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Abstract

In this paper we prove that, in a local neighborhood, Lipschitz
continuous free boundary of a solution of the one-phase Hele-Shaw
problem is indeed smooth if the solution is Lipschitz continuous and
non-degenerate in the neighborhood.

0 Introduction

Consider a compact set K ⊂ IRn with smooth boundary ∂K. Suppose
that a bounded domain Ω contains K and let Ω0 = Ω − K and Γ0 = ∂Ω
(Figure 1). Note that ∂Ω0 = Γ0 ∪ ∂K.

Let u0 be the harmonic function in Ω0 with u0 = f > 0 on K and zero
on Γ0. Let u(x, t) solve the one phase Hele-Shaw problem
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−∆u = 0 in {u > 0} ∩Q,

ut − |Du|2 = 0 on ∂{u > 0} ∩Q,

u(x, 0) = u0(x); u(x, t) = f for x ∈ ∂K.

where Q = (IRn−K)×(0,∞). We refer to Γt(u) := ∂{u(·, t) > 0}−∂K
as the free boundary of u at time t. Note that if u is smooth up to the
free boundary, then the free boundary moves with normal velocity V =
ut/|Du|, and hence the second equation in (HS) implies that V = |Du|. The
classical Hele-Shaw problem models an incompressible viscous fluid which
occupies part of the space between two parallel, narrowly placed plates. The
short-time existence of classical solutions when Γ0 is C2+α was proved by
Escher and Simonett [ES]. When n = 2, Elliot and Janovsky [EJ] showed
the existence and uniqueness of weak solutions formulated by a parabolic
variational inequality in H1(Q).

Our goal is to prove that, in a local neighborhood, if the free boundary
Γ(u) := ∪t≥0Γt(u) is a Lipschitz graph in space-time and if u is Lipschitz
continuous and non-degenerate on the free boundary, then the free boundary
is indeed differentiable and u satisfies the free boundary condition V = |Du|
in the classical sense. As for the notion of generalized solutions, we use
viscosity solutions whose existence and uniqueness were proved in [K1]. For
rigorous statements, see Section 1.

The above result - in short, Lipschitz free boundaries are smooth - is
proved in [ACS] for the Stefan problem

(St)











ut − ∆u = 0 in {u > 0},

ut − |Du|2 = 0 on ∂{u > 0}

The underlying idea of such result is that the regularity of positive
level sets of u ’propagates’ to the free boundary over time. Concerning our
problem (HS), this idea doesn’t seem to apply since our solution u is har-
monic at each time, and thus the regularity of u in time is not necessarily
better in the positive set than on the free boundary. In other words the dif-
ficulty in our analysis lies in the hyperbolic nature of our problem. However
our result holds because (a) u has strong spatial regularity since u(·, t) is
harmonic for each t > 0, and (b) the regularity of level sets in space and in
time affect each other by the free boundary motion.
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In fact if we consider the blow-up solution of (HS)

u(x, t) := a(t)(xn +

∫ t

0
a(t)dt)+, x = (x′, xn) ∈ IRn−1 × IR

where a(t) is only Lipschitz continuous in time, then u may not be differ-
entiable in time, but Γt(u) is differentiable in time with normal velocity
a(t).

Here is a summary of the paper. The main tools used in the following
sections are barrier arguments, properties of harmonic functions in Lipschitz
domains (see section 1), and the iteration method developed in [ACS] and
[C2]. In section 1 we introduce notations used in this paper and state our
main results. In section 2 we state and prove some preliminary lemmas which
will be used in later sections. In particular we show that positive level sets
of u do not change their normal direction too fast over time (Lemma 2.6),
which produces an ’interior gain’ for the positive level sets. In section 3 we
construct a family of perturbations to prove a propagation lemma (Lemma
3.4) which carries the ’interior gain’ to the free boundary over time. In
section 4 we adopt the iteration method and apply Lemma 3.4 to show that
the free boundary is differentiable in space. In section 5 using the spatial
regularity of u, we show that the free boundary is indeed differentiable in
space-time. Furthermore we prove that the spatial regularity of the free
boundary is strong enough for Du to exist on the free boundary, satisfying
the free boundary condition V = |Du|. Finally in section 6, as an application
of the regularity results from previous sections, we transform (HS) into an
obstacle problem to prove that the free boundary of a viscosity solution of
(HS) with smooth boundary data becomes analytic after a finite time.

1 Notations and main results

We first introduce several notations that are used frequently in this paper.
• Let us assume that n > 0 is a given integer. Then we define

(a) For x ∈ IRn let Br(x) = {y ∈ IRn : |x− y| < r}

(b) For (x, t) ∈ IRn+1 let
Bn+1

r (x, t) = {(y, s) ∈ IRn+1 : |(x, t) − (y, s)| < r}.

• For D ⊂ IRn+1 and a constant c, cD = {y ∈ IRn+1 : y = cz, z ∈ D}.
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• For a unit vector ν ∈ IRn and 0 < θ ≤ π/2, we define

W (θ, ν) := {x ∈ IRn :< x, ν >≥ |x| cos θ.}

Also we denote by α(e, f) the angle between vectors e and f in IRn.
• A pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated (denoted

by u0 ≺ v0) in D ⊂ IRn if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii) in supp(u0) ∩ D̄ the functions are strictly ordered:

u0(x) < v0(x).

• For a nonnegative function u(x, t) defined in D ⊂ IRn × [0,∞),

u∗(x, t) = lim sup(y,s)∈D→(x,t) u(y, s);

u∗(x, t) = lim inf (y,s)∈D→(x,t) u(y, s);

Ω(u) = {(x, t) : u(x, t) > 0}, Ωt(u) = {x : u(x, t) > 0};

Γ(u) = ∂{(x, t) : u(x, t) = 0}, Γt(u) = ∂{x : u(x, t) = 0}.

Below we state the definition of viscosity solutions introduced in [K1]:
We keep the notions used in the previous section.

Definition 1.1 (1) A nonnegative uppersemicontinuous function u defined
in Q̄ is a viscosity subsolution of (HS) with initial data u0 and fixed bound-
ary data f > 0 if

(a) u = u0 at t = 0, u ≤ f for x ∈ K;

(b) Ω̄(u) ∩ {t = 0} = Ω̄0(u);

(c) for each T ≥ 0 the set Ω̄(u) ∩ {t ≤ T} is bounded; and

(d) for every φ ∈ C2,1(Q) such that u− φ has a local maximum in
Ω̄(u) ∩ {t ≤ t0} ∩Q at (x0, t0),
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(i) − ∆φ(x0, t0) ≤ 0 if u(x0, t0) > 0.

