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Abstract: We study a novel two–sided Stefan problem – motivated by the study of certain 2D interfaces –

in which boundaries at both sides of the sample encroach into the bulk with rate equal to the boundary value

of the gradient. Here the density is in [0, 1] and takes the two extreme values at the two free boundaries.

It is noted that the problem is borderline ill–posed: densities in excess of unity liable to cause catastrophic

behavior. We provide a general proof of existence and uniqueness for these systems under the condition that

the initial data is in [0, 1] and with some mild conditions near the boundaries. Applications to 2D shapes

are provided, in particular motion by weighted mean curvature for the relevant interfaces is established.

1 Introduction

A while ago, one of us – in a collaborative effort, [4] – investigated a number of physical problems
leading to the study of certain one–dimensional Stefan–problems with multiple boundaries. We will
begin with an informal (i.e. classical) description of the latter starting with the single boundary case.
The problem is an archetype free boundary problem, here the boundary is denoted by L(t). In the
region L ≤ x, there is a density ρ(x, t) which is non–negative (and may be assumed identically zero for
x < L) and which satisfies the diffusion equation with unit constant

∆ρ = ρt (1.1)

subject to Dirichlet conditions, with vanishing density, at x = L:

ρ(L(t), t) ≡ 0. (1.2)

Finally, the bulk diffusion and the boundary motion are related by the Stefan condition

ρx(L(t), t) = +L̇(t) (1.3)

where the overdot denotes differentiation with respect to time t. The plus sign is emphasized: The
more commonly studied Stefan problems have the opposite sign and have been well understood for
several decades. Here, the problem is borderline ill–posed. In particular, for Equ.(1.3) as explicitly
written – namely unit constant of proportionality relating the left and right hand sides – if the density
is in excess of unity, catastrophic behavior may be exhibited.
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Physically, in a material setting, the problem corresponds to a supersaturated solution with the
solute adhering to, and thence augmenting, the boundary. This description corresponds, more or less,
to the stochastic particle system investigated in [4] which will be detailed in the subsequent paragraph.
Alternatively, in a thermal context, the above system is a description of a supercooled liquid with a
freezing boundary. Here the boundary is at, or close to, equilibrium below the freezing point, and
will withdraw heat (or, more precisely, enthalpy) from liquid in its immediate vicinity. This serves to
solidify the latter which in turn, again, augments the boundary.

The particulate version described above is readily modeled in the context of interacting particle
systems. (Here, again, we are content with an informal description.) A favored choice for bulk behavior,
which anyway will prove quite useful later, is the symmetric exclusion process. At time t, the sites i ∈ Z
are occupied by a particle or are vacant, ηt(i) = 1 or ηt(i) = 0 respectively with the latter sometimes
referred to as holes. At random times a particle is designated to move one space to the left or right with
equal probability. The particle will do so provided that the site is not already occupied but, should the
position be blocked, the particle simply retains its current position. (The reader is invited to the book
[14] for a more complete description.) This is the behavior of the bulk which is envisioned to take place
to the right of the boundary. The boundary, located at bt is a vacant site; to the left lies an array of
“deactivated” particles and to the right, the bulk. When ηt(bt + 1) = 1 and this particle jumps to bt
then the boundary moves: bt → bt + 1 and the afore mentioned particle now becomes part of the static
array.

There is an interesting connection between the exclusion/Stefan problem as described and dynamical
2D interfaces. In particular, the interface problem will motivate a second boundary to add to the system
in Eqs.(1.1)–Equ.(1.3) which might otherwise appear peculiar. First let us envision a 2D interface as
edges separating sites of the square lattice Z2. We may regard sites – and the unit squares surrounding
them as plus on one side of the interface and minus on the other. (Or, somewhat more accurately,
the interface is the boundary of the region of plus–squares.) The dynamics is described as follows:
At random times, a plus square changes to minus or vice versa provided this change does not cause
the overall length of interface to increase. It is seen that, at least in a formal sense, this is the zero–
temperature limit of the standard Glauber dynamics [9] for Ising systems. In this work, we consider
a single monotone interface – that is the interface is the graph of a non–increasing function with
vertical segments attached. Then, it is claimed, that for an infinite interface, the above described
Glauber dynamics is in one–to–one correspondence with the symmetric exclusion process with vertical
segments playing the rôle of particles and horizontal segments that of holes. (This interpretation was,
to our knowledge, introduced in [15]; the system that starts out as an “infinite corner” is discussed in
[14] in Ch.VIII.)

Finite interfaces that are monotone necessarily imply that the interface runs into the boundary of
the sample. Consider a droplet of plus–spins in the corner of an otherwise all minus Ising system which
occupies the positive quadrant. The region outside the quadrant is taken to be empty and, needless to
say, the interface is assumed to be monotone. Spin transitions which occur at the boundary reduce the
length of +/− interface (replacing a +/e segment with a −/e segment which are regarded as equally
costly) and are therefore irreversible. Therefore, it is seen that action on the left of the particle system
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is exactly the discrete Stefan problem described above. On the right site, there is another moving
boundary in the particle system – the situation is identical under particle/hole symmetry but, at least
for the authors, considerably more difficult to visualize.

These considerations motivate us to consider the system, described classically as a triple 〈ρ(x, t), L(t),
R(t)〉 with L0 = L(0) ≤ L(t) ≤ R(t) ≤ R(0) = R0 and ρ(x, 0) = ρ0(x) satisfying the free boundary
problem 

ρt −∆ρ = 0 in {(x, t)|L(t) < x < R(t), t ≥ 0}

ρ(L(t), t) = 0, L̇(t) = ρx(L(t), t)

ρ(R(t), t) = 1, Ṙ(t) = −ρx(R(t), t).

(1.4)

Of course the particle system described does not immediately generate the above system in classical
form. However, in [4] it was demonstrated that the weak form of the above system is indeed associated
with the problem of a (monotone) droplet in the positive quadrant in the limit as the lattice spacing
tends to zero. It is worth mentioning, albeit briefly, that the problem of non–monotone droplets can
also be described by particle systems. These models, which acquire a mechanism for the spontaneous
nucleation of Stefan boundaries, are currently under investigation by the authors.

Previous work on the two–sided system is essentially non–existent. The one–sided problem was
investigated in [6] where the Neumann problem with certain restrictions was studied. The existence of
a solution with a C1 boundary was established along with uniqueness among all solutions of that class.
In [4] it was first demonstrated that the particle system must produce a continuous boundary (at least
C1/2 ). Then a Dirichlet problem was investigated with (required) restrictions on the magnitude of the
data and (overly severe) restrictions on the initial data. Existence and uniqueness among solutions
with a continuous free boundary was established. Finally, the work [2] (and some references therein)
should be mentioned where certain complimentary results have been established by different methods.
So far, the only result for the two–sided problem is when there is complete symmetry under reflection
about the midpoint and ρ→ 1− ρ in the initial condition (corresponding to a droplet with symmetry
under reflections through the line at 45◦ eminating from the origin). This reduces the problem to a
pair of decoupled matching Dirichlet problems with boundary density identically equal to 1/2 on the
line of symmetry.

The central purpose of this work is to rectify the paucity of results available for the two sided problem
– and thereby correspondingly enhance the understanding of droplet dynamics in these (albeit still
restricted) cases. Roughly speaking, existence and uniqueness for the general form of the weak equations
is established which by an osmotic effect, so to speak, has provided some substantial improvements for
the one sided cases. Complete statements are forthcoming in the next section.
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2 Statement of Results

We will start with a presentation of the weak formulation for the one and two sided problems. These
weak formulations actually involves a pair of functions a(x, t) and ρ(x, t) with ρ the usual (interior)
density and a, which will be referred to as the enthalpy. In addition to the actual equations, we will
state some “essential” (e) hypotheses and some technical (t) hypotheses concerning the pair (a, ρ).
While it may be the case that some of the e–hypotheses are stated in a form that is stronger than
strictly necessary, these items are genuinely required in the sense that without something along these
lines, our main theorem is false.

The pair of functions determine the moving boundary/boundaries – later to be denoted by L(t)
and R(t). For the present, the live region is defined by a = ρ (a.e.) while in the static region(s), a ≡ 1
and ρ ≡ 0 is the frozen region ostensibly to the left of L. Similarly, if applicable, a ≡ 0 and ρ ≡ 1 is a
frozen region ostensibly to the right of R.

The single sided problem takes place on [L0,K]× [0, T ) where L0 is the initial point of the Stefan
boundary, K is the fixed boundary and T < t? where t? > 0 depends on details of the boundary data
to be described later. The Dirichlet data at x = K is denoted by ρF (t). For x = L0, the boundary
condition for all t is that a(L0, t) is identically one and ρ(L0, t) is identically zero. The initial data in
the region [L0,K] is that a(x, 0) = ρ(x, 0) = ρ0(x). The two sided problem is defined on [L0, R0]× [0, T ]
with T smaller than some time also denoted by t? which is also determined by initial conditions; the
initial condition is also denoted by ρ0. The left boundary condition is the same and, at the right
boundary, we have a(R0, t) ≡ 0 while ρ(R0, t) ≡ 1.

The hypotheses read as follows:

Hypotheses e-H.1.

• In general, for the one–sided problem, ρ(x, t) ≥ 0 for a.e. (x, t). For the two–sided problem a similar
requirement must be made on (1− ρ) and thence, in these cases, 0 ≤ ρ ≤ 1 for a.e. (x, t).

• For both the one and two–sided cases, the initial density ρ0(x) is a measurable function satisfying
0 ≤ ρ0(x) ≤ 1 for a.e. x. For the one–sided problem the boundary density at x = K, denoted by ρF (t)
is a measurable function with ρF (t) ≤ 1 for a.e. t.

• Whenever ρ 6= a then, in the one–sided case, a = 1 and ρ = 0 while in the two sided case either the
preceding or a = 0 and ρ = 1.

• For all t, the region {x|a(x, t) = ρ(x, t)} is connected.

