)) and Ωt(v
−
1 ) ∩ (1 + r1−b)Ω0(ω

+))

where b = 1/7, such that for some a > 0

ω̃+(x, t) ≤ u+(x, t) ≤ (1 + ra)ω̃+((1 − 4r5/4)x, t) (3.28)

and
ω̃−(x, t) ≤ u−(x, t) ≤ (1 + ra)ω̃−((1 + 4r5/4)x, t). (3.29)

Now on the time interval [0, r3/2] + k
2r

3/2, 1 ≤ k ≤ m, we construct v1 and
v2 so that they solve the heat equation in the cylindrical domains with

Γ(v1) = (1 + 2r5/4)Γ k
2 r

3/2(ω+)× [
k

2
r3/2, (1 +

k

2
)r3/2]

and

Γ(v2) = (1− 2r5/4)Γ k
2 r

3/2(ω+)× [
k

2
r3/2, (1 +

k

2
)r3/2].

Then by a similar argument as above, we obtain harmonic functions ω̃±(·, t)
satisfying (3.28) and (3.29) for

1 + k

2
r3/2 ≤ t ≤ (1 +

k

2
)r3/2.

Hence we conclude (3.28) and (3.29) for r3/2 ≤ t ≤ t(x0, r).

2. Next we re-scale u(x, t) as follows:

ũ(x, t) := α−1u(rx+ x0, r
2α−1t) in 2Qx0 ,

where α := u+(x0 − ren, 0) << r1/2. Then ũ(x, t) solves







































(α∂t −∆)ũ = 0 in Ω(ũ)

V = |Dũ+| − |Dũ−| on Γ(ũ)

ũ(−en, 0) = 1

ũ(en, 0) = −1/N where N ≥ M.
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Furthermore, (3.22) implies that for 0 ≤ t ≤ 1,

ũ+(−en, t) ∼ 1, ũ−(en, t) ∼
1

N
.

Let w̃ be the corresponding re-scaled version of ω̃ given in (3.28) and (3.29),
then in Br−b(0) ∩ Ω0(ũ) we have

(1− ra)w̃+((1 + 4r5/4)x, αr−1/2) ≤ ũ+(x, αr−1/2) ≤ w̃+(x, αr−1/2) (3.30)

and

(1− ra)w̃−(x, αr−1/2) ≤ ũ−(x, αr−1/2) ≤ w̃−((1 + 4r5/4)x, αr−1/2) (3.31)

Here note that

αr−1/2 =
√
r · u

+(x0 − ren, t0)

r
≤ r1/3.

Lastly, for given x0 ∈ Γ(ũ) ∩B1(0), a similar argument as in (3.7) implies that

ũ(x, t) ≤ (1 + rb)ũ(x, 0) in ∂B 1
2 r

−b(r−ben)× [0, 1]. (3.32)

3. We claim that we can construct a supersolution U1 and a subsolution U2

of (ST2) such that

U2(x, t) ≤ ũ(x, t) ≤ U1(x, t) ≤ U2(x−
√
ǫen, t) in B1(0)× [αr−1/2, 1]

and that U2 is a smooth solution with uniformly Lipschitz boundary in space
and time. Then for sufficiently small r > 0 the lemma will follow from analysis
parallel to that of [ACS2].

To illustrate the main ideas, let us first assume that

(a) (3.30) and (3.31) hold in the entire ring domain R× [0, 1], where

R := {x : d(x,Γ0(ũ)) ≤ r−b};

(b) ũ(x, t) ≤ (1 + rb)ũ(x, 0) on ∂R× [0, 1].

Let
Σ := {x : d(x, IRn − Ω0) ≤ r−b} × [αr−1/2, 1],

and let U+
1 be the solution of the one-phase Hele-Shaw problem in Σ:

(HS)







































∆U+
1 = 0 in {U+

1 > 0} ∩ Σ;

∂tU
+
1 = |DU+

1 |2 on ∂{U+
1 > 0} ∩ Σ;

U+
1 (x, αr−1/2) = w̃+(x, αr−1/2) ;

U+
1 (x, t) = (1 + rb)ũ(x, 0) for x ∈ ∂Σ
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Let
U1 = U+

1 − U−
1 in R× [αr−1/2, 1],

where U−
1 (·, t) is the harmonic function in R− Ω(U+

1 ) with boundary data

U−
1 = 0 on Γ(U+

1 ), U−
1 = C/N on ∂R− Ω(U+

1 ).

Then U1 is a supersolution of (ST2) in Σ, and thus by Theorem 2.11 and the
assumptions (a)-(b) we have ũ ≤ U1 in Σ.

4. The construction of the subsolution U2 is a bit less straightforward. We
use

U+
2 (x, t) := (1− ǫ) sup

|y−x|≤√
ǫ(1−c(t))

U+
1 ((1 +

√
ǫ)y, t),

where ǫ = 1/N and c(t) := t4/5. Then we define

U2 = U+
2 − U−

2 in R × [αr−1/2, 1],

where R is the ring domain as given above and U−
2 (·, t) is the harmonic function

in R−Ω(U+
2 ) with fixed boundary data zero on Γ(U+

2 ) and C/N on ∂R−Ω(U+
2 ).