(ii) min(−∆φ, φt − |Dφ|2)(x0, t0) ≤ 0 otherwise.

(2) A nonnegative lowersemicontinuous function v defined in Q̄ is a vis-
cosity supersolution of (HS) with initial data v0 and fixed boundary data
f > 0 if

(a) v = v0 at t = 0, v ≥ f for x ∈ K and

(b) if for every φ ∈ C2,1(Q) such that v − φ has a local minimum in
Ω̄(v) ∩ {t ≤ t0} ∩Q at (x0, t0),

(i) − ∆φ(x0, t0) ≥ 0 if v(x0, t0) > 0,

(ii) If v(x0, t0) = 0 and if

|Dφ|(x0, t0) 6= 0 and (x0, t0) ∈ Ω(φ) ∩ Ω(v),

then

max(−∆φ, φt − |Dφ|2)(x0, t0) ≥ 0.

(3) u is a viscosity solution of (HS) with boundary data u0 and f if u∗

is a viscosity subsolution and if u = u∗ is a viscosity supersolution of (HS)
with boundary data u0 and f .

(4) A nonnegative lower semicontinuous function u defined in the closure
of a cylindrical domain Σ := D × (a, b) ⊂ IRn × IR where D is bounded in
IRn is a viscosity solution of (HS) in Σ if (1)(d) holds for u∗ and (2)(b)
holds for u = u∗ with Σ replacing Q.

Remark. It follows from the above definition that if u is a continuous
viscosity solution of (HS) in an open subset O in IRn+1 then for fixed t u(·, t)
is harmonic in Ωt(u) ∩ {(x, t) ∈ O}.

The following two theorems state important properties of the viscosity
solutions: we refer to [K1] for proofs.

Theorem 1.2 (localized comparison principle) Let u, v be respectively
viscosity sub- and supersolutions in D× (0, T ) ⊂ Q with initial data u0 ≺ v0
in D. If u ≤ v on ∂D and u < v on ∂D ∩ Ω̄(u) for 0 ≤ t < T , then
u(·, t) ≺ v(·, t) in D for t ∈ [0, T ).
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Theorem 1.3 Let u0 be the harmonic function in Ω0 with u0 = f > 0 on
K and u0 = 0 on Γ0, where f(x, t) is a smooth function in Q̄. In addition
suppose that Du0 exists at each point at Γ0 as the limit from Ω0 and satisfies
|Du0| > 0 on Γ0. Then there exists a unique viscosity solution u of (HS) in
Q with its boundary data.

Below we state the main result of the paper:

Theorem 1 Let u be a viscosity solution of (HS) in
S := B2(x0)× (t0 − 2, t0 + 2) and suppose (x0, t0) ∈ Γ(u). Moreover assume
that u satisfies the following properties in S:

(Pa) Γ(u) is given by a Lipschitz graph {xn = f(x′, t) : (x′, t) ∈ IRn−1 × IR}
with Lipschitz constant L0.

(Pb) u is continuous and |ut|/|Du| ≤M0 in Ω(u).

(Pc) un := Denu ≥ m0 > 0 in Ω(u), where en is a unit vector in the
direction of xn.

Then the following conclusions hold:
(1) Γ(u) is a C1 graph in space and time in S ′ := B1(x0)×(t0−1, t0+1).

Moreover, for any η > 0, there exists a positive constant C̄ depending only
on the constants in (Pa) − (Pb) and n, η such that, for
(x′, xn, t), (y

′, yn, s) ∈ Γ(u) ∩ S ′,

|∇x′f(x′, t) −∇x′f(y′, t)| ≤ C̄(−log|x′ − y′|)−3/2+η ,

|ft(x
′, t) − ft(x

′, s)| ≤ C̄(−log|t− s|)−1/2+η .

(2) u(·, t) ∈ C1(Ω̄t(u) ∩B1(x0)) for |t− t0| ≤ 1 and

Vx,t = |Du|(x, t) on Γ(u) ∩ S ′

where Vx,t is the normal velocity of Γ(u) at (x, t).

Remark
1. In addition to (Pa) and (Pc), condition (Pb) is necessary. For example

see the blow-up solution given in the introduction with discontinuous a(t).
2. By a barrier argument using radial solutions of (HS) and Lemma 2.2, one
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can check that a viscosity solution of (HS) in S with condition (Pa)-(Pb)
satisfies

(Pb)′ |Du| ≤M = M(M0, L0) in B3/2(x0) × (t0 − 3/2, t0 + 3/2).

Due to the hyperbolic nature of our problem, to obtain further regu-
larity of Γ(u) it is necessary to obtain more information for the regularity
of boundary data on ∂S, or alternatively the global properties of u if u is a
viscosity solution of (HS) in Q with S ⊂ Q. As a consequence of Theorem
1 and [K2], the following result is obtained in section 6:

Theorem 2 Let u be a viscosity solution of (HS) with boundary data f = 1
and u0. Moreover suppose that |Du0| > 0 on Γ0. Then there is 0 < T0 <∞
such that Γ(u) is analytic in Q ∩ {t > T0}.

For the sake of simplicity, from now on we assume that L0 ≤ 1/4 in
(Pa). Hence for example if (x1, t1) ∈ Γ(u) ∩ S ′ then
the region B1/4(x1 + 3/4en) × [t1 − 1, t1 + 1] is contained in Ω(u). We leave
it to the reader to check that a parallel argument holds for the general L0.

2 Preliminary results

First we state several properties of harmonic functions which are impor-
tant in our analysis.

Lemma 2.1 (Dahlberg, see [D]) Let u1, u2 be two nonnegative harmonic
functions in a domain D of IRn of the form

D = {(x′, xn) ∈ IRn−1 × IR : |x′| < 1, |xn| < M,xn > f(x′)}

with f a Lipschitz function with constant less than M and f(0) = 0.
Assume further that u1 = u2 = 0 along the graph of f . Then, on the
domain

D1/2 = {|x′| < 1/2, |xn| < M/2, xn > f(x′)}

We have

0 < C1 ≤
u1(x

′, xn)

u2(x′, xn)
·
u2(0,M/2)

u1(0,M/2)
≤ C2

with C1, C2 depending only on M .
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Lemma 2.2 (Caffarelli, see [C2]) Let u be as in Lemma 2.1. Then un ≥ 0
on cD, c = c(M), and for 0 < d < cM

0 < C1 ≤
un(0, d)d

u(0, d)
≤ C2

where Ci = Ci(M).