For the one–sided version, let G(x, t) denote a smooth test function on [L0,K] × [0, T ) assumed,
for simplicity, to be a constant at x = K: G(K, t) ≡ g. Then∫ K

L0

[a(x, s)(G(x, s)− g)− ρ0(x)(G(x, 0)− g)]dx =∫ K

L0

∫ s

0
[a(x, t)Gt(x, t) + ρ(x, t)Gxx(x, t)] dtdx−

∫ s

0
ρF (t)Gx(K, t)dt (2.1)

4



For the two–sided problem the weak equation is given, for an arbitrary smooth G(x, t), by∫ R0

L0

[a(x, s)G(x, s)− ρ0(x)G(x, 0)]dx =∫ R0

L0

∫ s

0
[a(x, t)Gt(x, t) + ρ(x, t)Gxx(x, t)] dtdx−

∫ s

0
Gx(R0, t)dt. (2.2)

The above constitute the essential hypotheses as will be detailed below. In addition we will insert
some hypotheses of a more technical nature. It may be presumed that could be considerably softened
or even removed with additional labour.

Hypotheses t-H.2.

◦ There is a positive constant c0 < 1 such that in a neighborhood of L0, the function ρ0 < c0. Similarly,
in the two–sided cases, at x = R0, 1− ρ0 is bounded above by 1− c0.

◦ For a.e. t, the function ρ(x, t) ∈ Lp(dx) for some p > 1 with a norm that is uniform in t.

Definition 2.1 Let < ρ(x, t), a(x, t) > be a solution of (2.1). Then we define the boundary L(t) by

L(t) = sup{x : a(y, t) = 1; ρ(y, t) = 0 for y < x}.

For solutions of (2.2) the right and left boundary (L(t), R(t)) are similarly defined.

Note that, by our connectivity hypothesis, (L,R) = {a = ρ} with a corresponding statement for
the one-sided case.

The main theorem reads:

Theorem 2.2 Consider the one–sided and two–sided Stefan problems that satisfy H1 and H2. Then
each of these systems has a unique solution. Moreover, the solution is classical with a density satisfying
ρ(x, t) ∈ [0, 1] and with well defined boundaries, e.g. L(t), R(t) in the two sided problem, that are C∞.

Remark 1. The final technical condition is typical in the usual construction of solutions via weak
limits. The hypotheses concerning the initial and boundary data are, perhaps, stronger than absolutely
necessary but nevertheless something along these lines is required. Indeed, if ρ is permitted to exceed
the critical value of unity in too close a proximity to the moving boundary, the ill–posed nature of
the problem will be revealed. Later, we will provide a simple demonstration of this effect. Similarly,
ρ0 not identically one in a neighborhood of L0 is an absolute requirement; our stipulation about c0 is
obviously too strong but a considerable improvement over the conditions employed in [4].

It is noted that solutions of the weak equations always exist, in particular via weak limits of the
particle systems corresponding to droplet problems that were studied in [4]. Moreover, all of the
hypotheses are satisfied (or, if relevant, can be satisfied) by these systems. Regardless of the particle
models, classical solutions as described in the statement of Theorem 2.2 above will be constructed.
Thus, a seminal issue is uniqueness.

The first and last e-conditions, which may seem to the reader to be both strong and peculiar are,
in fact strict requirements. Indeed, at a glance it might appear that these properties are derivable
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from the governing equation and the initial condition but this is not the case. Back in the context
of a particle system, the Stefan boundaries are grown from a single site. Thus, in addition the the
situation at the left, we might have e.g. at t = 0, a “seed” at some x ∈ (L0,K) – i.e. at some site near
Nx – which for t > 0 will extend a boundary outward in both directions. The limiting evolution will,
in fact, obey the weak equation Equ.(2.1) and, one may presume, lead to a smooth solution which is
unique “for the circumstances”. However, in the initial data, ρ and a will only differ at a single point
which, of course, cannot be detected in a weak formulation. We remark that the above mentioned
seeding condition will lead to interesting two–sided boundary problems that differ from the one studied
in the present note. Moreover, as alluded above, there are other multi–sided Stefan problems that
naturally emerge in the context of 2D droplet problems in which spontaneous nucleation events are
featured. These problems are currently under investigation and will, hopefully, be the subject of future
papers. A similar circumstance holds with regards to the positivity assumption. Foremost, we remark
that positivity is typically assumed even in the “stable cases” where the boundaries recede from the
gradient (for example see p. 84 in [8]). It is likely that the forthcoming is pertinent even to these
situations. In any case, again in the context of a particle system, one can envision a dynamic in
which vacant sites “split” into a particle/antiparticle pair which can later recombine. As far as bulk
behavior is concerned, it is clear that the limiting behavior with and without the splitting mechanism
is identical. At the Stefan boundary, two dynamics can be envisioned: (1) The antiparticles could
“melt” the boundary. (2) The antiparticles could be forbidden to enter the boundary region. Both
types of processes have counterparts in genuine chemical systems (not to mention the esoteric topic of
“Bekenstein–Hawking radiation” [10]) and it would appear that in both cases some microscopic version
will satisfy the discretized analog of the weak equation. These problems are also currently under
investigation by the authors, (and will, hopefully, . . . papers). Let us discuss, informally, the latter.
Consider the case where ρ0 and ρF are identically zero so that without the splitting mechanism, nothing
happens – manifestly a solution to the weak equation. Now let us allow splitting which we may envision
as a rapid process. Away from the boundary, vacancies split and recombine quickly which produces a
negligible overall effect. However when a vacancy near the boundary splits, the particle may increment
the boundary leaving the antiparticle free to join the bulk. Since a buildup of antiparticles at the
boundary will, directly or indirectly, inhibit future renditions of this event it is clear that antiparticles
must diffuse away for further incrementing to occur. Away from the boundary, there is no net source
of antiparticle; the gradient of antiparticle density is negative rendering the gradient of the “particle”
density positive. And, as is not hard to envision, the growth rate of the boundary will be proportional
to this gradient.

Therefore, the system described by Equ.(2.1) without the supplementary connectivity and positivity
hypotheses is describing different problems physically which makes uniqueness completely hopeless
mathematically. As we will show in the appendix, these assumptions (along with the “technicalities”)
allow the complete reduction to an essentially classical problem whereby uniqueness is established.

The 2D droplet corresponding to the two–sided Stefan problem is confined to the region [0,W ] ×

6



[0, H] with

H =
∫ R0

L0

ρ0(x)dx, W = R0 − L0 −H =
∫ R0

L0

(1− ρ0(x))dx. (2.3)

Perhaps the best description of the shape is in parametric form; we denote the parameter by q ∈
[L(t), R(t)]. Then

Y (q, t) = H − (L− L0)−
∫ q

L
ρ(x, t)dx (2.4)

with a similar formula 1 for X(q, t). From a straightforward computation, vindicated by the regularity
result of Theorem 2.1, it follows that the dynamic evolution of the droplet is described by a weighted
motion by mean curvature which is as follows:

Corollary 2.3 Consider the dynamical curve described parametrically by X(q, t), Y (q, t) as in Equ.(2.4)
and let v(q, t) denote the inward normal velocity at the point 〈X(q, t), Y (q, t)〉. Then

v = c
κ

σ2(n̂)
(2.5)

where κ = κ(q, t) is the curvature, n̂ = 〈cosϑ, sinϑ〉 is the normal vector to the curve, c is a constant
and σ is the direction dependent surface energy given by the formula

σ = | cosϑ|+ | sinϑ|. (2.6)

Proof. This is a standard exercise which follows from the parametric formula for the curvature. We
note that similar results have been obtained for systems of this sort in [16], [12].

Remark 2. We remark that even with the present extensions, these results still restrict us to droplets
in the corner of the magnetic/material sample. While it is tempting to state that our results cover fully
immersed droplets with 4–fold symmetry, this is not quite the case: Indeed (unlike the 45◦ symmetry
exploited in [4]) a full treatment of non–monotone droplets requires a different and more sophisticated
sort of particle system. Nevertheless, in these cases of symmetry, there is little doubt that the ultimate
solution is exactly what is anticipated by these symmetry considerations.

3 Proofs

3.1 Strategic Outline

For the two boundary problem, the overall plan is not terribly dissimilar from the one–sided strate-
gies employed earlier that are based on the construction of upper and lower sequences of monotone
approximates; for the lower sequence, the kth pair of boundaries is inside the k − 1st and vice versa
for the upper sequence. However, there are several obstructions which must be overcome before a
smooth–running procedure can be developed. First, there is no longer a fixed wall at which we can
await the arrival of the boundary – we must carefully anticipate the time and place where the moving

1In [4] this formula was written down but, unfortunately, the constant term was accidently omitted.
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boundaries will collide. Second, while it is clear these upper and lower schemes ought to produce some
sort of monotonicity, it is not immediately clear exactly what object ends up being monotone. Finally,
as it turns out, in the case of the upper sequence it is slightly non–trivial getting the machinery started.

In order to better describe the scheme – as well as the crucial object of monotonicity – it will
be necessary to introduce some notation. Let us consider a general system of the type under study,
namely a Dirichlet problem in the subset of [L0, R0] × [0, T ) determined by preprescribed boundaries
D(t) ≤ E(t) with ρ(D, t) = 0 and ρ(E, t) = 1. Assuming, initially, that D and E are sufficiently
smooth and then we define the following (integrated) fluxes:

Φ(D,E; t) =
∫ t

0
∇ρ(D(s), s)ds, (3.1)

and

Ψ(D,E; t) =
∫ t

0
∇ρ(E(s), s)ds. (3.2)

For (x, t) such that x ∈ [D(s), E(s)] for all s < t there is also

Υ(D,E;x, t) =
∫ t

0
∇ρ(x, s)ds. (3.3)

We remark that even in cases where the boundary is not so smooth – so that some interpretation
of the right sides of Eqs.(3.1) and (3.2) might be required – the quantities Φ and Ψ can usually be
defined. Here, as it turns out, we are only interested in cases where the boundaries are monotone and
continuous. Then, for any x ∈ (D(t), E(t)), Υ(x, t) is always well defined. In fact since ρ is bounded
via parabolic scaling, one can check that |Υ(x, s1)−Υ(x, s2)| ≤ O(|s1− s2|1/2). Thus, if necessary, the
boundary fluxes may be defined in terms of these objects e.g. Φ(t) = lims→t Υ(D(t), s) +

∫ D(t)
L0

ρ0(y)dy.
However, in most of what follows, the “classical” definitions will suffice and this is what should be kept
in mind for the forthcoming discussion.