Then U2 satisfies the free boundary condition

VU2 ≤ (1 + ǫ)|DU+
2 | −

√
ǫc′(t).

Therefore, U2 is a subsolution of (ST2) if we can show that

√
ǫc′(t) ≥ ǫ|DU+

2 |+ |DU−
2 | on Γ(U2) (3.33)

and
∫ 1

0
c′(s)ds ≤ 1.

The analysis performed in [CK], as in the proof of (c) of Theorem 2.16, yields
the following: at a fixed time t, Γ(U1) regularizes in the scale of d := d(t) which
solves

t =
d2

U1(−den, 0)
.

Therefore,

|DU+
2 | ∼ U+

2 (−den, 0)

d
and |DU−

2 | ∼ U−
2 (den, 0)

d
on

Γ(U2)× [t/2, t].

Observe that since β ≥ 5/6,

U+
2 (−den, 0) ≤ d5/6 and U−

2 (den, 0) ≤ ǫd5/6,

then we have

ǫ
U+
2 (−den, 0)

d
+

U−
2 (den, 0)

d
≤ ǫd−1/6 ≤

√
ǫt−1/5.
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where the last inequality follows from

t = d2/U1(−den, 0) ≤ d2/dα ≤ d5/6.

Hence c(t) = t4/5 satisfies (3.33), and we conclude that U2 is a subsolution of
(ST2) in Σ.

Now we can use the fact

U2 ≤ ũ ≤ U1 in Bc(0)× [αr−1/2, c]

to conclude that ũ is
√
ǫ- close to U1: a Lipschitz (and smooth) solution in

B1(0) × [1/2, 1], confirming (B′). Moreover (A) holds due to Lemma 3.3 and
Lemma 3.4. Once we can confirm this, we can conclude by the results of [ACS2]
with the choice of a sufficiently small ǫ.

5. Now we proceed to the general proof without the simplified assumptions
(a) and (b) in step 3, which are replaced with local inequalities (3.30)-(3.31)
and (3.32). For this we need to perturb the initial data outside of B1(0) (see
section 4, p 2781-2783 of [CJK2]), to obtain functions W1(x) and W2(x) which
satisfies the followings:

(a) {Wk > 0} with k = 1, 2 is star-shaped and coincides with Ωαr−1/2(w̃) in
Br−b(0);

(b) {W2 > 0} ⊂ Ωαr−1/2(w̃) ⊂ {W1 > 0} ;

(c) d(x, {Wk > 0}) ≥ r−b with k = 1, 2 for x ∈ Γαr−1/2(w̃)∩ (IRn−B2r−b(0));

(d) Wk is harmonic in {Wk > 0}−K with boundary data zero on Γ(Wk) and
(1 + rb)w̃(x, αr−1/2) on ∂K, where

K = {x : d(x,Γ(Wk)) ≥ r−b}.

Let Uk be the solution of Hele-Shaw problem in

IRn − 1

2
{Wk > 0} × [αr−1/2, 1]

with initial data W1 and with lateral boundary data (1 + rb)w̃(x, αr−1/2). Due
to Proposition 4.1 of [CJK2], for sufficiently small r > 0, the level sets of U1 is
then ǫc-close to those of U2 in B1(0)× [0, 1]. Hence we can use U2 instead of U1

in step 4. and proceed as in step 4 to conclude.

4 Decomposition based on local phase dynamics

Throughout the rest of the paper, let u be as in Theorem 1.1, and fix x0 ∈ Γ0

and a sufficiently small constant r > 0. We will prove the regularization of the
solution u in Br(x0)× [t(x0, r)/2, t(x0, r)]. After a rotation if necessary, we may
assume that x0

|x0| = en.

30



Let us fix a constant M ≥ Mn, where Mn is a sufficiently large dimensional
constant. If the ratio between u+(x0 − ren, 0) and u−(x0 + ren, 0) is bigger
than M , then we can directly apply Proposition 3.7 to prove the main theorem.
Therefore we assume that

M−1u−(x0 + ren, 0) ≤ u+(x0 − ren, 0) ≤ Mu−(x0 + ren, 0). (4.1)

Let

C0 := max{u
+(x0 − ren, 0)

r
,
u−(x0 + ren, 0)

r
}. (4.2)

Then since u+
0 and u−

0 are comparable with harmonic functions, C0 is less than
a constant depending on n and M (See Corollary 2.15). Also note that

C0 ≥ rα−1 ≥ r1/6.

Let us now sort out the initial free boundary points where the flux from one
phase dominates flux from the other phase. Let us define

A+ = {x ∈ Γ0 ∩B2r(x0) :
u+(x− sen, 0)

s
≥ MC0 for some r5/4 ≤ s ≤ r}

and

A− = {x ∈ Γ0 ∩B2r(x0) :
u−(x+ sen, 0)

s
≥ MC0 for some r5/4 ≤ s ≤ r}.