Lemma 2.3 (Caffarelli, see [C2])
Let 0 ≤ u1 ≤ u2 be harmonic functions in B1(0). Assume that on

B1−ε(0)

vε(x) = sup
Bε(x)

u1(y) ≤ u2(x)

and further

u2(0) − vε(0) ≥ σεu2(0).

Then, for some κ, h > 0 (independent of ε, σ) we have

u2(x) − v(1+σh)ε(x) ≥ κσεu2(0)

in B1/2(0).

Suppose φt − |Dφ|2(x1, t1) > 0.

Lemma 2.4 (Caffarelli, see [C2]) Let u be harmonic in B1. Then there
exists ε0 > 0 such that if

u(x+ εp) ≥ u(x) for ε > ε0 and x, x+ εp ∈ B1

for a unit vector p ∈ IR2, then Dpu ≥ 0 in B1.

Next we show that for the most cases the first term on the variational
inequalities in Definition 1.1 can be omitted.

Lemma 2.5 Let u be a continuous viscosity solution of (HS) in S,
(x1, t1) ∈ Γ(u) ∩ S and let φ be a C2,1-function in a local neighborhood of
(x1, t1) such that u−φ has a local maximum zero at (x1, t1) in Ω̄(u)∩{t ≤ t1}
and |Dφ|(x1, t1) 6= 0. Then it follows that

(φt − |Dφ|2)(x1, t1) ≤ 0.
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Proof.
1. By hypothesis, for any ε > 0 there is a space-time ball Bn+1 with

Bn+1 ∩{t ≤ t1} ⊂ (S− Ω̄(φ))∩{t ≤ t1} and with its outward normal vector
(ν, φt/|Dφ| − ε) at (x1, t1) where ν a unit vector in IRn such that

B̄n+1 ∩ Γ(φ) ∩ {t ≤ t1} = {(x1, t1)}.

Let a = |Dφ|(x1, t1). Next we define a C2,1 function ϕ(x, t) in a neigh-
borhood of (2Bn+1 −Bn+1) ∩ {|t− t1| ≤ c}, where c << 1, such that



























ϕ ≥ 0,−∆ϕ(x, t) > 0 in (2Bn+1 −Bn+1) ∩ {|t− t1| ≤ c},

ϕ = 0 on ∂Bn+1 ∩ {|t− t1| ≤ c},

|Dϕ| = a+ ε on ∂Bn+1 ∩ {t = t1}.

(For the construction of such test function, see Appendix A of [K1].)
2. By the regularity of φ, |Dφ|(x, t) ≤ a+ ε in a small neighborhood of

(x1, t1) with φ ≤ 0 on ∂Bn+1. It follows that φ ≤ ϕ in a neighborhood of
(x1, t1) in (2Bn+1 −Bn+1)∩{t ≤ t1} with φ = ϕ = 0 at (x1, t1). Since u−φ
has a local maximum at (x1, t1) in Ω̄(u) ∩ {t ≤ t1}, it follows that u − ϕ
has a local maximum at (x1, t1) in the set Ω̄(u) ∩ {t ≤ t1}. Note that by
construction −∆ϕ(x1, t1) > 0. Hence by definition of u we obtain

ϕt

|Dϕ|
(x1, t1) ≤ |Dϕ|(x1, t1) = |Dφ|(x1, t1) + ε.

On the other hand, note that the zero level set of ϕ is ∂Bn+1 in a
neighborhood of (x1, t1) in IRn+1. Hence by the construction of Bn+1 the
normal velocity of the level set {ϕ = ϕ(x1, t1)} at (x1, t1), ϕt/|Dϕ|(x1, t1),
equals that of IRn+1 −Bn+1 at (x1, t1) and thus due to the above inequality

φt

|Dφ|
(x1, t1) − ε ≤ |Dφ|(x1, t1) + ε.

Since ε > 0 is arbitrary, we can conclude.
2.

Lastly we give an estimate for the change of the normal directions of
the positive level sets. We say that a function f has a cone of monotonicity
W (θ, ν) in D ⊂ IRn if f is monotone increasing along every direction
p ∈W (θ, ν) in D.
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Lemma 2.6 Let u be as given in Theorem 1. Furthermore suppose
(x1, t1) ∈ Γ(u) ∩ S ′ and

A ≤
ut

un
≤ B and α(Du, en) ≤ δ

in Σ ∩ Ω(u) where Σ = B1(x1) × (t1 − r, t1 + r). Let us denote
µ = max(δ,B −A). If δ/µ < r, then there are 0 < l0, r0 < 1 only depending
on the constants in (Pa) − (Pc) and ν ∈ IRn such that

α(Du, ν) ≤ l0δ in B1/8(x1 +
3

4
en) × (t1 − r0δ/µ, t1 + r0δ/µ.)

Proof.
1. As before we change coordinates so that (x1, t1) = (0, 0). Due to our

hypothesis α(Du(x, 0), en) ≤ δ inB1(0)∩Ω(u). In other words u is increasing
along the directions in the cone W (π/2 − δ, en) in B1(0). In particular in
B1/4(

3
4en) we have

(2.3) sup
Bελ0(x)

u(x− εen, 0) ≤ u(x, 0).

with small ε > 0 and λ0 = sin(π/2 − δ). We also observe that

(2.4)

u(3
4en, 0) − supBελ0

(3/4en) u(y − εη, 0)

≥ δε
2 Du(

3
4en, 0)

(by Lemma 2.2) ≥ Cδεu( 3
4en, 0)

if ε > 0 is small enough, where η := Du
|Du|(

3
4en, 0) and C = C(L0).

2. Due to (2.3),(2.4) and Lemma 2.3, the technical arguments in section
5 and 6 of [C2] apply (Note that Lemma 2.3 does not directly apply since
en may be different from η) and we obtain a unit vector ν ∈ IRn and λ =
(1 + kδ)λ0, with k > 0 independent of δ and µ, such that

sup
Bελ(x)

u(x− εν, 0) ≤ u(x, 0) in B1/6(
3

4
en).