The construction scheme is far easier for the case of the lower sequence and we will start with a fairly
complete description. The first pair of boundaries (L0, R0) is simply the pair (L0, R0) itself. Then,
(L1, R1) is determined by the fluxes through the initial pair and similarly for later pairs. Explicitly

Lk+1(t) = L0 + Φ(Lk, Rk; t),

Rk+1(t) = R0 −Ψ(Lk, Rk; t). (3.4)

The upper sequence, (Lk, Rk) is defined in the same way for short times but, it turns out, may have
to be modified at later times for reasons that will shortly become clear. The logic of the scheme is
based on the stipulation that if Lk lags behind a true Stefan boundary it stands to reason that the flux
through Lk will exceed the distance this boundary has moved (namely Lk − L0) and hence the next
boundary represents an improvement. A similar statement can be made about the upper sequence save
for the unfortunate circumstance that here the fluxes could catch up with their own boundaries so a
bit of modification is required. Moreover in this case it is not so obvious as to what boundaries should
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be used in the initial step of the construction; further discussion of this matter will be postponed till
the next subsection.

Of course at this stage, it is by no means clear that the desired monotonicity, e.g. Lk+1(t) ≥ Lk(t)
will even hold. The key item is a complete (pointwise) ordering of all the integrated fluxes for nested
pairs of boundaries. I.e. if D1 ≤ D2 and E1 ≥ E2 then, for all relevant (x, t) we have Υ(D1, E1;x, t) ≤
Υ(D2, E2;x, t). This, with certain restrictions, will be the subject of Lemma 3.2 (which may be of
some independent interest) and the necessary monotonicities follow immediately.

Finally, let us turn to the discussion of extinction times. From the prospective of the particle
system, the location of the collision point is almost a triviality: Collision occurs when all the particles
have migrated to the left and all the holes have migrated to the right. Thus, if we were to denote the
collision point by x? we would have

x? = L0 +
∫ R0

L0

ρ0dx = R0 −
∫ R0

L0

(1− ρ0)dx; (3.5)

however for the time being, we will define the quantity x? by the above equation. Similarly, but not
so obviously, there is a statistically conserved transport rate in the particle system (which has been
discussed in [5], [4], [3]). This conservation law states that the total rate of transport – mass × distance
– to the left is a constant – here unity. Thus, the two sided Stefan process stops when all the matter
has been transported to the left. It is not hard to see that the total amount of transport necessary is
independent of how the transport is achieved thus we may calculate the collision time by an arbitrary
scheme. We introduce the function

A(z) =
∫ z

L0

ρ0(x)dx (3.6)

which, among other mundane interpretations represents how far the left boundary has moved if all the
material in [L0, z] is augmented to the boundary. If material is moved to the boundary on a “nearest
first” priority, we arrive at

dA =
1

z −A
dt = ρ0(z)dz. (3.7)

Equation (3.7) allows

t? =
∫ R0

L0

dz[z −A(z)]ρ0(z) (3.8)

which is our candidate for the collision time. The function A, especially with argument t will play an
important rôle in our later analysis and will be the featured item of Subsection 3.3.2

2While the equations (3.6) and (3.7) can be gleaned directly from a continuum description, it is perhaps instructive

to illustrate the concept at the level of the particle system. Here, simply put, the particle nearest the current location of

the wall is transported at the allowed rate till it joins the wall. Now continuum quantities A, t, etc. are of order unity.

Space, which is discrete, is related to continuum parameters by a factor of N and time by a factor of N2. Transport is

also at rate unity (or ρF ) for the lattice problem: one particle transported one unit to the left in one unit of simulation

time. Thus, NA marks the current location of the wall, Nz the initial location of the last particle that joined the wall

which we may assume just happened at time N2t. The next particle, located approximately at Nz + ρ−1
0 (z) takes time

N(z − A) + ρ−1(z) ≈ N(z − A) to move to the wall. This causes NA → NA + 1 and Nz → Nz + ρ−1
0 (z) – the latter

approximate or statistical. Back on the unit (continuum) scale, this gives δA = N−1 while δz = N−1ρ−1
0 (z) in time

δt = N−1(z −A) which is the content of Eqs.(3.6) – (3.7).
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We end this subsection with a lemma which states that the heuristic predictions for the collisions
are indeed correct:

Proposition 3.1 Suppose 〈ρ(x, t), a(x, t)〉 solve (2.2) described on [L0, R0] × [0,T) where T (the
collision time) has the property

lim
t→T

L(t) = lim
t→T

R(t) =: X. (3.9)

Then X = x? and T = t? with x? and t? given by Eqs.(3.5) and (3.8) respectively.

Proof. The continuum implementation of the conservation law amounts to the insertion of G(x) =
R0 − x into Equ.(2.2) with the result∫ R0

L0

(R0 − x)a(x, t)dx = t+
∫ R0

L0

(R0 − x)ρ0(x)dx. (3.10)

Under the assumption of well defined boundaries, this gets us

∫ R0

L0

(R0 − x)a(x, t)dx =
∫ R

L
(R0 − x)ρ(x, t)dx+R0L(t)−R0L0 −

1
2
L(t)2 +

1
2
L2

0

= t+
∫ R0

L0

(R0 − x)ρ0(x)dx. (3.11)

So, letting t→ T, rearranging and using the definition of x?, we arrive at

R0(X− x?) +
1
2
L2

0 −
1
2
X2 = T−

∫ R0

L0

xρ0(x)dx (3.12)

Next, we use the same (dual) idea to track “transport of holes”: we insert x − L0 as a test function
against (1− a) to obtain∫ R0

L0

(x− L0)(1− a(x, t))dx =
∫ R

L
(x− L0)(1− ρ(x, t))dx+

1
2

(R2
0 −R2)− L0(R0 −R)

= t+
∫ R0

L0

(x− L0)(1− ρ0(x))dx. (3.13)

Performing the same sorts of steps that led to Eq.(3.12) we arrive at

L0(X− x?) +
1
2
L2

0 −
1
2
X2 = T−

∫ R0

L0

xρ0(x)dx. (3.14)

Comparing the above with Equ.(3.12) we conclude that X = x? and, further, we have a formula for T
which we claim implies T = t?. Indeed, we may revamp Eq.(3.7) as dA(z −A) = dt to arrive at

t? =
∫ X

L0

[z(A)−A(z)]dA =
∫ R0

L0

xρxdx−
1
2

(X2 − L2
0). (3.15)

This agrees with the formula for T from either Equ.(3.14) (or Equ.(3.12)) since it has already been
agreed that X = x?.
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3.2 Flux and Transport Lemmas

We now provide a proof of a key claim, a transport inequality, which reads as follows:

Lemma 3.2 Let (D1, E1) and (D2, E2) denote continuous monotone boundaries with ρ1 and ρ2 solving
the heat equation in the appropriate domain as described prior to Equ.(3.1) and let Υ1 and Υ2 denote
the associated quantities defined in Equ.(3.3). Suppose that the boundaries are ordered: D1(t) ≤ D2(t),
E1(t) ≥ E2(t) with D1(0) = D2(0) and E1(0) = E2(0) and with initial densities in [0, 1] that are
identical. Then, for all (x, t) with x ∈ (D2(t), E2(t)),

Υ1(x, t) ≤ Υ2(x, t) (3.16)

and further (as is anyway implied by Equ.(3.16)) Φ1 ≤ Φ2 and similarly for the Ψ’s.

Remark 3. We remark that more generality is possible, e.g. we could have strict ordering in the initial
conditions and D1(0) < D2(0) (forcing system 1 to have vanishing initial density in (D1(0), D2(0)) etc.
Moreover, we could treat other boundary conditions instead of sources and sinks which are themselves
ordered. However, this would complicate matters a bit. E.g. if the initial conditions are ordered, to
run the forthcoming proof, we would need to introduce first and second class particles. Since this is
not really needed for the present work we will stand with the more conservative claims.

Remark 4. We further remark that in this two–sided case, the situation is a bit more subtle than
the single free boundary case. In the later, a straightforward argument using the maximum principle
shows that the the densities are reverse ordered which orders the gradients at the fixed boundary. In
the present case, if D1 < D2 and E1 > E2, ordering of the densities is obviously impossible. Naively
it would seem that the gradients are ordered in (D1, E1) but, as the following sort of example shows,
there is in general no such ordering.

Example Let (D2, E2) ⊂ (D1, E1) as in Lemma 3.2. and let ρ1 and ρ2 be the corresponding solutions
of the heat equation as in Lemma 3.2. Let E1 = E2 ≡ 1. Let D2(t) = t and

D1(t) =



1
2 t for t ∈ [0, 1/2],

1/4 +Mt for t ∈ [1/2, 1/2 + 1/(2M)],

3/4 for t ∈ [1/2 + 1/(2M), 1].

Note that in the limit M → ∞, ρ1 is discontinuous at (D1(1/2), 1/2) and hence ∇ρ1 is a delta
function at the point. In fact, if we change the boundary after t = t0 ∈ [1/2 + 1/(4M), 1/2 + 1/(2M)]
such that D1(t) = 1/4 + Mt0 for t ∈ [t0, 1], then in the limit M → ∞ one also obtains ∇ρ1 to be a
delta function at (D1(t0), t0). Hence we conclude that if M is large enough,

∇ρ2(D2(t), t) < ∇ρ1(D1(t), t) for t ∈ [1/2 + 1/(4M), 1/2 + 1/(2M)].

In our proof of Lemma 3.2 we resort to a discrete description of the circumstances using interacting
particles. The crux will be proved in the context of a separate pre–lemma after which it is only a
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matter of some small formalities to prove Lemma 3.2 itself. The particles under consideration will obey
symmetric exclusion on a time dependent subset of {D0, D0 + 1, . . . , E0} with dynamic left and right
boundaries D(t) and E(t) respectively. It is assumed that D(0) = D0 and that D(t) is non–decreasing
with similar considerations for the E’s. To implement the relevant dynamics, it is simply asserted that
ηt(D) is identically zero and ηt(E) is always one and, provided the boundaries are static, everything
runs according to the usual exclusion dynamics. Occasionally, the endpoints will move – in our case,
deterministically at preprescribed times – in which case the best description of the dynamics is that in
the new interval, the configuration is unchanged and at the new location of the boundary, η takes on
the appropriate value.