We then denote
A = A+ ∪A−.

Throughout the paper we will let en = x/|x| for any boundary point x, after
a necessary rotation.

Lemma 4.1. Let u be as given in Theorem 1.1, and let M and C as given
above.

(a) If
u+(x− sen, 0)

s
≥ MC0 for some s ≤ r,

then
u+(x − sen, 0)

s
≤ C0.

(b) If
u−(x+ sen, 0)

s
≥ MC0 for some s ≤ r,

then
u−(x+ sen, 0)

s
≤ C0.
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Figure 3: Decomposition of the domain

Proof. Since u±
0 are comparable with harmonic functions h±, we can argue

similarly as in Corollary 2.15. Observe

u+
0 (x − sen)

s
· u

−
0 (x+ sen)

s
∼ h+(x− sen)

s
· h

−(x+ sen)

s

.
√

φ(r) . C2
0 .

Now for x ∈ A+, there exists the largest constant rx < r such that

u+(x− rxen, 0)

rx
= MC0.

We then define
Qx = Brx(x)× [0,

rx
MC0

].

Also for x ∈ A−, we can similarly define rx and Qx. Now we define

Σ := Br(x0)× [0, t(x0, r)]−
⋃

x∈A

Qx (4.3)

(See Figure 3). Σ is then the region where fluxes from both sides are initially
balanced. Our aim in this section is to prove that the balance is kept over time,
so that the interface remains close to a Lipschitz graph over time.

The following statement is a direct consequence of the definition (4.3).

Lemma 4.2. If x ∈ Γ0 ∩ Σ0, then for all r5/4 ≤ s ≤ r

u+(x − sen, 0)

s
,
u−(x + sen, 0)

s
≤ MC0.
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The next proposition is the main result in this section, which states that the
solution is “well-behaved” in Σ.

Proposition 4.3. There exists a dimensional constant K > 0 such that for all
(x, t) ∈ Γ ∩ Σ

(A)
u+(x− sen, t)

s
,
u−(x+ sen, t)

s
< KMC0 for r5/4 ≤ s ≤ r.

Before proving Proposition 4.3, we show an immediate consequence of the
proposition: we are ready to show that Γ(u) is close to a Lipschitz graph in time
as well as in space.

Corollary 4.4. for (x, t) ∈ Γ ∩ Σ, suppose (x + ken, t + τ) ∈ Γ. Then there
exists a dimensional constant K1 > 0 such that

|k| ≤ r5/4 if τ ∈ [0,
r5/4

K1MC0
].

Proof. Due to Lemma 3.6, at any time 0 ≤ t ≤ t(x0, r), we have

h+(x, t) ≤ u+(x, t) ≤ C1h
+(x− r5/4en, t) (4.4)

and
h−(x, t) ≤ u−(x, t) ≤ C1h

−(x+ r5/4en, t) (4.5)

in Br(x0), where h := h+(·, t) − h−(·, t) is harmonic in its positive and
negative phase in (1 + r)Ωt(u) − (1 − r)Ωt(u), and the domains Ω(h+) and
Ω(h−) are both star-shaped with respect to Br0(0).

Let us pick (y0, t0) ∈ Γ ∩ Σ. Due to Proposition 4.3, (4.4) and the Harnack
inequality for harmonic functions, we have

sup
y∈B

10r5/4
(y0)

u(y, t0) ≤ CC1KMC0r
5/4 (4.6)

where C is a dimensional constant. On the other hand, due to Lemma 3.1 and
t50 ≤ r25/6, we have

u(·, t0) ≤ 0 in B 1
2 r

5/4(y0 + r5/4en). (4.7)

Let

y1 := y0 + r5/4en, C2 := CC1KMC0, r(t) :=
1

2
r5/4 − C3(t− t0)

where C3 = CC2. Next we define φ(x, t) in the domain

Π := B2r5/4(y1)× [t0, t0 +
r5/4

C3
]

33



such that






















−∆φ(·, t) = 0 in B2r5/4(y1)−Br(t)(y1)

φ = 2C2r
5/4 on ∂B2r5/4(y1)

φ = 0 in Br(t)(y1).

Then by (4.4)-(4.5), (4.6) and (4.7), u ≺ φ at t = t0 in Π. Let T0 be the first time
where u hits φ from below in Π. Since (4.6) also holds for any (x, t) ∈ Γ ∩Σ in
place of (y0, t0), we have u < φ on the parabolic boundary of Π∩{t0 ≤ t ≤ T0}.
On the other hand, if C is chosen sufficiently large, then

φt

|Dφ| = C3 ≥ |Dφ| on ∂Br(t)(y1)× [t0, t1 := t0 +
r5/4

4C3
],

and thus φ is a supersolution of (ST). This and Theorem 2.11 applied to u
and φ in Π yields a contradiction, and we conclude that Γ(u) lies outside of
B 1

4 r
5/4(y0 + r5/4en) for t0 ≤ t ≤ t1.

Similarly, by constructing a negative radial barrier and comparing it with
u, one can show that Γ(u) lies outside of B 1

4 r
5/4(y0 − r5/4en) for t0 ≤ t ≤ t1.