In terms of Du this means that there is a unit vector ν ∈ IRn and
0 < h < 1, independent of δ and µ, such that

(2.5) α(Du(x, 0), ν) ≤ (1 − h)δ in B1/6(
3

4
en).
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3. Since |Du| ≥ m0 in Σ, for a unit vector p such that

α(p, ν(0)) ≤ π/2 − (2 − h/2)δ,

u(· + εp, 0) ≥
1

4
m0hδε+ u(·, 0) in B1/8(

3

4
en), 0 < ε < 1/16.

Moreover since |ui| ≤ δ|Du|, i = 1, ..., n − 1 in Ω(u) by our hypothesis,
by interior estimates of harmonic functions

|uii| = O(δ)|Du|(
3

4
en, t), i = 1, ..., n − 1 in B1/8(

3

4
en) × (−r, r).

Since u is harmonic in the region and |Du| ≤ M (see the remark below
Theorem 1) we obtain |unn| = O(δ) and thus

|un(· + εp, t) − un(·, t)| = Cδε in B1/8(
3

4
en),

where C is independent of δ, µ.
4. Let us pick a small constant ε0 > 0. By the previous argument and

our hypothesis, there is r0 > 0 independent of δ, µ and ε0 such that for
|t| ≤ r0ε0δ/µ the following holds:

u(· + εp, t) ≥
1

8
m0hεδ + u(·, t) in B1/4(

3

4
en), ε0 < ε < 1/16.

i.e., in terms of [C3] u is ε0-monotone in the direction p in B1/4(
3
4en).

5. Thus if we choose ε0 small enough, then Lemma 2.4 applies and we
obtain

Dpu(x+
3

4
en, t) ≥ 0 in B1/8(

3

4
en) × (−r0δ/µ, r0δ/µ)

which proves our assertion with l0 = h/2.
2

3 Propagation of interior gain

In this section we prove a propagation lemma which carries the ’interior
gain’ in the positive set to the free boundary over time. For this purpose we
first construct a family of test functions (perturbations) to be used for local
barrier arguments.
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Lemma 3.1 (Lemma 9, [C2]) Let ϕ(x) be a C2-positive function in a do-
main D ⊂ B1(0) satisfying |Dϕ| ≤ 1 and

(3.1) ∆ϕ ≥ C(n)
|Dϕ|2

ϕ

in B1(0), where C(n) is a dimensional constant. Let u be continuous,
defined in a domain D ⊂ IRn large enough so that the following function is
defined in B1(0) :

ω(x) = sup
|ν|=1

u(x+ ϕ(x)ν).

Then if u is harmonic in {u > 0} ∩ B1(0), then ω is subharmonic in
{ω > 0} ∩B1(0).

Lemma 3.2 For r, C0 > 0 and for sufficiently small h > 0 , there exist
constants k,C ′ > 0 independent of r and h and a family of C2 functions
ϕη(x, t), 0 ≤ η ≤ 1, defined in

D := [B1(0) −B1/8(
3

4
en)] × (−r, r)

such that

(a) 1 ≤ ϕη ≤ 1 + rηh in D,

(b) ϕ∆ϕ ≥ C0|Dϕ|
2 holds in D,

(c) ϕη ≡ 1 outside B8/9(0) × (− 7
8r, r),

(d) ϕη ≥ 1 + rkηh in B1/2(0) × (− 1
2r, r),

(e) 0 ≤ |Dϕ|, ϕt ≤ C ′ηh in D.

Proof
It is not hard to construct a smooth function ψ in B1(0) − B1/8(

3
4en)

such that














































0 ≤ ψ ≤ (8/15)3;

ψ ≡ 0 outside B8/9(0);

|Dψ| ≤ C1∆ψ, for some large C1;

ψ ≥ k0 > 0 in B1/2(0).
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Next we let Ψ(x, t) := (t+7/8)3ψ(x) for −7/8 ≤ t ≤ 1 and Ψ(x, t) := 0
for −1 ≤ t ≤ −7/8. Then ϕη(·, t) = 1 + rηhΨ(·, t/r) is our desired function,
provided that h = h(C0) is small enough .

2

Now we construct a family of test functions based on {ϕη}. For l, ρ >
0, we define an (n+ 1)- dimensional ellipsoid

El(x, t; ρ) = {(y, s) : |y − x|2 + ρ−2(s− t)2 = l2.}

We also define El(x, t; 0) := Bl(x) × {t}.

Lemma 3.3 Let u be a viscosity solution of (HS) with condition (Pa)-(Pc)
in 2D. Then there exists C0 > 0 only depending on M0 in (Pb) such that
for ϕη as given above with C0 and 0 < r, ε < 1

(3.2) vη(x, t) = sup
Eεϕη(x,t)(x,t;ρ)

u(y, s)

is subharmonic in D at each time for any 0 < η ≤ 1, 0 ≤ ρ ≤ 1.

Proof
1. Due to Lemma 3.1 we only have to prove the lemma for ρ > 0. Let

us fix t ∈ (−r, r) and show that vη(·, t) is subharmonic in the set
{x : (x, t) ∈ D}. Observe that from the assumption the level sets of u has
normal velocity less than M0 in 2D, and thus u assumes its maximum in the
ellipsoid Eεϕη(x, t; ρ) strictly away from the top and the bottom portions:
that is, there exists 0 < C = C(M0) < 1 such that vη(x, t) = supI(x,t) u(y, s),
where

I(x, t) = Eεϕη(x,t)(x, t; ρ) ∩ {(y, s) : s ∈ II(x,t)},

and
II(x,t) = {s : (ε2ϕ2

η(x, t) − ρ−2(s− t)2)1/2 ≥ Cεϕη(x, t)}.

2. Hence vη(x, t) = sups∈II(x,t)
ωs(x), where

ωs(x) = sup
|ν|=1

u(x+ (ε2ϕ2
η(x, t) − ρ−2(s− t)2)1/2ν, s).