We wish to actualize the dynamics in such a way that we can keep track of all the particles. To
this end, we envision two (ordered) stacks of particles, SD and SE located, respectively, at the position
of the sink and source. Initially, SD is empty while SE starts (and stays) infinite and full. Particles
are labeled by an integer α = 1, 2, . . . starting at the leftmost particle and continuing indefinitely up
the stack SE . The dynamics at the boundary is defined so that no particle is created or destroyed
and the particles retain their initial order. In particular, for static boundaries, particles join the stack
SD and leave the stack SE sequentially. Due to the motion of the boundaries, additional absorptions
and emissions can take place. In particular, if the sink moves to a location currently occupied by a
particle, the particle is absorbed – as a rule – and in our case gets place on top of the stack SD. If the
source moves to a location that is currently occupied, since ηt(E(t)) ≡ 1 dynamically it is as though
the particle were “still there”. However, we do not destroy the previous occupant of the site, we allow
this particle to get absorbed into SE and take the position at the head of the stack (so it will be the
first particle released in the next available emission). Finally we will associate random variables (Xα),
one for each particle which tracks the position of the particle. In essence, (Xα) is the displacement of
the particle to the left of the reference point E0. Indeed, if the αth particle is in the interior, that is
{D(t) + 1, . . . , E(t) − 1} then (Xα) is simply E0 minus the location of the particle. If the particle is
in the right stack, then its position is identified with E(t) and Xα(t) = E0 − E(t) and finally, if the
particle has joined SD then Xα is identically thereafter equal to E0 −D0.

We claim that for a (D1, E1), (D2, E2) nesting situation analogous to the one described in Lemma
3.2, the arrays (X [1]

α (t)) and (X [2]
α (t)) are stochastically ordered. Explicitly

Lemma 3.3 Consider the setup described in the above paragraphs for two systems with the same
initial configuration satisfying D1(t) ≤ D2(t), E1(t) ≥ E2(t) (with D1(0) ≤ D2(0) = D0 and similarly
for the E’s). If the systems are coupled in a standard fashion wherein both systems are given the same
marks delivered to the particles with instructions to jump forward or backward if practicable then for
all α and for all t,

X [1]
α (t) ≤ X [2]

α (t). (3.17)

Proof. The overall situation is not terribly dissimilar to that of Theorem 2 in [3]. The desired statement
is true at t = 0, we need only check all possible finite time transitions to see that the ordering is
maintained. We start with

Case 1: X [1]
α (t) and X [2]

α (t) correspond to particles both in the bulk. Suppose the particles get a message
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at time t. If already X [2]
α (t) > X

[1]
α (t), then, no matter what,

X [2]
α (t+) ≥ X [1]

α (t+).

Suppose then that they are equal and message says to move to the left. If the target in system–2 is
unblocked, nothing can go wrong. But now suppose system–2 is blocked at this point. That would
imply

X
[2]
α−1(t) = X [2]

α + 1.

But X [1]
α−1(t) satisfies

X
[2]
α−1(t) ≥ X [1]

α−1(t) > X [1]
α (t) = X [2]

α (t)

which implies that X [1]
α−1(t) = X

[1]
α (t) + 1 and system 1 is blocked as well.

Now suppose that the intended move is to the right; we only have to check the case when system 2 is
unblocked. This means that X [2]

α+1(t) < X
[2]
α (t)−1 but since X [2]

j+1(t) ≥ X [1]
α+1(t) there is a corresponding

vacancy available in the system 1 as well and the particles stay together.

Case 2: X [2]
α corresponds to a particle at the right boundary. If the stacks are at equal location, then

by hypothesis X [1]
α also places its particle at the right boundary in an equal or worse relative position

in the stack. Then there is nothing to prove. If E1(t) is to the right of E2(t), it may be the case that
some particles have been released from E1(t) whose associates are still in E2(t). Let us consider such a
particle, the αth well inside the stack. We claim that the hypothesis at time t implies that the associate
is strictly behind E2(t). Indeed otherwise with the α − 1th particle of the second system still inside
the stack and that of the first system in the bulk, we would necessarily violate X [2]

α−1 ≥ X
[1]
α−1. So, for

particles well inside the stack there is after all, nothing to prove. This leaves the subcase where αth

particle of the second system is the lead particle in the stack and the associate particle is in the same
position but in the bulk. Right jumps are obviously not an issue and left jumps follow pretty much the
same argument as in case 1.

Case 3: X
[2]
α corresponds to a particle at the left boundary. Note that in this case the particle is

unblocked to the left where it is poised to increment its displacement as much as possible and to the
right, it is more or less the same as the bulk situation.

Case 4: X [1]
α corresponds to a particle at a boundary and X

[2]
α to a particle in the bulk. If X [1]

α places
the particle on the left boundary then the hypothesis will not allow the associate in the bulk. If X [1]

α

places the particle on the right boundary then there is nothing to prove.

Case 5: motion of stacks. Here there is not much to prove. If either of the system–2 boundaries move
nothing is lost by absorption or motion. If the system–1 boundaries move, nothing changes at the right
– it must have been the case that E2 was strictly greater than E1 so, prior to the jump, all particles
in the system–1 stack were strictly behind their associates. If the system–1 left boundary absorbs a
particle then the hypothesis implies that the associate particle in system–2 had already been absorbed.

All cases have been covered.

At the discrete level, the exact analogs of the results stated for Lemma 3.2 are now obvious conse-
quences. However, we must still get from the discrete to the continuous. While not terribly difficult,
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some caution is required since e.g. there is no existing technology for the direct proof of convergence
for gradients. We proceed as follows:

Proof of Lemma 3.2 For the discrete system with any (D(t), E(t)) of the type described we let

ρN (x, t) = E(ηN2t(Nx)) (3.18)

be the value of our density on the grid sites and smoothed out – say to at least C2 – in the regions in
between. The relevant endpoint fluxes, from the perspective of the particle system are defined as

SD;N = E
(

1
N
|SD|(N2t)

)
(3.19)

where E denotes expectation in the particle system starting from a discrete approximation to ρ0 and,
|SD|(t) denotes the size of the stack. A similar definition holds for for SE;N (which we shall not be
using) and, for future reference, the object inside the expectation will be denoted by SD;N (t). The first
claim is that for all t, limN→∞ SD;N exists; once this is established, it is not particularly difficult to
identify the limit as ΦD(t) (regardless of issues pertaining to the regularity of ∇ρ at the boundary).
The starting point is the stipulation that ρN or some subsequence thereof converges (e.g. weakly in
L2) to the appropriate solution of the heat equation which we denote by ρ(x, t). Moreover, if f(x, t) is
a smooth test function and FN (t) =

∫
f(x, t)ρN (x, t)dx then

FN (t) ⇀ F (t) (3.20)

where F (t) =
∫
f(x, t)ρ(x, t)dx and again, e.g. the convergence is in L2. Now for fixed x, let f be a

smooth monotone function whose derivative vanishes outside some ε–neighborhood of x with f ≡ 1 to
the left of the neighborhood and f ≡ 0 to the right. If fj denotes the discretized version, let us define
the (random)

Kf,N =
∑
j

fjηt(j) (3.21)

along with

Kf,N =
1
N

Kf,N (N2t) and Kf,N = E(Kf,N ). (3.22)

On the one hand, by weak convergence, and continuity of the known limit, Kf,N →
∫
ρ(y, t)f(y). We

denote this limit by Kf (x, t) and also, we have tacitly assumed that t and x are such that there is
enough room for an ε–neighborhood of x in (D(t), E(t)).

Meanwhile, letting Ω denote the evolution operator – semi–group generator + boundary terms –
for the particle system we have that (the martingale)

Kf,N (t)−Kf,N (0)−
∫ t

0
ΩKf,N (s)ds

has zero expectation. It is noted that

ΩKf,N = −ΩSD;N (t) +
1
N

∑
j

[Ωηt(j)]fj = −ΩSD;N (t) +
1
N

∑
j

ηt(j)∆fj + o(N) (3.23)
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where the error term comes about from the discrete approximation to f . Taking expectations and
rewriting a few terms we have

Kf,N (t)−Kf,N (0) = −
∫ t

0
E(ΩSD;N(s))ds+

∫∫ t

0
ρN (y, t)∆f(y)dyds. (3.24)

Now of course
∫ t

0 E(ΩSD;N(s))ds = SD;N (t); letting N →∞ and identifying all known weak limits, we
now have the other hand for which

Kf (t)−Kf (0) = − lim
N→∞

SD;N +
∫∫ t

0
ρ(y, s)∆f(y)dyds (3.25)

Thus the limit exists and, as is easily checked, it is independent of the location chosen for “x” and the
nature of the cutoff function. For smooth enough boundaries, Equ.(3.24) is already sufficient since

Kf (t)−Kf (0) = −
∫ t

0
∇ρ(D(s), s)ds+

∫∫ t

0
ρ(y, s)∆f(y)dyds. (3.26)

In general we must proceed with a bit more caution. We first allow f to approach a step function at
x and, in this limit, we can identify the second term as Υ(x, t). All the while the K–terms converge,
unobtrusively to the contents of the intervals. The identification is complete by setting x = D(t) and
using Φ(t) = lims↑t Υ(D(t), s).

An identical derivation allows a similar identification for the limit of SE;N (t). As far as the boundary
fluxes are concerned, the Lemma is proved since, on the basis of Lemma 3.3, SD1(t) ≤ SD2(t) and
similarly at the right. To settle the isssue for the internal integrated fluxes, we first note that Kf (t)
and

∫ x
0 ρ(y, t)dy cannot differ by more than 2ε. Let us denote the functions with sharp cutoffs by

K’s which are unadorned by a subscript. Of course we will immediately adorn these with superscripts
(along with the Kf ’s) to distinguish system–1 from system–2. We have for system–1

Υ1(t) = K [1](t)−K [1](0) + Φ1(t) = K
[1]
f (t)−K [1]

f (0) + Φ1(t) + ε1 (3.27)

with ε1 < 2ε A similar equation holds for the second system. But back on the discrete system, it
is clear that K [1]

f (t) + Φ1(t) ≤ K
[2]
f (t) + Φ2(t) since in every realization of the coupling, at all times,

K[1]
f (t) + SD1(t) ≤ K[2]

f (t) + SD2(t). The desired inequality has been established to within a few factors
of ε which we can remove at our leisure.