Hence we conclude.

• For x0 ∈ Γt0 , define

t(x0, r) := min{ r2

u+(x0 − ren, t0)
,

r2

u−(x0 + ren, t0)
}.

We now proceed to show our main result, Proposition 4.3. First we show
Harnack-type inequalities for positive times.

Lemma 4.5 (Harnack at later times). Fix s ∈ [r5/4, r]. If (y0, t0) ∈ Γ ∩ Σ,
then

u+(y0 − sen, t0) ≥ c1u
+(y0 − sen, t0 + τ)

and
u−(y0 + sen, t0) ≥ c1u

−(y0 + sen, t0 + τ)

for 0 ≤ τ ≤ t(y0, s)/2 and c1 > 0.

Proof. We will show the lemma for u+: the statement on u− follows via parallel
arguments.

1. Let (y0, t0) ∈ Γ∩Σ and let s ∈ [r5/4, r]. Let h+ be given as in (4.4). Due
to Lemma 3.3 and Lemma 3.4, we have

h+(y0 − 2ren, t1) ≤ u+(y0 − 2ren, t1)

≤ Cu+(y0 − 2ren, t2) ≤ Ch+(y0 − (2r + r5/4)en, t2)
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for 0 ≤ t1, t2 ≤ t0 + t(y0, r)/2. (Here note that y0 ∈ Br(x0).) In particular

u+(y0 − 2ren, t) ≤ Ch+(y0 − (2r + r5/4)en, t0) ≤ C1h
+(y0 − 2ren, t0) (4.8)

for t ≤ t0 + t(y0, s)/2.

2. Now let v∗∗ solve (ST1) in (IRn − (1− 2r)Dt0)× [t0, t0 + t(y0, s)/2] with
initial and boundary data C2h

+(x − 2sen, t). Since s ≥ r5/4, (4.4) implies

Ωt(u) ⊂ Ωt0(v
∗∗) ⊂ Ωt(v

∗∗) in B2s(y0)× [t0, t0 + t(y0, s)/2]. (4.9)

Then by (4.9), (4.8) and (4.4),

u+ ≤ v∗∗ in Bs(y0)× [t0, t0 + t(y0, s)/2]

if we choose C2 as a multiple of C1 by a dimensional constant. Moreover, due
to the Harnack inequality for one-phase (ST1), one can conclude that

u+(y0 − sen, t0 + τ) ≤ v∗∗(y0 − sen, t0 + τ)

≤ Cv∗∗(y0 − sen, t0)

= CC2h
+(y0 − 3sen, t0)

≤ C3h
+(y0 − sen, t0)

≤ C3u
+(y0 − sen, t0)

for

0 ≤ τ ≤ s2

v∗∗(y0 − sen, t0)
∼ t(y0, s)/2.

Here the first inequality uses the fact u+ ≤ v∗∗, the second uses the Harnack
inequality for v∗∗, the third one uses the Harnack inequality for harmonic func-
tions and the last one uses (4.4).

Lemma 4.6 (Backward harnack). Suppose that (A) holds up to time t =
T0 ≤ t(x0, r). If (y0, t0) ∈ Γ and t0 ≤ T0, then for 0 ≤ τ ≤ t(y0, s)/2,

u+(y0 − sen, t0) ≤ Cu+(y0 − sen, t0 + τ)

and
u−(y0 + sen, t0) ≤ Cu−(y0 + sen, t0 + τ)

where 0 ≤ s ≤ r and C is a universal constant.

Proof. We will show the argument for u+, due to the symmetric nature of the
claim. The argument here will be similar to that of Lemma 3.4, replacing the
initial data u+

0 and u−
0 (used in the construction of barriers) by h+(x, t0) and

h−(x, t0) given in (4.4)-(4.5).
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We consider v1: a solution of (ST1) in

Π := (1 + r)Ωt0 × [t0, t0 + t(y0, s)/2]

with initial and lateral boundary data C1h
−. Then v1 ≤ u in Π. Now let v2

solve the heat equation in {v1 = 0} × [t0, t0 + t(y0, s)/2] with initial data

v2(·, t0) =







h+(·, t0) in {v1(·, t0) = 0} − (1− r){h+(·, t0) > 0}

h̃(·) in (1− r){h+(·, t0) > 0},

where h̃(·) is a C2 extension function of h+(·, t0) chosen so that h̃(·) ≤ u+(·, t0).
The rest of the proof is the same as that of Lemma 3.4.

Next we show that in the unbalanced region, possibly forming at positive
times, the fast regularization phenomena still holds. This lemma will be used
in the proof of Proposition 4.3 to show that there cannot be a severe unbalabce
of flux in the initially balanced region Σ.