Let us fix s ∈ II(x,t) and let Φ(x) = (ε2ϕ2
η(x, t)−ρ

−2(s− t)2)1/2. Then
we have ΦDΦ = ε2ϕηDϕη and
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Φ∆Φ = (ε2ϕη∆ϕη + ε2|Dϕη|
2) − |DΦ|2

≥ (C0 + 1)ε2|Dϕη |
2 − |DΦ|2

≥ C0|DΦ|2 Φ2

ε2ϕ2
η
− |DΦ|2

≥ (C0C
2 − 1)|DΦ|2

where the last inequality is due to the definition of II(x,t). Hence with
the choice of C0 ≥ C−2(C(n) + 1) we can apply Lemma 3.1 to conclude
that for any s ∈ II(x,t), ωs(x) is subharmonic. Finally vη(·, t), supremum of
subharmonic functions, is subharmonic.

2.
Now we are ready to state our main lemma for the iteration method.

Lemma 3.4 (propagation lemma) Let u1 and u2 be two viscosity solu-
tions of (HS) in B1(0) × (−r, r), 0 < r ≤ 1 and assume that u1, u2 satisfy
(Pa)-(Pc) with (0, 0) ∈ Γ(u2). Suppose

vε(x, t) := sup
Eε(x,t;ρ)

u1 ≤ u2(x, t) in B1(0) × (−r, r)

with some ρ ∈ [0, 1] and there exist κ, σ > 0 such that for some small
h > 0,

u2(x, t) − v(1+σh)ε(x, t) ≥ κσεu2(
3

4
en, t)

in B1/8(
3
4en) × (−r, r).

Then there exists 0 < ε0, h0, c0 < 1 such that if 0 < ε < ε0 and
0 < h < h0 then

v(1+c0rσh)ε(x, t) ≤ u2(x, t) in B1/2(0) × (−r/2, r).

Moreover ε0, h0 and c0 only depends on κ and the constants given in
(Pa) − (Pc).

Proof.
1. We only prove the lemma when r = 1, ρ > 0. A parallel argument

can be applied to prove the general case. Unless noted otherwise, we denote
by C positive constants depending only the constants given in (Pa)-(Pc).
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2. Below we make use of the comparison principle (Theorem 1.2). Let
us set

v(x, t) := sup
Eεϕσ (x,t;ρ)

u1(y, s),

where ϕσ is as defined in Lemma 3.2 with C0 obtained in Lemma 3.3,
and let ω(x, t) satisfy



























−∆ω(·, t) = 0 in D ∩ Ω(u);

ω = 0 in {u2 = 0} ∪ [∂B1(0) × (−1, 1)];

ω = u2(
3
4en, t) on ∂B1/8(

3
4en) × (−1, 1).

Note that by hypothesis and maximal principle of harmonic functions

(3.3) v + κσεω ≤ u2 in D −D′, D′ = [B8/9(0) × (−7/8, 1)].

On the other hand, due to the Harnack inequality and by the boundary
condition of ω, ω ≥ Cu2 at (3

4en, t),−1 ≤ t ≤ 1. Thus Lemma 2.1 applied
to ω and u2 at each fixed t ∈ (−1, 1) implies that ω ≥ Cu2 in D′. It then
follows that ṽ := (1 +Cκσε)v ≤ u2 on the parabolic boundary of D′.

3. Next we prove that ṽ is a viscosity subsolution of (HS) in D ′. Suppose
that there is a C2,1 function φ(x, t) such that ṽ − φ has a local maximum
zero at (x1, t1) in Ω̄(v) ∩ {t ≤ t1} ∩ D′. Since v is subharmonic, we only
have to consider the case (x1, t1) ∈ Γ(v). By definition of v, there is a point
(y1, s1) ∈ Γ(u1) such that

(y1, s1) = Ω̄(u1) ∩ Ēεϕσ(x1,t1)(x1, t1; ρ).

and for (x, t) close to (x1, t1)

v(x, t) ≥ u1(f(x, t)), f(x, t) := (x+ νϕ̄σ(x, t), t + s1 − t1)

where ν = y1 − x1/|y1 − x1| and

ϕ̄σ(x, t) =
√

ε2ϕ2
σ(x, t) − ρ−2(s1 − t1)2.

Hence u1 − φ̃ has a local maximum zero at (y1, s1) in the set
Ω̄(u1) ∩ {s ≤ s1} where φ̃(y, s) := (1 − Cκσε)φ(f−1(y, s)). Recall that due
to (Pb) and (Pb)’ we have

(3.4) |Du|, ut/|Du| ≤M.
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Formally speaking (3.4) implies that the normal velocity of Γ(u), ut/|Du|,
is finite. More precisely, a barrier argument based on (3.4) and the defini-
tion of u yields that the ellipsoid Eεϕσ(x1,t1)(x1, t1; ρ) touches Γ(u) at (y1, s1)
from outside of Ω(u) uniformly away from the top and bottom of the ball.
In terms of ϕ and ϕ̄ this means that ϕ̄(x1, t1) stays away from zero and
moreover

(3.5)
εϕσ(x1, t1)

ϕ̄σ(x1, t1)
≤ C.

It follows from (3.5), the regularity of ϕσ, and a straightforward compu-
tation that

0 ≤ |Dϕ̄σ|, (ϕ̄σ)t ≤ Cε|Dϕσ|, Cε(ϕσ)t ≤ Chσε

near (x1, t1). Hence ∇(x,t)f = I + O(ε) and is in particular non-singular
near (x1, t1) if ε is small enough. Hence f is invertible in a neighborhood of
f(x1, t1) = (y1, s1) if ε is small enough. Furthermore f is C2 in space-time
near (x1, t1) since ϕ is C2 and ϕ̄(x1, t1) > 0. Hence by the inverse function
theorem it follows that f−1 is C2 in a neighborhood of (y1, s1). Therefore φ̃
is C2 in space-time in a neighborhood of (y1, s1).

4. Moreover since u1(·, s1) ≤ φ̃(·, s1) in Ω̄s1(u1) in a neighborhood of y1

and with u1(y1, s1) = φ̃(y1, s1), (Pc) yields that

(3.6) |Dφ̃|(y1, s1) ≥ m0 > 0.

Hence Lemma 2.5 applies to u1 and we obtain

φ̃t ≤ |Dφ̃|2 at (y1, s1).

Once again using (3.5), a straightforward computation leads to

φt − Chσε|Dφ| ≤ (1 − Cκσε)(1 + Chσε)2|Dφ|2 at (x1, t1).