3.3 Optimal Transport and Regularity

Our next steps concern the auxiliary function A(t), mentioned earlier in Eqs.(3.6) – (3.8). This function
will be crucial for the establishment of regularity properties for solutions to Equ.(1.4) and in addition
will provide the missing ingredient – the startup for the upper sequence. To recapitulate, in this system,
there is a fixed rate of transport – perhaps more obvious at the level of the particle system – which
is unity in the two–sided problem and ρF (t) in the fixed right boundary case. The function A(t) is
designed to channel all the available transport into the construction of the boundary. In the two sided
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case, we will need two of these; for obvious reasons, the one on the left will be denoted by Aw(t) and
the one on the right by Ao(t). I.e.

dAw(t) =
1

zw(t)−Aw(t)
dt, with dAw(t) = ρ0(zw(t))dz(t). (3.28)

On the right end, we do the same with 1 − ρ instead of ρ to construct Ao(t) and zo(t) and, in the
single boundary case, the equation is nearly the same with dt replaced by ρF (t)dt. Note that since the
density is in [0, 1] and strictly away from 1 in a neighborhood of L0, Aw is always to the left of zw and
similarly Ao is to the right of zo.

Remark 5. It is instructive look at a few illustrations. First, it is noted that if ρ0 → σ as x→ L0 then,
for small times,

Aw(t) ∼ L0 + ca

(
σ

1− σ

)1/2

t1/2 (3.29)

for some constant ca. In this case it turns out that A behaves essentially the same as a Stefan boundary.
Note the singular behavior as σ → 1. However, if ρ0(x) ∼ c1(x− L0)β for x close to L0 then

Aw(t) ∼ L0 + c2t
β+1
β+2 . (3.30)

In the above, c1 and c2 are unimportant constants. Here it is noted (e.g. if β = 1) that this is much
faster than expected for a Stefan boundary.

For future reference, it is observed that in case ρ0 tends to a small constant then the coefficient of
t1/2 is also small. Moreover, as is not hard to see in the discrete construction, a larger ρ0 results in a
larger A(t). Since, for unrelated technical reasons we will later have to assume that ρ0 is bounded by
a small constant in a neighborhood of L0, we may rest assured that for small times, [Aw − L0]t−1/2 is
also bounded by a small constant.

Since our mid–range goals concern regularity of boundaries, as a first step, we provide regularity
estimates for the A(t):

Lemma 3.4 Let Ao, Aw denote the functions described in Equ.(3.28) and shortly thereafter and let
t? denote the extinction time as defined in Equ.(3.8). Then, under the assumption that ρ0 is bounded
strictly away from 1 on the left and 0 on the right, for any 0 < t0 < t∗ there is an M0 <∞ such that

|Ȧo(t)| , |Ȧw(t)| ≤M0t
−1/2 for 0 ≤ t ≤ t0. (3.31)

Proof. We will demonstrate this on the left end (without subscripts); the argument on the right is
identical after the usual transcriptions. It is first noted that if we examine as an independent entity
the function z(t), this function, while monotone can have discontinuities – in particular it will jump
over regions where ρ0 vanishes. Let us assume that this does not happen at t = 0 for otherwise the
argument is trivial and handled along the lines of the paragraph below. We use the Eqs.(3.28) to get

d(z −A) =
1− ρ0

ρ0

1
z −A

dt. (3.32)
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By the boundedness of ρ0, there is a z0 such that ρ0(z) ≤ c < 1 for z < z0. Let τ0 be any positive time
where z ≤ z0; it is noted that such a τ0 is possible by our working hypothesis. Then, for all t < τ0, we
may bound

1
2
d

dt
(z −A)2 ≥ 1− c

c
(3.33)

and hence, still in this range of t’s, (z − A) ≥
√
c−1(1− c) t1/2. This can now be substituted directly

into the first of Eqs.(3.28) to obtain the desired result for short times. Noting that with ρ0 < 1 – at
least for a while – during the initial stages of the evolution, a gap has opened up between z and A

which, in light of the second of Eqs.(3.28) with ρ0 ≤ 1 cannot decrease. Thus, if at time τ0 – which
we now permit to include zero, we have z(τ0) − A(t0) ≥ ∆0 then, thereafter, Ȧ ≤ ∆−1

0 . This can be
patched together with the short time estimate to obtain the result in Equ.(3.31).

The following theorem is a one-dimensional version of the main theorem in [1].

Theorem 3.5 Suppose Σ = {(x, t) : f(t) ≤ x}, where f is Lipschitz with Lipschitz norm M0 and with
f(0) = 0. Suppose ρ is a positive solution of the heat equation in Σ ∩Q2, where Qr = Br(0)× (−r, r),
continuously vanishing on ∂Σ. Then there exists a positive constant M1, depending only on M0 and
the supremum of u in Q2, such that

M−1
1

u(x, t)
dx,t

≤ |∇ρ|(x, t) ≤M1
u(x, t)
dx,t

in Q1, where dx,t = x− f(t).

Proof. See the main theorem in [1].

Using Theorem 3.5, one can prove the following:

Lemma 3.6 If the boundary (D,E) satisfies

Ḋ(t), Ė(t) ≤M0t
−1/2 for t ≤ t0,

and if ρ solves the heat equation as described prior to (3.1) with initial data ρ0 < c0 = c0(M0) < 1 in
[L0, L0 + 2ε0], then

|∇ρ|(x, t) ≤M0t
−1/2 for t ≤ ε20.

Proof. First note that, due to the Harnack inequality for heat equations,

ρ(L0 + t1/2, t) ≤ C1 = Cc0 for 0 ≤ t ≤ ε20,

where C is a universal constant. We choose a small c0 such that C1 ≤ M0
M1

. Then Theorem 3.5 yields
the desired result.

Now we are now ready to prove the following:
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Lemma 3.7 Consider the system as described in Lemma 3.2 (see also the Equations (3.1) – (3.2))
with (D(t), E(t)) = (Aw(t), Ao(t)); 0 ≤ t ≤ t?. Then there is a t0 > 0 such that for all t < t0

ΦAw(t) < Aw(t)− L0, ΨAo(t) < R0 −Ao(t).

Proof. As usual, we will only check the left boundary using A(t) = Aw(t) (also z(t) = zw(t) and we
may as well set L0 = 0. For emphasis, we will use ΦA to denote the flux through A.

In case ρ0 vanishes a.e. in a neighborhood of the boundary, it is seen that for short times, ΦA is
exponentially small (with rate ∝ −1/t) while A grows linearly in t. Thus, we shall focus on the cases
where

∫ x
0 ρ0dy > 0 for all x > 0. Letting t0 > 0 sufficiently small and defining z0 = z(t0) – assumed to

satisfy z0 < Ao(t) – we may write

z0A−
1
2
A2 = t+

∫ z

0
(z0 − x)ρ0(x)dx (3.34)

which can be checked by differentiation and comparison of the result with Eqs.(3.28). On the other
hand

z0ΦA −
∫ t

0
AΦ̇Ads+

∫ z0

A(t)
(z0 − x)ρ(x, t)dx =

∫ t

0
ρ(z0, s)ds+

∫ z0

0
(z0 − x)ρ0(x)dx. (3.35)

Specializing both of the above equations to t = t0 and neglecting the last term on the left of Equ.(3.35)
we have

z0ΦA +
∫ t0

0
AΦ̇Adt+ t0 −

∫ t0

0
ρ(z0, t)dt ≤ z0A−

1
2
A2 (3.36)

Next, it is claimed that if t0 is sufficiently small then for some α > 0,∫ t0

0
ρ(z0, t)dt < (1− α)t0. (3.37)

This may be obtained by noting that ρ(x, t) is, for short times, dominated by the density which has no
boundary conditions, at t = 0 agrees with ρ0 in a small neighborhood of x = 0 – vanishing for x < 0 –
and is slightly larger than one outside the neighborhood. Then, using the fact that for x close to zero,
ρ0 ≤ c < 1, the result follows. Moreover, if ρ0 is sufficiently small in a neighborhood of the boundary,
then α is close to one. Thus, after an integration by parts, we have an α ≈ 1 such that for small times,

z0ΦA −AΦA +
∫

ΦAȦdt+ αt ≤ z0A−
1
2
A2 (3.38)

i.e.
ΦA(z0 −A) + αt ≤ A(z0 −A) +

1
2
A2. (3.39)

However (c.f. the sentence at the end of Remark 5) the small value of the initial ρ0 near the boundary
which provided us with the α close to one also bounds A2 by a small constant times t. Since z0 −A is
positive, the result follows.
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Lemma 3.8 Consider a solution to Equ.(1.4) with left and right boundaries (L(t), R(t)). Then,
starting from the same initial density, the boundaries (Aw(t), Ao(t)) satisfy Aw ≥ L and Ao ≤ R for
all times up to the extintion time.

Proof. We shall only prove L ≤ A (= Aw) and we make the convenient assumption that L0 = 0. Note
that for any t0 > 0 and any b0 with R0 ≥ b0 ≥ L(t0),

b0L(t0)− 1
2
L2(t0) +

∫ b0

0
(b0 − x)ρ(x, t0) =

∫ t0

0
ρ(b0, s)ds+

∫ b0

0
(b0 − x)ρ0(x)dx. (3.40)

It is asserted that Equ.(3.40) is valid even if b0 > R(t), provided we are willing to interpret ρ(x, t) as
identically one once x is past R(t). On the other hand, recapitulating Equ.(3.35)

b0A(t0)− 1
2
A2(t0) +

∫ b0

z(t0)
(b0 − x)ρ0(x)dx = t0 +

∫ b0

0
(b0 − x)ρ0(x)dx. (3.41)

If we suppose that z(t0) ≥ L(t0) then we may set b0 = z(t0) and we quickly learn that b0A − 1
2A

2 ≥
b0L− 1

2L
2 which is the desired conclusion. But if we assume that z(t0) ≤ L(t0) we set b0 = L(t0) and

arrive at

LA− 1
2
A2 +

∫ L

z
(L− x)ρ0dx ≥

1
2
L2. (3.42)

Since ρ0 ≤ 1 this would imply, after a small bit of algebra, that LA − 1
2A

2 ≥ Lz − 1
2z

2 necessitating
z ≤ A (or some other absurdity) and the desired result is established.

We now state (without proof) a standard Lemma which is in fact, a special case of Lemma 5 in [1].

Lemma 3.9 Let f(t) satisfy |f ′(t)| ≤ Mr−1/2 satisfying f(0) = 0 and let Σf = {(x, t)|x ≥ f(t)}.
Let Vr = [−Mr1/2,+Mr1/2]× [−r,+r] and let ρ(x, t) denote a positive solution of the heat equation in
Σ∩ Vr vanishing on the boundary {x = f(t)} with ρ(Mr1/2, 0) = 1. Then there exist positive constants
0 < ε, δ < 1 , depending only on M and the supremum of ρ in Vr such that

ρ+ ρ1+ε is convex and ρ− ρ1−ε is concave in Vδr.