Lemma 4.7. (Regularization in unbalanced region II) For a fixed (x0, t0) ∈
Γ(u), and suppose

u+(x0 − ren, t0) ≥ Mu−(x0 + ren, t0)

or
u−(x0 + ren, t0) ≥ Mu+(x0 − ren, t0)

for M > Mn, where Mn is a dimensional constant. Then for r ≤ 1/Mn, there
exists a dimensional constant C > 0 such that

|Du+| ≤ C
u+(x0 − ren, t0)

r
and |Du−| ≤ C

u−(x0 + ren, t0)

r

in Br(x0)× [t0 + t(x0, r)/2, t0 + t(x0, r)].

Proof. The proof of this lemma is parallel to that of Proposition 3.7. We use
Harnack and backward Harnack inequalities (Lemmas 4.5 and 4.6) instead of
Lemmas 3.3 and 3.4.

We are now ready to prove our main result, Proposition 4.3. Observe that
(A) holds up to some T0 > 0 by Lemma 4.2 and Lemma 3.3.

Proof of Proposition 4.3. Let K be a sufficiently large dimensional constant
such that K ≫ M . Let us assume that (A) breaks down for u+ for the first
time at t = T0. Then

u+(z0 − sen, T0)

s
= KMC0 (4.10)

36



for some (z0, T0) ∈ Γ ∩ Σ and r5/4 ≤ s ≤ r. Let

h = sup{h :
u+(z0 − ken, T0)

k
≥ M2C0 for s ≤ k ≤ h}. (4.11)

Note that h < r/2 due to Lemma 3.3 and the definition of C0, and h > 2s due
to Lemma 3.6. By the definition of h we have

u+(z0 − hen, T0)

h
= M2C0. (4.12)

Let us find t0: the closest time before T0 such that for some (y0, t0) ∈ Γ

T0 − t0 = t(y0, h)/2 and y0/|y0| = z0/|z0|.

Then Lemma 4.5 implies

u+(y0 − hen, t0)

h
∼ u+(y0 − hen, T0)

h
∼ u+(z0 − hen, T0)

h
= M2C0.

Since u+(·, t0) and u−(·, t0) are comparable to harmonic functions (Lemma 3.6),
a similar argument as in Lemma 4.1 implies that

u−(y0 + hen, t0)

h
. C0 .

1

M2

u+(y0 − hen, t0)

h
.

Hence by Lemma 4.7, we have

|Du+(·, T0)| ∼ M2C0 in Bh(y0)

Since Bs(z0) ⊂ Bh(y0), this would contradict (4.10) since K ≫ M .
2

Due to Lemma 3.6, Proposition 4.3 and Corollary 4.4, we have shown (A)
and hat the level sets of u are close to a Lipschitz graph, and Γ(u) is close to
a Lipschitz graph in space and time. (see detailed description of this fact in
the next section). On the other hand we do not yet have sufficient control for
the change of u over time to verify the condition (B′). We will therefore prove
Theorem 1.1 by carrying out a modified argument, combining arguments from
[ACS1]-[ACS2] and [CJK1]-[CJK2].

5 Further regularization based on Flatness

Let u,Γ0 be as given in Theorem 1.1.Recall that x0 ∈ Γ0 and r > 0 are fixed,
and they satisfy (4.1). Let C0 as given in (4.2) and t(x0, r) as given in (1.3).

Our goal is to prove the regularization of the free boundary after the time
t(x0, r)/2 in Br(x0). Define

Σr(x0) := Br(x0)× [t(x0, r)/2, t(x0, r)] ⊂ Σ.

37



Let us briefly review the information we have on u so far. As a result of Propo-
sition 4.3, (A) holds up to

t = t(x0, r) ≤ Cr2−α < r3/4.

Also due to Lemma 3.6, our solution u is ǫ-monotone in Qr(x0), with respect
to the space cone Wx(en, θ0) satisfies

|θ0 − π| = O(L)

where L is the Lipschitz constant of the initial domain Ω0 given by (1.1).
MoreoverQr(x0) ⊂ Σ, and thus Corollary 4.4 and Lemma 3.1 yields that the

free boundary Γ(u) is r4/3-monotone in Qr(x0) with respect to the time cone
Wt(en, tan

−1(1/K1MC0)) and the space cone Wx(en, θ0). Here θ0 is the angle
corresponding to the Lipschitz constant of Γ0, and t(x0, r) =

r
C0

.

On the other hand, by Lemma 3.3 and the definition of C0,

u(x0 − ren,
t(x0,r)

2 )

C0r
∼ 1.

Since Qr(x0) ⊂ Σ, Proposition 4.3 implies

u(x, t)

C0r
. KM in Br(x0)× [t(x0, r)/2, t(x0, r)].