Rearranging terms, we obtain

φt − |Dφ|2 ≤ σε|Dφ|[(Ch− Cκ)|Dφ| + Ch+O(ε)] ≤ 0 at (x1, t1)

if ε << h and h ≤ Cκm0.
4. Thus ṽ is a viscosity subsolution of (HS) and we can apply Theorem

1.2 to ṽ(x, t) and u2(x+ εen, t) in D′ for every ε > 0 to yield that
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ṽ ≤ u2 in D′,

which yields our assertion.
2

4 Regularity in space

In this section we use Lemma 2.6 and Lemma 3.4 to prove the spatial
regularity of Γ(u) given in Theorem 1. First we state a basic iteration
lemma. Note that due to Lemma 2.2, u(·, t) given in Theorem 1 has a
cone of monotonicity W (θ, en) in a neighborhood of Γ(u) ∩ B3/2(x0) for
|t− t0| ≤ 3/2, where the size of the neighborhood and θ depends on L0.

Lemma 4.1 Let u be a viscosity solution of (HS) in B5(0)× (−5r, 5r) with
(0, 0) ∈ Γ(u), and with conditions (Pa)-(Pc). Furthermore suppose that
A ≤ ut/un ≤ B and u(·, t) has a cone of monotonicity W (θ, en) in B1(0)
with θ ≥ θ0 for |t| ≤ r. Let us denote

δ = π/2 − θ ; µ = max(δ,B −A).

and suppose that r ≥ δ/µ. Then there exist constants 0 < c̄, r̄ < 1 and a
unit vector ν1 such that u(·, t) is monotone increasing in B1×(−r̄δ/µ, r̄δ/µ)
along every direction η ∈W (θ1, ν1) with

θ1 ≥ θ + c̄δ2/µ.

Moreover c̄, r̄ only depends on θ0 and the constants given in (Pa)−(Pc).

Proof.
1. As before, unless noted otherwise, we denote by C positive constants

depending only on the constants in (Pa)-(Pc). Due to Lemma 2.6 there
is a unit vector ν and b < 1 such that, for θ∗ = π/2 − bδ, u has a cone
of monotonicity W (θ∗, ν) in D1 := B1/8(

3
4en) × (−r̄δ/µ, r̄δ/µ). Consider

p ∈ W (θ/2, en) −N where N denotes a neighborhood of the touching line
(if they touch) ∂W (θ/2, en) ∩ ∂W (θ∗ − θ/2, ν).

2. For each t ∈ (−r̄δ/µ, r̄δ/µ), let

u1(x, t) = u(x− p, t) and ε = |p| sin θ/2.

Now define σ as
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σ = [π/2 − (α(p, ν) + θ/2)] ≥ (b+ c0)δ

where c0 > 0 depends on the size of the deleted neighborhood N .
Since p+ ερ ∈W (θ, en) for any unit vector ρ ∈ IRn, it follows that

vε ≤ u in B1(0) × (−r, r),

where vε(x, t) := supy∈Bε(x) u1(y, t).
3. Note that for p̄ = p+ η, |η| = 1,

α(p̄, p) ≤ θ/2.

Hence it follows that in B1/6(
3
4en) × (−r̄δ/µ, r̄δ/µ),

Dp̄u(x, t) ≥ CDp̄u(
3
4en, t)

≥ Cun(3
4en, t)|p̄|α(Du( 3

4en, t), p̄)

≥ Cu(3
4en, t))|p̄| cos[α(p̄, ν) + bδ]

≥ cσεu( 3
4en, t),

where c = Cc0. The third equality is due to Lemma 2.2 and the cone of
monotonicity W (θ∗, ν) of u with θ∗ = π/2 − bδ introduced in step 1. Thus
in D1 we have

u(x− p̄, t) ≤ u(x, t) −Dp̄u(x̃, t) ≤ u(x, t) − cσεu(x, t)

where x̃ = x− λp̄ for some 0 ≤ λ ≤ 1.
4. Now we are ready to apply Lemma 3.4 with ρ = 0 to u1 and u in

the domain in B1(0) × (−r̄δ/µ, r̄δ/µ), which yields c̄, r̄ > 0 independent of
δ and µ such that

v(1+c̄hσδ/µ)ε(x, 0) ≤ u2(x, 0) in B1(0) × (−r̄δ/2µ, r̄δ/2µ).

if 0 < ε < ε0. Since σ ≥ bδ the last inequality implies that, along
any direction of the form p + (1 + c̄hδ2/µ)εη, η a unit vector in IRn and
0 < ε < ε0, u is monotone increasing. The convex envelope of this family
of directions and the original cone W (θ, en) is readily seen to contain a new
cone W (θ1, ν1) with ν1 depending on the direction of ν and

θ1 − θ ≥ Cδ2/µ.
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2

Recall that (HS) is invariant under the hyperbolic scaling

un(x, t) := 2nu(2−nx, 2−nt).

Using this scaling, an iteration of Lemma 4.1 centered at each point of
Γ(u) ∩ S′ (see the proof of Theorem 1 in [C2]) yields the following:

Corollary 4.2 Let u be given as in Theorem 1. Then the free boundary
Γt(u) is C1 in B1(x0) for |t− t0| ≤ 1.

5 Regularity in time

Using the spatial regularity of Γ(u) obtained in section 4, we now proceed
to show that Γ(u) is C1 in time in S ′. First we prove that the free boundary
condition is satisfied in the classical sense almost everywhere on the free
boundary at each time.

Lemma 5.1 Let u be a viscosity solution of (HS) in a local neighborhood
O of (x1, t1) ∈ Γ(u) with conditions (Pa)-(Pc) in O. Suppose Γt1(u) is dif-
ferentiable at x1 with the inward unit normal vector ν. Furthermore suppose
that Dνu(·, t1) has its nontangential limit a0 from Ωt1(u) at x1. Then Γ(u)
is differentiable at (x1, t1) with

V(x1,t1) = a0.

Proof
For δ > 0 let us define

uδ(x, t) =
1

δ
u(x1 + δx, t1 + δt) in B1/δ(0) × [−1/δ, 1/δ].

Without loss of generality we may assume that ν = en. Since
|Du|, |ut|/|Du| ≤ M (see the remark below Theorem 1), As δ → 0 along a
subsequence uδ converges locally uniformly to u0 in IRn+1 with

Duδ, (uδ)t → Du0, (u0)t w∗ - weakly in L∞.