Using Lemma 3.9, one can prove the following short time estimate:

Lemma 3.10 Consider the system (ρ(x, t), D(t), E(t)) described prior to Equ.(3.1) with initial data
ρ0(x) satisfying ρ0 < c0 < 1 (with c0 sufficiently small) in [D(0), D(0)+ ε0] and a similar consideration
on the right. Suppose that the D–boundary satisfies

Ḋ(t) ≤M0t
−1/2 for t ≤ t0,

and similarly, for the E–boundary

˙|E|(t) ≤M0t
−1/2 for t ≤ t0,

with t0 = ( ε0
2M0

)2, where ε0 is a small constant depending on M0. Then for all t < t0,

|∇ρ|(D(t), t) ≤M0t
−1/2

and similarly for the E–boundary.
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Proof. We will only consider the boundary at x = D(t), since the other half follows from a parallel
argument. First suppose ρ0 = c0 in [D(0), D(0) + ε0] where c0 = c0(M0) is to be described later.

For fixed time t > 0, we would like to apply Lemma 3.9 to the parabolic cubes of scale t/2 centered
at D(t) which we denote by Σ0:

Σ0 = {(x, τ) : |x−D(t)| ≤M0

√
t/2, τ ∈ [t/2, t]}.

For this purpose, first we need to check that the maximum of ρ in Σ0 is comparable to ρ(D(t)+
√
t/2, t).

When there is no right boundary E present, one can apply the interior Harnack inequality of Fabes–
Garofalo–Salsa [7] to check that ρ is relatively homogeneous in the region Σ which is similar to the
above but now centered about D(t) +M0

√
t. Since our right boundary E is a distance of order unity

away and ρ = 1 (which is not “large”) on E, for small t the effect of E on Σ is negligible. Hence our ρ
is homogenous in Σ if t is sufficiently small.

Hence it remains to check whether ρ stays smaller near the boundary D, that is in the region Σ0−Σ
than in Σ. To see this, note that ρ2 ≤ ρ ≤ ρ1, where ρ1 solves the heat equation with D = D(0) and
with initial data ρ0, and ρ2 solves the heat equation with D = D(t), with initial data ρ0 restricted to
[D(t), E(0)]. By looking at explicit formulae using Green’s functions, one can check that the value of
ρ1 in Σ0 − Σ is (with a constant multiple) smaller than that of ρ2 in Σ. Hence one concludes that

max
Σ0

ρ ≤ C min
Σ0

ρ,

where C depends on M0.

Now we are able to apply Lemma 3.9, to conclude that there exists some δ depending on M0, ε0
such that,

(ρ+ ρ1+ε)(x, t) ≤ ρ(D(t) + δt1/2, t)
(x−D(t))
δt1/2

for D(t) ≤ x ≤ D(t) + δt1/2

if t is sufficiently small.

Now let us choose c0 ≤ 1
2M0δ. By comparing with exact solutions in R× [0, t] with initial data ρ0

and using the fact that ρ0 < c0 in [0, ε0] and ρ0 < 1, we obtain that

ρ(D(t) + δt1/2, t) ≤ 2c0,

if t is sufficiently small depending on M0. It follows that, for this range of t,

ρ(x, t) ≤ M0(x−D(t))
t1/2

for D(t) ≤ x ≤ D(t) + δt1/2.

Therefore ∇ρ(D(t), t) ≤M0t
−1/2.

In general if ρ0 ≤ c0 on [D(0), D(0) + ε0], by maximum principle ∇ρ(D(t), t) ≤ ∇ρ̃(D(t), t), where
ρ̃ solves the heat equation in (D,E) with same lateral boundary data as ρ and initial data ρ̃0 = c0 on
[D(0), D(0) + ε0]. Hence the worst possible case has been treated above.
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The following lemma is a direct consequence of Lemma 3.4 and Lemma 3.10 and provides uniform
C1 bounds for the boundaries in the lower and upper sequences.

Lemma 3.11 Consider the setup ρ,D,E described prior to Equ.(3.1) with ε0,M0 and t0, c0 as de-
scribed in the preceding lemmas. Suppose D(t) ≤ A(t) for t ∈ [0, T ] with T < t∗ with t? the extinction
time. Then for all t ∈ [0, T ] there exists a constant W = W (c0, ε0, t0,M0) such that if Ḋ(t) ≤ Fw(t)
with

(i) Fw(t) = M0t
−1/2 for t ∈ [0, t0]

(ii) Fw(t) = W
x∗−Aw(t) for t ∈ [t0, T ]

where x∗ denote extinction point, then Φ̇D ≤ Fw for all t ∈ [0, T ]. Similar considerations hold at the
right.

Proof. The statement for 0 ≤ t ≤ t0 holds due to Lemma 3.10.

Note that at t = t0, due to the fact that Ḋ(t), Ȧ(t) ≤Mt
−1/2
0 is uniformly bounded for t0/2 ≤ t ≤ t0,

ρ has a linear growth near the left boundary, i.e.,

ρ(x+D(t0), t0), ρA(x+A(t0), t0) ≤ Cx, (3.43)

where C = C(t0,M0, c0).

Also note that, due to Lemma 3.4, for t ∈ [t0, t∗], A(t) is differentiable with

Ȧ(t) ≤ W

x∗ −A(t)
(3.44)

for t ∈ [t0, t∗] with W = M0t
−1/2
0 , and

Ȧ(t) =
1

z(t)−A(t)
≥ ε

x∗ −A(t)
(3.45)

for t0 ≤ t ≤ T < t∗ with ε = ε(T ) > 0, ε → 0+ as T → t∗. The last inequality holds because
(i) A(t) is strictly increasing in time, and therefore x∗ − A(t) > 0 for any t < t∗, (ii) z(t) − A(t) =∫ z(t)

0 (1− ρ0(y))dy > 0 for all t ∈ [0, t∗], and (iii) z(t) and A(t) are continuous. Due to (3.43),(3.44) and
(3.45), one can apply Lemma A.2 in [CS] with our A(t) with initial time t = t0 to yield the conclusion
for t0 ≤ t ≤ T .

3.4 Proof of Main Results

Proof of Theorem 2.2

I. Construction of minimal and maximal solutions

As described earlier, we construct upper and lower sequences of fixed boundary problems where
the flux through the current boundary determines – partially or fully – the next boundary. For the
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lower sequence, we have (L0, R0) ≡ (L0, R0) and (Lk+1, Rk+1) = (L0 + Φk, R0 − Ψk) where, in this
context, Φk = Φk(t) = Φ(Lk, Rk; t) etc. Of course once k ≥ 1 we must terminate the process e.g. when
the fixed boundaries collide, but we need not pay too much attention to such matters. Obviously
(L1, R1) ⊂ (L0, R0) – meaning L0(t) ≤ L1(t) and R0(t) ≥ R1(t) – and using Lemma 3.2, it is clear that
(Lk, Rk) ⊂ (Lk+1, Rk+1). We let (L,R) denote the limiting boundaries. Our first assertion is that these
are sensible limits, in particular (Aw, Ao) ⊂ (L,R). Indeed, for general left boundary D(t), assumed
to satisfy D < z we have, by specializing Equ.(3.41) to b0 = z,∫ z

D
(z − x)ρD + zΦD −

∫ t

0
D(s)Φ̇D(s)ds =

∫ t

0
ρD(z(t), s)ds+

∫ z

0
(z − x)ρ0dx ≤ zA−

1
2
A2 (3.46)

where we have temporarily set L0 = 0. Thus, after some manipulations,

zΦD −
1
2

Φ2
D +

1
2

(ΦD −D)2 +
∫
Ḋ(ΦD −D) ≤ zA− 1

2
A2. (3.47)

It is thus evident that in any system where ΦD ≥ D (and D < z) the flux through D does not exceed
A; an easy version of Lemma 3.7.

For present purposes, the initial boundary is obviously less than A, allowing us to conclude that
ΦL0 ≤ A i.e. L1 < A and hence less than z and we may quickly conclude that Lk ≤ A ∀k. Similar
arguments take place at the right which vindicates the “first assertion”.

Thus, the boundaries indeed converge to reasonable limits (which are below their A counterparts).
A simple argument shows that if (ρ, L,R) is any Stefan system then L ≥ L and R ≤ R. Indeed, as
we demonstrate in the appendix, any solution to Equ.(2.2) or Equ.(2.1) has monotone and continuous
boundaries. Supposing (L(t), R(t)) are the boundaries of one such solution. If it is known that L ≥ Lk
and R ≤ Rk then according to Lemma 3.2, ΦL ≥ ΦLk ; the first term equals L by the Stefan condition
and the second term equals Lk+1 by definition. Similarly at the right boundary.

Next, the internal fluxes Υk(x, t) converge, by the monotonicity provided in Lemma 3.2, to a
definitive limiting Υ(x, t). Further, since the densities are bounded we may extract a limit e.g. weakly
in L2. It is claimed that by standard arguments, the limit, ρ satisfies the diffusion equation in the
interior and, by slight elaboration of the standard arguments, the Υ is the appropriate flux for the
limiting density.

We perform a similar campaign for the upper sequence. Here (L0, R0) is simply (Aw, Ao). While
austensibly Lk+1 is given by the flux though Lk, we want to keep the new boundaries outside of the
old, i.e. (Lk, Rk) ⊂ (Lk+1, Rk+1). By Lemmas 3.11 and 3.7, this is guaranteed for short times. But it
may be the case that the flux catches up with the boundary. Thus we define

Lk+1 = min{Lk, L0 + Φk} (3.48)

(where Φk is notation for Φ(Lk, Rk)) and similarly on the right. From Lemma 3.7 it is the case
that L1 < L0 for short times – and similarly on the right – and thereafter we apply Lemma 3.2 to
demonstrate that the boundaries are genuinely receding. The comparison arguments can be applied
to the upper sequence but, of course, this time, the flux inequalities tell us that these boundaries are
contained in any Stefan boundaries.