The main difficulty in applying the method of [ACS1]-[ACS2] lies in the fact
that we cannot guarantee the ǫ-monotonicity of the solution u in time variable
(although we can obtain, as above, the r4/3-monotonicity of the free boundary
Γ(u)). To go around this difficulty, we will first use the parabolic scale to
improve the regularity of the solution in space. Consider the function

ū(x, t) :=
1

C0r
u(rx + x0, r

2t+
t(x0, r)

2
). (5.1)

In [ACS1]-[ACS2], it was important that initially the time derivative of the
solution was assumed to be controlled by the spatial derivative, i.e.,

|ut| ≤ C(|Du+|+ |Du−|). (5.2)

Using (5.2) one can prove that the direction vectors

Du+

|Du+| (−len, t),
Du−

|Du−| (len, t)

do not change much for 0 ≤ t ≤ l. This is pivotal in regularization procedure
since then Γ(u) regularizes along the direction of the“common gain” obtained by
those two direction vectors, the regularity of Γ(u) then makes above two vectors
line up better in a smaller scale, which contributes to further regularization of
Γ(u) in a finer scale. In our case we do not know a priori that Γ(u) is Lipschitz
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in either space or in time: in fact the Lipschitz continuity of Γ(u) in time will be
proved at the very last stage of section 5 (see Theorem 5.7). Therefore, we do
not have (5.2), and thus extra care is required to show that the spatial gradients
Du± do not change their directions too rapidly.

In the following series of results, we will assume that ū is given by (5.1). The
lemmas and theorems will be proved to in the order they are stated, to improve
the regularity of ū in multiple steps.

◦ Lipschitz continuity in space

First we prove that the ǫ-monotonicity of Γ(ū) improves to Lipschitz conti-
nuity. Let a = C0r. Then in the domain B1(0)× [− 1

a ,
1
a ], ū(x, t) solves







ūt −∆ū = 0 in {ū > 0}

V = a(|Dū+| − |Dū−|) on ∂{ū > 0}.

Here note that
r7/6 ≤ rα ≤ a ≤ rβ ≤ r5/6.

In this scale, since ū is Caloric and Γ(ū) is r1/3-close to a Lipschitz graph in
space and time, it follows that so does ū in B1/2(0)× [− 1

a + 1, 1
a ].

Note that in above step we are losing a lot of information over time: Γ(ū) is
in fact r1/3-close to a Lipschitz graph moving very slow in time, but this does
not guarantee that ū also changes slowly in time.

We then follow the iteration process in Lemma 7.2 of [ACS1] to show the
following:

Lemma 5.1. If r is sufficiently small, then there exists 0 < c, d < 1/2 such
that the following is true: ū is λr1/3-monotone in the cone of directions

Wx(θx − rd, en) and Wt(θt − rd, ν) in the domain B1−rc(0)× [ (−1+rc)
a , 1

a ].

One can then iterate above lemma to improve the ǫ-monotonicity to full
monotonicity, and state the result in terms of ū:

Lemma 5.2. ū is fully monotone in B1/2(0)× [0, 1
a ] for the cone

C1 := Wx(θx − rd, en) ∪Wt(θt − rd, ν),

for some constant 0 < d < 1/2.

◦ Regularity in time away from the free boundary

Now we suppose that ū is Lipschitz in space and time. Then in particular, we
have the Lipschitz regularity of u in space (and very weak Lipschitz regularity
of u in time.) We are interested in proving the following type of statement:

39



Lemma 5.3 (Enlargement for the cone of monotonicity). There exists λ > 0
such that the following holds: Suppose ū is Lipschitz with respect to the cone of
monotonicity Λx(en, θ0) in B1(0)× [− 1

a ,
1
a ]. Then in the half domain

B1/2(0) × [− 1
2a ,

1
2a ], ū is Lipschitz with respect to the cone of monotonicity

Λx(ν, (1 + λ)θ0) with some unit vector ν.

To prove the enlargement of the cone, we take a closer look at the change of
ū over time, in the interior region. More precisely, we need the following lemma
which follows the approach taken in [CJK1] and [CJK2].

Lemma 5.4.

|ūt| ≤ a|Dū|2 ≤ Ca in [B1/2(en) ∪B1/2(−en)]× [−1/2a, 1/2a],

where C is a dimensional constant.

Proof. 1. The proof is similar to that of Lemma 8.3 of [CJK2]. Note that ūt is
a caloric function in Ω+(ū) and Ω−(ū). Let us prove the lemma for ū+, since
parallel arguments apply to ū−.

2. We divide ūt into two parts. More precisely, let

ūt = v1 + v2,

where both v1 and v2 are caloric in Ω+(ū), v1 has initial data zero and the
boundary data a|Dū+|(|Dū+| − |Dū−|) on Γ(ū), and v2 has the initial data
ūt(·,−1/a) and the boundary data zero on Γ(ū).

3. As for v1, we need to use the absolute continuity of the caloric measure
with respect to the harmonic measure, as well as the Lipschitz continuity of the
free boundary. we proceed as in Lemma 8.3 of [CJK1]. Note that we have

|Dū+| ∼ |Dū−| ∼ 1

in [B1/2(en)∪B1/2(−en)]× [−1/a, 1/a]: this follows from the assumption (4.1),
and Lemmas 3.3 and 3.4. Therefore we can proceed as in Lemma 8.3 of [CJK1]
to obtain

v1(x, t) ≤ a

∫

Γ(ū)∩{−1/a≤s≤t}
|Dū+|2dω(x,t) ≤ a|Dū|2(x, t)

where ω(x,t) is the caloric measure for Ω(ū).

v1(x, t) ≥ a

∫

Γ(ū)∩{−1/a≤s≤t}
−|Dū−|2dω(x,t) ≥ −a|Dū|2(x, t).