An iteration of Lemma 4.1, as mentioned before Corollary 4.2, yields
that there is a sequence of unit vectors νk ∈ IRn, k = 1, 2, .. such that
α(Du1/k, νk) → 0 in BR(0) for any fixed R > 0 as k → ∞. Since Γt1(u) is dif-
ferentiable with the inward unit normal vector ν, it follows that α(νk, en) →
0. In particular
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< Duδ, ek >→ 0 if k 6= n

locally uniformly in IRn+1. Since |Duδ| is bounded, it follows that
Dek

u0 = 0 if k 6= n and

u0(x, t) = u0(xn, t), Ωt(u
0) = {x : xn + b(t) > 0}, b(0) = 0.

Moreover due to the stability property of viscosity solutions one can
check that u0 is a viscosity solution of (HS) in IRn+1. In particular u0(·, t)
is harmonic in Ωt(u0) for each t and thus

u0(x, t) = a(t)(xn + b(t))+,

where a(t), b(t) are Lipschitz continuous. Hence if we consider the limit
(up to a subsequence) of (u0)δ we obtain u00: a viscosity solution of (HS) in
IRn+1 given as

(5.1) u00(x, t) = a0(xn + b0(t))+

where a0 = a(0) and b0(0) = 0, b0: Lipschitz continuous. From barrier
arguments with classical solutions of the form

aε(xn + aε(t− tε))+; aε = a0 ± ε, tε = ±ε,

it follows that viscosity solutions of form (5.1) are uniquely determined
with b0(t) = a0t. Hence

u0(x, t) = a0(xn + a0t)+ + o(|x| + |t|).

Finally notice that from the hypothesis a0, the nontangential limit of
Dνu at (x1, t1), is unique. Thus our assertion is proved.

2

Remark
We mention that, for u given as in Theorem 1, the hypotheses of Lemma

5.1 is indeed satisfied almost everywhere on Γt(u) ∩ B2(x0) for |t − t0| ≤ 2
with respect to surface measure (for example see Theorem 2.3 in [JK].)

The following lemma, a parallel statement of Lemmas 6 and 7 in [ACS],
can be proved with a slight modification of arguments in [ACS] using interior
estimates of harmonic functions, condition (Pa)−(Pc) and Lemma 2.2, and
thus we omit the proof.
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Lemma 5.2 Let u, r̄ be as in Lemma 4.1. with δ << µ . Then

(a) u(x, t) = u(
3

4
en, 0) + α(xn −

3

4
) + αO(δ/µ)

in B1/6(
3
4en) × (−δ/µ, δ/µ), where α = un(3

4en, 0).
(b) For all |t| < δ/µ,

∮

B1/6(0)∩Γt(u)
|Dnu− α|2dS ≤ α2O(δ/µ).

Using Lemma 5.1 and 5.2, we are able to show that µ can decrease if
we stay away from the free boundary.

Lemma 5.3 Let u, α, δ, µ be as in Lemma 5.2 and suppose δ << µ3. If
α ≥ b := − 1

2A+ 3
2B (or α ≤ b), then there exists c1 > 0 such that

ut

un
≥ A+ c1µ ( or

ut

un
≤ B − c1µ)

in (x, t) ∈ B1/6(
3
4en) × (−δ/µ, δ/µ). Here c1 depends only on the con-

stants in (Pa)-(Pc).

.
Proof.

Suppose α ≥ b. For |t| ≤ δ/µ, let ω
(x)
t be the harmonic measure in

Ωt(u) ∩B2(0) evaluated at x. Due to Lemma 5.1 , on Γt(u) ∩B1(0) almost
everywhere with respect to surface measure we have

ut

un
= |Du|(1 +O(δ)).

By Lemma 5.2(b), if we define

Σt = {p ∈ Γt(u) ∩B1/6(0) : un(p) = α(1 +O(δ1/3))}

then |Σt| ≥
1
2 |Γt(u) ∩ B1/6(0)| for any |t| ≤ δ/µ. Since (the restriction

of) ω
(x)
t on Γt(u) is an A∞ weight with respect to surface measure, we have

ω
(x)
t (Σt) ≥ c.

On the other hand, on Σt,

|Du| = α+O(δ1/3) ≥ b+O(δ1/3) ≥ A+ µ/2 +O(δ1/3) ≥ A+ c′µ.
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Therefore we can write, for (x, t) ∈ B1/6(
3
4en) × (−δ/µ, δ/µ)

(ut −Aun)(x, t) ≥
∫

Γt(u)B2(0)
(ut −Aun)dω

(x)
t ≥ c̄µαω

(x)
t (Σt) ≥ Cµα

which yields our assertion.
Similarly, we prove the complementary statement, too. 2

Next we show that, using Lemma 3.4, the interior gain we obtained
from the previous lemma propagates to the free boundary over time. Let us
denote et := (0, .., 0, 1) ∈ IRn × IR.

Lemma 5.4 Let u, δ, µ, r̄, ν, ν1 be as in Lemma 4.1. If δ << µ3, then in
B1(0) × (−r̄δ/µ, r̄δ/µ) there exists c2 > 0 independent of δ and µ such that
u is monotone increasing along the directions et −A1ν1 and −et +B1ν1 with

0 < B1 −A1 ≤ µ1 and µ1 ≤ µ− c2δ.

Proof.
1. First observe that the new axis ν1 of the enlarged cone obtained in

Lemma 4.1 is shifted from en by order less than δ2/µ. Since δ << µ3 Lemma
5.3 applies to yield

(5.2)

ut −Auν1 ≥ cµuν1 or −ut +Buν1 ≥ cµuν1 in B1/6(
3

4
en)× (−2r̄δ/µ, 2r̄δ/µ).

For simplicity suppose that the first inequality holds. Let now
ρ = et −Cν1 := et − C(ν1, 0) ∈ IRn+1, C < A which makes an angle µ with
et − Aν1. Let p be any small vector in the ρ direction and set ε = |p| sinµ
and u1(x, t) = u((x, t) − p). Then

sup
Bε(x)

u1(y, t) ≤ u(x, t) in Q1.