22



We thus have a second system (ρ, L,R) and our next task will be to show that both of these are
genuine solutions to the Stefan problem. Note that already, these systems satisfy a certain vague Stefan
condition namely that the total flux through the boundary equals the displacement of the boundary
itself. However this does not immediately imply the full system in Equ.(2.2) (or Equ.(2.1) in the single
boundary case) without some additional regularity. Indeed specializing to G(x, t) = (R0−x) a Stephan
system has ∫ R

L
(R0 − x)ρ(x, t)dx+ (L−R)R0 −

1
2
L2 +

1
2
R2 = t+

∫ R0

L0

(R0 − x)ρ0(x)dx (3.49)

whereas in our case, the (desired) 1
2L

2 type term is replaced by a
∫ t

0 Φ̇(s)L(s)ds term and similarly
with the R2 term. However, once the Φ’s, Ψ’s etc. are outside the integrals, we are “safe” since our
fluxes indeed converge to our boundary displacements. So, in the end, it is sufficient to show

lim
k→∞

∫ t

0
(Lk − Φk)L̇kds = 0 (3.50)

It is noted that for both the upper and lower sequences, we are in prime position to apply Lemma
3.11. First we reiterate that each “Lk” is less than Aw and similarly on the right. By fiat this is true
for the upper sequence and as was argued in Eqs.(3.46) and (3.47) this is true for the lower sequence.
As for the rest, by the nature of the lemma and the nature of the sequence, we need only verify the
initial step and then subsequent steps hold automatically. Thus, L̇k is uniformly bounded except for
some controllable behavior at the origin. Equ.(3.50) now is easily established by first cutting out a
neighborhood of the origin, where the explicit t−1/2 bounds demonstrate a negligible contribution, and
in the remainder employing dominated convergence.

Thus, both the upper and lower system are actually complete solutions to the Stefan problem; next
we will establish regularity. Finally if we can show that they coincide we are done since according to
the discussion above, these two solutions trap any other solution between them.

II.Regularity

By our hypothesis, ρ0 ≤ c0 in [L0, L0 + ε0] for some ε0 > 0. Due to Lemma 3.10 and Lemma 3.11,
for τ0 ≤ t ≤ T < t∗

|L̇k|, |Ṙk|, |L̇k|, |Ṙk| ≤W max (
1

x∗ −A(t)
, t−1/2)

for some constant W > 0 depending on c0, ε0 and T . This yields uniform Lipschitz bound for both
Stefan boundaries (L,R) and (L,R). To obtain further regularity, first note that if the boundary is
Lipschitz in time, then ∇ρ is continuous in time. Hence the boundaries are in fact C1. Now the
hodograph methods yield that the C1-free boundary is in fact C∞. This is done for obstacle problems
by Isakov [11] and by Kinderlehrer-Nirenberg [13]. Since the boundary is C1, u(x, t) =

∫ t∗
t ρ(x, s)ds

solves the parabolic obstacle problem:
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

ut −∆u = −χ{u(·,t)>0} + χ{ρ0>0}

u = |∇u| = 0 on x = L(t), R(t)

u(x, 0) = 0.

(Necessary details can be acquired from the derivation in Di Benedetto-Friedman [2].)

III.Uniqueness

In the single sided case, uniqueness follows, presumably, from the argument in [6] and certainly
from the derivation surrounding Equations (A.17)–(A.18) in [4]. For the two boundary case, a slightly
different tack must be taken. Indeed we will require various arguments reminiscent of Lemma 3.3. In
principle the particle system provides a great deal of additional information which may prove useful
in other contexts. However, some further efforts will be required to convert these into continuum
inequalities, so we will be content with a direct particle system argument for the present time. The
cornerstone of the derivation is the two conservation laws, namely∫ L

L0

dx+
∫ R

L
ρ(x, t)dx = const;

∫ L

L0

(R0 − x)dx+
∫ R

L
(R0 − x)ρ(x, t)dx = t+ const.

We shall show that the above implies that, e.g. L < L and R ≤ R for Stefan systems is impossible.
First, let K satisfy

L+
∫ K

L
ρ(x, t)dx = L (3.51)

or, perhaps more conveniently, ∫ R

K
ρdx =

∫ R

L
ρdx. (3.52)

Let us consider a discretization of these systems using the coupled exclusion dynamics featured in
Lemma 3.2. It is emphasized that this is not a discrete Stefan system with a microscopic moving
boundary of the type described earlier: Here we have sources and sinks that move deterministically in
such a way that as N → ∞, the rescaled total fluxes corresponds to the rescaled boundary displace-
ments. In particular, the particle number itself can fluctuate so a little care must be taken.

For the two systems, we use the notation Xα and Xα to denote the displacement of the αth particles
from the rightmost edge (in microscopic units). Further, we use L etc. to denote the microscopic location
of the boundary in the upper system. The number of active particles in the upper system will serve as
our reference; N = |A| where

A = {α|L < NR0 −Xα < R}. (3.53)

Recalling from the discussion prior to Lemma 3.3 the definition of the stack SL, we have

E[
1
N

(SL + N)]→
∫ R0

L0

ρ0dx and E[
1
N

(SL + N)]→
∫ R0

L0

ρ0dx. (3.54)
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Now before averaging, each particle in the upper system is ahead or equal with of its counterpart in
the lower system. In particular, since L < L, no counterpart of a bulk particle in the upper system is
in the lower stack. We thus have∑

i: L<i<R

[NR0 − i]ηt(i) =
∑
α∈A

Xα ≥
∑
α∈A

Xα (3.55)

where the inequality is the direct result of Lemma 3.3. On the other hand, we claim that the final term
is approximately the transport contribution from NK to NR in the lower system:∑

α∈A

Xα =
∑

i:NK<i<R
[NR0 − i]ηt(i) + EN (3.56)

with limN→∞N
−1E(EN ) = 0. Indeed, the contributions to EN come from the fraction of particles in

the right stack and from particles which are on the “wrong side” of NK; both of these represent an
asymptotically vanishing fraction of the average by convergence to the limiting diffusion equation. E.g.
due to Eqs.(3.54) only a vanishing (average) fraction of the particles in the lower system corresponding
to active particles in the upper system could be in the right stack. As an upshot, letting N →∞, we
learn that ∫ R

K
(R0 − x)ρ(x, t)dt ≤

∫ R

L
(R0 − x)ρ(x, t)dt. (3.57)

Now let us consider the remaining effective “enthalpy” in the two systems. By this it is meant the
density defined to be unity to the left of the left boundaries and ρ in the bulk. The upper system is
concentrated on the interval [L0, L] while the lower system is spread out over [L0,K] and is less than
unity on (L,K); both systems have the same mass namely L − L0. It then follows, from elementary
considerations, that ∫ L

L0

(R0 − x)dx+
∫ K

L
(R0 − x)ρdx <

∫ L

L0

(R0 − x)dx. (3.58)

Hence the sums of the left sides of Eqs.(3.57) – (3.58) cannot equal the sums of the right sides whilst
both are supposed to equal t+

∫ R0

L0
(R0 − x)ρ0dx by the transport conservation law.

Appendix

In this appendix, we establish some basic properties, namely monotonicity and continuity of the bound-
aries, for weak solutions of the Stefan problem as exemplified in Eqs.(2.1) and (2.2). It is noted that
weak solutions always exist e.g. the construction in the proof of the main theorem and, in the present
context more importantly, from the discrete version in the particle system. However to get from weak
to strong – and uniqueness, two inputs are required namely monotonicity and continuity of the bound-
aries. In sharp contrast to [4], where these properties were extracted directly from the particle system,
here we provide an ab initio derivation (thus ruling out the intangible possibility that there are weak
solutions exist which cannot be accessed by the particle system). Finally we will show that this system
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is genuinely unstable if it is allowed that ρ > 1 in the vicinity of the boundary. In all cases we will, for
simplicity work with the one–sided problem; parallel proof apply for the two-sided cases.

Our starting point (which is automatic for the two–sided case) is the natural bound on the density.

Proposition A.1. Consider the weak systems described under Hypotheses e-H.1 and t-H.2. Then,
for a.e (x, t), ρ(x, t) ≤ 1.

Proof. Recall that the boundary is defined by

L(t) = sup{x|a(y, t) ≡ 1; ρ(y, t) ≡ 0 for y < x}. (3.59)

Using G(x, t) = G(x) = K − x and the fact that ρ0 is, in the integral sense, strictly less than one and
that ρF (t) is bounded, it is clear that L(t) stays bounded away from K for a while. Thus there is an
interior to the set where ρ = a and, therein, classical diffusion is obeyed. Further, if ρ is to get larger
than the prescribed boundary values – which are always less or equal to one – such behavior must
emanate from the boundary of the region where ρ = a.

Let us therefore entertain the possibility that at some time t0, there is a c > 0 such that on
(L(t0), L(t0) + c), the density exceeds one. We shall assume that this excess takes a weak form,
partially because this is a form that easily propagates. Thus we shall say that ρ weakly exceeds one
if for any positive convex function α(x), which is positive at L(t0) and vanishes, along with all of its
derivatives somewhere in (L(t0), L(t0) + c), we find∫ L(t0)+c

L(t0)
ραdx ≥

∫ L(t0)+c

L(t0)
ρdx. (3.60)

The upshot of this proposition is that should the above happen, the boundary immediately gets driven
to −∞. For simplicity we shall assume that K = 1 that L0 = 0 and we will use C to denote L(t0) + c.
As for the up and coming, we will envision, informally, that c is small; we note, for future reference
that the weak equations between times s and t with s > 0 read∫ 1

0
[a(x, t)G(x, t)−a(x, s)G(x, s)]dx

=
∫ 1

0

∫ t

s
[a(x, t)

∂G

∂t
+ ρ(x, τ)

∂2G

∂x2
dxdτ −

∫ t

s
ρF (τ)

∂G

∂x
(1, τ)dτ. (3.61)

The first consequence is that at times after t0, the boundary indeed ceases to go forward. I.e. we
claim that for all t1 > t0, L(t1) ≤ L(t0). Supposing, on the contrary that L(t1) > L(t0) and let L̃ denote
the minimum of L(t0) + c and L(t1). Then, for a function α of the type described before Equ.(3.60)
vanishing at L̃ Equ.(3.61) reads∫ L̃

0
αdx−

∫ L0

0
αdx−

∫ L̃

L0

ρ(x, t0)dx =
∫ t1

t0

∫ L̃

0
ρ(x, t)α′′dx. (3.62)

The right hand side is positive (by the convexity and the positivity assumption) while the left side is
negative if L̃ > L(t0). Moreover, recapitulating the above argument we have that∫ C

L(t1)
ρ(x, t1)α(x)dx ≥

∫ L(t0)

L(t1)
α(x)dx+

∫ C

L(t0)
ρ(x, t0)dx (3.63)
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i.e. at all times later than t0 the density (weakly) exceeds one in an interval at least as large as c to the
right of the boundary. Furthermore, we now have that at times later than t0 the region to the right of
L(t0) is essentially classical. We use this to show that for any t > t0∫ C

L(t)
ρ(x, t) ≥ 1

2
c.