4. As for v2, we conclude that it must be smaller than that of caloric
function solved in the whole domain with the absolute value of its initial data.
The advantage is that then we can use the heat kernel. Note that the initial data
is given at t = −1/a and has a compact support. The initial data is given by
vt ≤ C

a ven , where ven(x, t) is comparable to the derivative of harmonic function
in Lipschitz domain.
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Therefore the heat kernel representation is given as

1

(t+ 1/a)
n
2 +1

∫

|xn − yn| exp−|x−y|2/(t+1/a) v(y,−1/a)dy.

Since t ∈ [0, 1/a], and k exp−ak2 ≤ C exp−
a
2 k

2

, we get the effect of O(a).

◦ Further regularity in space
Now that we have sufficient information on the change of u over time, we

change the scale following the one introduced in (1.4), and consider the function

v(x, t) :=
1

C0r
u(rx+ x0,

r

C0
t+ 1) (5.3)

Note that C0 = r−1c(x0, r), and thus v coincides with (̃u) defined in (1.4)
with the choice of c = rC0.

Due to the previous results, this function is Lipschitz continuous, in space
and time, away from the free boundary. The following lemma suggests that
the cone of monotonicity improves away from the free boundary, as we look at
smaller scales. The proof is parallel to that of Lemma 8.4 in [ACS2].

Lemma 5.5. Let v given by (5.3). Suppose that there exists constants δ > 0
and 0 ≤ A ≤ B, µ := B −A such that

α(Dv,−en) ≤ δ and A ≤ vt
−en ·Dv

≤ B

in B1/6(− 3
4en)×(−δ/µ, δ/µ) with δ

µ < r. Then there exist a unit vector ν ∈ IRn

and positive constants r0, b0 < 1 depending only on A, B and n such that

α(Dv(x, t), ν) ≤ b0δ in B1/8(−
3

4
en)× (−r0

δ

µ
, r0

δ

µ
).

Now we can proceed as in section 6 of [CJK2] to obtain further regularity,
using Lemma 5.4 instead of the uniform upper bound on |Du| up to the free
boundary.

Theorem 5.6. Γ(v) is C1 in space in Q1/2. In particular, three exist dimen-
sional constants l0, C0 > 0 such that for a free boundary point (x0, t0) ∈ Γ(v),
Γ(v)∩ (B2−l(x0)× [t0−2−l, t0+2−l] is a Lipschitz graph in space with Lipschitz

constant less than
C0

l
if l ≥ l0.

◦ Regularity in time up to the free boundary

Lastly, proceeding as in section 7-8 of [CJK2] yields the differentiability of
Γ(v) in time. The main step in the argument is the following proposition: the
statement and its proof is parallel to those of Theorem 7.2 in [CJK2] and the
blow-up argument as in section 8 of [CJK2]:
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0

u>0
u<0

Figure 4: Locally Lipschitz initial domain

Theorem 5.7. Γ(v) is differentiable in space and time. More precisely there
exist dimensional constants l0 > 0 and 1 < γ < 2 such that for (x0, t0) ∈
Γ(v) ∩ Q1, if l > l0 then Γ(v) ∩ (B2−l(x0) × [t0 − 2−l, t0 + 2−l] is a Lipschitz
graph in space with Lipschitz constant less than l−γ, and Lipschitz graph in time
with Lipschitz constant less than l−1/3.

Corollary 5.8.

C−1 ≤ |Dv+|(x, t) ≤ C, C−1 ≤ |Dv−|(x, t)
v(−en, t)

≤ C

in Q1/2, where C = C(n).

6 General case: solutions with Locally Lipschitz

Initial data

In this section, we present how to extend the result of the main theorem to
solutions with locally Lipschitz initial data. Our setting is as follows. Suppose
Ω0 is a bounded region in BR(0). Suppose u is a solution of (ST2) with u0 ≥ −1,
u0 = −1 on BR(0) and u0 ≤ M0. Further suppose that Ω0 is locally Lipschitz:
that is, for any x0 ∈ Γ0, Γ0 ∩ B1(x0) is Lipschitz with a Lipschitz constant
L ≤ Ln.

Let the initial data u0 solve ∆u0 = 0 in B1(x0). Then we claim that the
parallel statements as in Theorem 1.1 hold in B2d0(x0)× [t(x0, d0)/2, t(x0, d0)],
where d0 is a constant depending on n and M0. More precisely:

Theorem 6.1. Suppose u is a solution of (ST2) with initial data u0 such that
−1 ≤ u0 ≤ M0. Further suppose that for x0 ∈ Γ0, Γ0 ∩B1(x0) is Lipschitz with
a Lipschitz constant L ≤ Ln and ∆u0 = 0 in the positive and negative phases
of u0 in B1(x0). Then there exists a constant d0 > 0 depending on n and M0

such that (a) and (b) of Theorem 1.1 hold for u and d ≤ d0.
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The proof of the above theorem is parallel to that of Theorem 1.1 in section
5, after proving the following lemma.