Moreover due to (5.2), we obtain that for |t| ≤ r̄δ/µ and p̄ = p+ εξ, ξ
a unit vector in IRn,

u((
3

4
en, t) − p̄) ≤ u(

3

4
en, t) −Dp̄u(x̃, t) ≤ (1 − cµε)u(

3

4
en, t)

where x̃ ∈ B1/6(
3
4en). Hence Lemma 2.3 applies and there is κ, h > 0

such that

sup
B(1+cµh)ε(x)

u1(x, t) ≤ (1 − cκµε)u(x, t) in B1/6(
3

4
en) × (−r̄δ/µ, r̄δ/µ).
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2. Now if we define

vε(x, t) = sup
B

(n+1)
ε (x,t)

u1(y, s),

then vε(x, t) ≤ u(x, t) in B1 × (−2r̄δ/µ, 2r̄δ/µ).
Moreover by (5.2) if we choose c small enough - depending on the size

of ut/un- then we can proceed as in Lemma 4.1 to obtain

v(1+cµh)ε(x, t) ≤ (1 −
κ

2
cµε)u(x, t) in B1/8(

3

4
en) × (−2r̄δ/µ, 2r̄δ/µ).

Hence Lemma 3.4 yields that there is c̄ > 0 independent of the choice
of µ such that

v(1+c̄δ)ε(x, t) ≤ u(x, t) in B1/2 × (−r̄δ/µ, r̄δ/µ).

This implies that u is monotone increasing along the direction

et − (A+ c̄δ)ν1.

Therefore the theorem holds with A1 = A+ c̄δ, B1 = B. 2

Proof of Theorem 1.
1. Suppose (x1, t1) ∈ Γ(u)∩S ′. Now combining Lemma 4.1 and Lemma

5.4, we can use an iteration argument using the hyperbolic scaling
un(x, t) = 2nu(2−n(x− x1), 2

−n(t− t1)) to obtain

δn+1 = δn − cδ2n/µn, µn+1 = µn − cδn; n = 1, 2, 3, ..

for un in B1(0) × (−r̄δn/µn, r̄δn/µn) (see the proof of the main theorem
in [ACS].) From this relations we obtain the continuity mode of ∇x′f and
ft as stated in Theorem 1.

2. Next the spatial regularity of the free boundary and Theorem 2.4 of
[W] yields the existence Du up to Ω̄(u) in S′. Lastly Lemma 5.1 leads to the
last assertion V = |Du| on Γ(u).

2

6 Long time regularity of the free boundary

Let u be the viscosity solution of (HS) in Q with its boundary data f = 1
on K and u(x, 0) = u0(x). In addition let us suppose u0 satisfies
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Ω ⊂ BR(0) ; |Du0| > 0 on Γ0.

With the above assumptions it is proved in [K2] that

T0 := inf{t : BR(0) ⊂ Ωt(u) ∪K} <∞

and that for any point (x0, t0) ∈ Γ(u), t0 > T0, there is a neighborhood
of (x0, t0) in Q where (Pa) − (Pc) holds. Theorem 1 then yields that (i)
Γ(u) ∩ {t > T0} is differentiable, (ii) Du exists up to Ω̄(u) and (iii) the free
boundary condition V = |Du| is satisfied on Γ(u) for t > T0. As we show
below, (i)-(iii) provide enough regularity for us to apply the transformation
of [EJ] to obtain further regularity of Γ(u) for t > T0.

Proof of Theorem 2.
1. Let us define l(x) in K by

l(x) =











0 if x ∈ Ω̄0

t : (x, t) ∈ Γ(u) otherwise.

Then it follows that

Γt(u) = {(x, t) : S(x, t) ≡ t− l(x) = 0} for t ≤ T0.

Due to the additional assumption |Du0| > 0 on Γ0 one can easily check
that Γ(u) strictly expands in time and l(x) is well defined. Moreover since
Γt(u) is differentiable for t > T0 with its normal velocity bigger than m0 > 0,
l(x) is differentiable in IRn −K for t > T0.

2. Since Γ(u) is the zero level set of S(·, t) with normal velocity |Du| for
t > T0, it follows that

St

Du/|Du| ·DS
= |Du| on Γ(u) ∩ {t > T0}

and thus

(5.1) Du ·Dl = 1 on Γ(u) ∩ {t > T0}.

3. Next let us apply the transformation introduced in [EJ]:











v(x, t) = 0 for x ∈ IRn −K; 0 ≤ t ≤ l(x),

v(x, t) =
∫ t
l(x) u(x, τ)dτ for x ∈ IRn −K; l(x) ≤ t,
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Due to (5.1), Lemma 5.1 and the Lipschitz continuity of u the computation
in [EJ] holds for our solution for t > T0 and the function vt(x) = v(x, t) solves
the following obstacle problem in IRn −K:















































−∆vt − f ≥ 0, vt ≥ 0;

−∆vt − f = 0 in {vt > 0} = Ωt(u);

vt = Dvt = 0 on ∂{vt = 0} = Γt(u);

vt = t on ∂K

where f(x) = 1⊥Ω0 − 1.
3. Due to Theorem 3 of [C1], the C1 regularity of Γt(u) yields that

vt ∈ C2(Ω̄t(u)∩N ) where N is a neighborhood of Γt(u). Now we can apply
the Hodograph method (Theorem 1.1 of [F], also see [KN]) to v t to conclude
that Γt(u) is analytic for each t > T0.

4. Finally using the analytic semigroup theory (see [A]), [ES] proved
the short time existence of classical solutions of (HS) when the initial free
boundary is analytic. Hence for any t0 > T0 there exists ε > 0 and a classical
solution h(x, t) with initial free boundary Γt0(u) and fixed boundary data
1 on Γ1 for t0 ≤ t < t0 + ε. Furthermore it is proven in [ES] that for
t0 < t < t0 + ε the free boundary Γ(h) of h is analytic in time. On the other
hand by the uniqueness result of [K1] h = u for t0 ≤ t < t0 + ε. Therefore,
Γ(u) is analytic in time for t0 < t < t0 + ε. Since Γ(u)∩{t > T0} is analytic
in space and the normal vector of Γ(u) ∩ {t > T0} changes continuously in
time (this follows from the proof of Lemma 2.6), one can verify from the
arguments of [ES] and [A] that ε = ε(t) > 0 can be chosen uniformly for
compact subsets of time interval (T0,∞). Thus we conclude that Γ(u) is
analytic in time for t > T0. 2
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