Indeed, we employ the transport function with boundary data at x = C, i.e. G(x) = C − x and note
that throughout [0, C], a(x, t0) is never less than one. We arrive at∫ C

L(t)
[C − x]ρ(x, t)dx− 1

2
(C − L(t))2 ≥

∫ t

t0

ρ(C, t)dt ≥ 0. (3.64)

On the other hand,
∫ C
L [C−x]ρdx ≤ [C−L]

∫ C
L ρdx and [C−L] is at least as large as c which vindicates

the claim in the above unlabeled display. Now, let us denote for t = t0 + b the backwards displacement
∆(b) defined by L(t0 + b) = L(t0) − ∆(b). Our next claim is that for c small and b also small but
considerably larger than c, there is a θ < 1 such that

∆(b) ≥ m[b]θ. (3.65)

Here m > 0 depends on the Lp norm of ρ as described in the second of the t–H.2 hypotheses. We
resort to a quadratic function that vanishes at (or “just before”) x = C – i.e. G = (C−x)2 and by our
previous argument ∫ L(t0)+c

L(t0)−∆
[ρ− 1]Gdx ≥ 2

∫ t0+b

t0

dt

∫ C

L(t)
ρ(x, t)dx. (3.66)

As a consequence of the preceding claim we can replace the right hand side by bc. As for the left hand
side, we neglect the one, pull out a (∆ + c)2 and estimate∫ L(t0)+c

L(t0)−∆
ρ(x, t0 + b)dx ≤M [∆ + c]1/q (3.67)

where M is the Lp norm of ρ and q is the complimentary index. Thus far we have

(c+ ∆)2+ 1
q ≥ m′cb (3.68)

Now let us take b = cκ with κ > q/(q+ 1). It is clear, for c sufficiently small, that this will force ∆� c

which simplifies the calculation. At the expense of exchanging an m′ for an m, this gets us

∆ ≥ mb
[
1+ 1

κ
2+1

q
]

(3.69)

which, under our stipulation about κ, implies Equ.(3.65).

The rest of the argument is straightforward. Note that if we have the “weak excess of one” property
for an interval of length c′ then we also have it for an interval of length c < c′. Suppose then that
this happenstance occurs at some t0, let us choose c � 1. Consider the situation at any time t1 > t0.
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Dividing [t0, t1] into small segments of size b in accord with the derivation above, the backslide of the
boundary will be of the order (t1 − t0)bθ−1 i.e. if permitted, the boundary would be at −∞ in zero
time. However this is prevented by the boundary condition at x = 0 and we may thus conclude that a
density in excess of unity can never occur.

Proposition A.2. Consider the weak systems described under Hypotheses e-H.1 and t-H.2. Then,
for t ≥ 0, the boundaries are monotone and continuous. Moreover e.g. for the one-sided problem, under
the slightly weaker condition that ρ0 is not identically one, there is still monotonicity and, for t > 0,
continuity. Finally, for t = 0 the boundary is continuous provided that ρ0 is not identically 1 in a
neighborhood of L0 – with similar considerations on the right.

Proof. We again consider only the one sided problem with 0 ≤ x ≤ 1 and note that L ≥ 0. Without
loss of generality, we may discuss only small times. Suppose there is a non–monotonicity; i.e. letting
t > 0 suppose that the set

Dt = {s < t|L(s) > L(t)}

has positive measure. For any s ∈ Dt and let G = α(x) be another non–negative time independent
convex function of the type used above: strictly positive on [0, L(s)) and vanishing for x ≥ L(s) along
with all of its its derivatives. Placing this into Equ.(3.61), the right hand side is not negative and is
strictly positive unless ρ vanishes a.e. on the region {0 ≤ x ≤ L(t); s ≤ τ ≤ t}. Meanwhile, the left
hand side is equal to ∫ L(s)

L(t)
(ρ(x, t)− 1)dx.

which, using Proposition A.1, is non–positive and, unless ρ(x, t) is a.e. equal to one between L(t) and
L(s) is in fact strictly negative. So, assuming that a contradiction has not already been achieved,
consider values s′ ∈ (s, t). Either L(s′) ≥ L(s) (a.e.) or, there is a set of positive measure where
L(s′) < L(s). In the former case we immediately conclude that the time t is “exceptional” and it may
be removed. In the latter case, we run the same argument again leading to a primary contradiction or
the conclusion that ρ did not vanished a.e. on the set between L(s) and L(t) rendering a contradiction
for the s, t argument.

With the monotonicity in hand, we are in the realm where we may employ essentially classical
arguments. Let us rule out the possibility of a discontinuity in L(t) at time t0 > 0. Let us define
limt↑t0 L(t) = L(t0) and suppose that limt↓t0 L(t) = L(t0) + 2∆. Note that for all t, all the boundary
data – even at (or as we approach) the left – puts ρ ≤ 1. Consider the density ρ̃ in L(t0) + ∆ ≤ x ≤ 1
which has ρ̃(L(t0) + ∆, t) ≡ 1 and agrees with the boundary data for the current problem at x = 1 and
t = 0. Now regardless of the situation for times t > t0 when ostensibly the boundaries have crossed, for
t < t0, it is clear that on their common domain, ρ(x, t) ≤ ρ̃(x, t). Moreover, since ρ̃ is purely classical,
it follows from the strong maximum principle that away from its boundaries, ρ̃ < 1. To finish the
argument, let G(x) be any positive test function supported in [0, L(t0) + 2∆]; vanishing along with all
of its derivatives at the endpoint. Then, using Equ.(3.61), and t . t0, and an upper limit in very slight
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excess of t0 we obtain ∫ L(t0)+2∆

L(t)
(1− ρ(x, t))Gdx =

∫
dx

∫ t0

t
ρ(x, τ)Gxxdτ. (3.70)

The right hand side tends to zero as t ↑ t0 while on the left hand side, we are bounded below by∫ L(t0)+2∆

L(t)+∆
(1− ρ(x, t))Gdx

which is strictly positive.

A similar sort of argument holds at t = 0 provided that ρ0 is not identically one in a neighborhood
of the starting point. (In the latter case, as we will show below, there is immediately, at t = 0, some
sort of a discontinuity.) All of the preceding arguments have assumed that times t are small enough
that we need not concern ourselves with collision at x = K or between the two moving boundaries. By
a straightforward resetting argument, all of the above can be achieved for any t ≤ T < t?.

Remark 6. It seems clear that if ρ0 is identically one in a neighborhood of the origin, then L immediately
jumps to the endpoint of the neighborhood; this can easily be established in the context of the particle
system as will be discussed below. But, from the perspective of the continuum, these cases can be
circumvented by redefining ρ0 = 0 and a0 = 1 in the neighborhood, i.e. it is just an inappropriate
labeling of the resources. Notwithstanding, genuine discontinuities will occur in this system if the
density gets bigger than one in the vicinity of the moving boundary – a circumstance that can develop
dynamically. Indeed, we shall conclude this note with a lemma/example that indeed demonstrates the
present problem to be borderline ill-posed.

Lemma A.3. If ρ0(x) ≤ ρF with
∫
ρ0(x)dx = 1 + h > 1, then L(t) disappears before it hits x = 1.

If ρ0 ≡ ρF = 1, then L(t) disappears instantly at t = 0. Finally, if ρ0 ≡ 1 in [0, x0] but for x > x0

satisfies t-H.2 with L0 replaced by x0 then there is a consistent solution with a discontinuity at t = 0
and regular thereafter.

Proof. We start with the substantive portion: By plugging in smooth approximations of the step
function G(x) = χ(−∞,1) into the of weak equation, we obtain

L(t) +
∫
ρ(x, t)dx =

∫
ρ0(x)dx+

∫ t

0
∇ρ(1, s)ds,

Starting with L(0) = 0 we may assume that for a while L(t) < 1 or there is nothing to prove. (Further,
this guarantees that ∇ρ(1, s) makes sense for 0 ≤ s ≤ t.) Since ρ0(x) ≤ ρF , by the maximum principle
ρ(x, t) ≤ ρF and ∇ρF ≥ 0. Since ρ(·, t) is supported in [L(t), 1], we obtain

L(t) + (1− L(t))ρF ≥
∫ 1

0
ρ0(x)dx = 1 + h.

But if L(t) gets sufficiently close to 1, the quantity on the left hand side will be less than 1 + h. Hence
we conclude that under the stated conditions, all assumptions of smoothness and continuity break
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down i.e. the boundary disappears at some positive time. If ρ0 ≡ ρF = 1, then we would conclude
L+ (1−L)ρF = 1 which, evidently, means that the boundary disappears instantly at t = 0. As for the
intermediate situation: It is seen by one last appeal to the weak equations, using arguments that are
by now familiar, that limt↓0 L(t) = x0 and, one the basis of everything else in this note, the solution
for t > 0 is identical to the one where the starting point is x = x0. We shall omit the details.

Note that the primary case includes the situations where ρ0 vanishes in a neighborhood of x = 0; in
these cases, the Stefan boundary is guaranteed to move smoothly for short times. Let us next discuss
the final case which, from the perspective of the particle system, is not completely trivial. Indeed,
suppose that the initial condition is such that in some small neighborhood to the right of x0, the
density vanishes. For the microscopic Stefan setup as described, there is a hole initially at x = L0 = 0
whose dynamical location defines the moving boundary. Initially there is a wall of size Nx0. The
time scale in lattice units that it will take the hole to get through this wall is of the order N . In
the meanwhile, the right edge of the wall will have spread out – here to a distance of the order N1/2.
However, on this time scale, the particles to the right of the gap will only have closed a vanishing
fraction of the gap. In macroscopic units, all of these events take place in times of the order N−1.
Thus, in the continuum limiting version, we would see precisely the discontinuity described in Lemma
A.3.
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