Lemma 6.2. There exists a solution v of (ST2) with a star-shaped initial data
such that the level sets of u and v are ǫd0-close to each other in B2d0(x0) up
to the time t(x0, d0;u), where d0 > 0 is sufficiently small. In particular, u and
Γ(u) is ǫ-monotone in a cone of Wx and Wt in B2d0(x0)× [t(x0, d0)/2, t(x0, d0)].

Even though our equation is nonlocal, the behavior of far-away region would
not affect much the behavior of solution in the unit ball, if the solution behaves
“reasonably” outside the unit ball. For example, in the star-shaped case, we
know at least that the free boundary is almost locally Lipschitz at each time.
In the locally Lipschitz case, we control the solution by putting an upper bound
M0 on the initial data u0. We will argue that in a sufficiently small subregion
of B1(x0)× [0, 1], the solution is mostly determined by the local initial data in
B1(x0). The perturbation method in the proof of Lemma 2.4 in [CJK1] will be
adopted here. Denote B1(x0) = B1.

1. Construct a star-shaped region Ω′ ⊂ BR(0) such that

(a) Ω′ ∩B1 = Ω0 ∩B1.

(b) Ω′ is star-shaped with respect to every x ∈ K ⊂ Ω′ for a sufficiently large
ball K.

Let v+0 be the harmonic function in Ω′ −K with boundary data 1 on ∂K, and
0 on ∂Ω′. Next, let v−0 be the harmonic function in BR(0)− Ω′ with boundary
data 1 on ∂BR(0), and 0 on ∂Ω′. Let B2 be a concentric ball in B1 with the
radius of ǫk0 , i.e.,

B2 = Bǫk0 (x0) ⊂ B1(x0) = B1.

Let k0 be sufficiently large. Then by Lemma 2.7, a normalization of v±0 by a
suitable constant multiple yields that for any x ∈ B2

1− ǫ ≤ u0(x)

v0(x)
≤ 1 + ǫ. (6.1)

Let v solve (ST2) with initial data v0 = v+0 − v−0 . Then Theorem 1.1 applies for
v since v0 is star-shaped with respect to K.

For the proof of the claim, we will find a sufficiently small d0 such that v
is ǫd0-close to u in B2d0(x0) up to the time t(x0, d0). More precisely, we will
construct a supersolution w1 and a subsolution w2 of (ST2) such that in some
small ball Bh(x0), we have

w2 ≤ u ≤ w1

and the level sets of w1 and w2 are hǫ close to the level sets of v.

2. Let k1 and k2 be large constants which will be determined later. Define

H± := (Γ0(v)± ǫk0+k1en) ∩B2.
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Let
d0 := ǫk0+k1+k2 .

and let t(d0) := t(x0, d0; v) = t(x0, d0;u). First note that

t(d0) ≥ d2−β
0 ≥ ǫ7(k0+k1+k2)/6.

Hence for v to be almost harmonic in a scale much larger than ǫk0+k1 , we need
√

t(d0) > ǫk0 , i.e.,
7(k0 + k1 + k2)/12 < k0.

Observe that by the construction of H± and d0,
√

t(d0) ≫ radius(B2) ≫ dist(H±,Γ0) ≫ max
x∈Γt∩B2,0≤t≤t(d0)

dist(x,Γ0) (6.2)

where the last inequality follows from Lemma 2.12 if we choose k2 ≥ 2k1. If k2
is sufficiently large, then one can prove from the last inequality of (6.2) and the
bound on vt that

1− ǫ ≤ |v(x, t)|
|v0(x)|

=
|v(x, t)|
|u0(x)|

≤ 1 + ǫ on H± × [0, t(d0)]. (6.3)

3. We do have an estimate, Lemma 2.12, on how far the boundaries move
away for the local one-phase case. If we take the one-phase versions with initial
data u+

0 and u−
0 , and compare with u, then we obtain that Γ(u) ∩ B2 stays in

the d
2−α
2−β

0 -neighborhood of Γ0(u) ∩B2 up to the time t(d0) = t(x0, d0). In other

words, the free boundary of u moves less than d
5/7
0 in B2 up to the time t(d0).

Now we let S be the region between H+ and H−. To construct a sub (or
super) solution in S, we take the fixed boundary data (1 − ǫ)v0(x) on H− (or
H+), and (1 + ǫ)v0(x) on H+ (or H−). To control the effect from the side

∂B2 ∩ S, we bend the free boundary Γt(v) by d
5/7
0 on each side of ∂B2 ∩ S,

using the conformal mapping Φ̂ (or Φ̆). (See section 4 of for the definition of Φ̂
and Φ̆.) More precisely, we bend the free boundary of v downward (or upward)
using the conformal map Φ̂ (or Φ̆), and solve the heat equation in there. Then
similar arguments as in Lemmas 4.1 and 4.3 of [CK] yield that the solution is
still (almost) a supersolution, and it stays close to the original solution.
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