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Abstract

In this paper we investigate qualitative and asymptotic behavior of solutions for a class of

diffusion-aggregation equations. The challenge in the analysis consists of the nonlocal aggrega-

tion term as well as the degeneracy of the diffusion term which generates compactly supported

solutions. The key tools used in the paper are maximum-principle type arguments as well as

estimates on mass concentration of solutions.

1 Introduction

In this paper we study solutions of a nonlocal aggregation equation with degenerate diffusion, given
by

ρt = ∆ρm + ∇ · (ρ∇(ρ ∗ V )) in R
d × [0,∞) (1.1)

with initial data ρ0 ∈ L1(Rd; (1 + |x|2)dx) ∩L∞(Rd). Here m > 1, d ≥ 3 and ∗ denotes convolution
operator. In the absence of the aggregation term (when V = 0, our equation becomes the well-known
Porous medium equation (PME):

ρt − ∆(ρm) = 0. (1.2)

Note that, formally, the mass of solution is preserved over time:
∫

Rd

ρ(·, 0)dx =

∫

Rd

ρ(·, t)dx for all t > 0.

Nonlocal aggregation phenomena have been studied in various biological applications such as pop-
ulation dynamics ([BoCM], [BuCM], [GM], [TBL]) and Patlak-Keller-Segel (PKS) models of chemo-
taxis ( [KS], [LL], [P],[FLP]). In the context of biological aggregation, ρ represents the population
density which locally disperses by the diffusion term, while V is the interaction kernel that models
the long-range attraction. Mathematically, the equation models competition between degenerate
diffusion and nonlocal aggregation.

Recently, there has been a growing interest in models with degenerate diffusion to include over-
crowding effects (see for example [TBL], [BoCM]). The Keller-Segel model where V is the Newtonian
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kernel and m = 1 (full-diffusion), and the PKS model where V is the Newtonian and m > 1
(degenerate diffusion), are the most widely studied models for aggregation with diffusion. On the
other hand in population dynamics one often considers smooth kernels with fast decay at infinity.
In this paper we consider the following two types of potentials:

(A) (PKS-model) V (x) is a Newtonian potential :

V (x) = N := −
cd

|x|d−2
, (1.3)

where cd :=
1

(d− 2)σd
, where σd is the surface area of the sphere Sd−1 in Rd.

(B) (regularized Newtonian potential)

V (x) = (N ∗ h)(x), (1.4)

where ∗ denotes convolution and h(x) is a radial function in L1(Rd : (1+ |x|2)dx)∩L∞(Rd) which
is continuous and radially decreasing. We mention that, even though the kernel given by (A)-(B)
has slow decay at infinity, our results are relevant for kernels with fast decay at inifinity, since our
solutions have compact support with finite propagation property (see Theorem 3.1). In fact in the
subcritical case (m > 2 − 2/d), radial solutions starting with compact support, has their support
uniformly bounded for all times (Corollary 5.5).

Note that (A)-(B) covers all attractive potentials V with its Laplacian being nonnegative and
radially decreasing. The restrictions on ∆V turns out to be necessary for obtaining the preservation
of radial monotonicity (see Proposition 4.3) as well as the mass comparison principle in section 5.

The dynamics in (1.1) is governed by the “free energy” functional

F(ρ) =

∫

Rd

1

m− 1
ρm +

1

2
ρ(ρ ∗ V )dx. (1.5)

Indeed (1.1) is the gradient flow for F with respect to the Wasserstein metric (see for example
[BCalC] and [BCarC]). Depending on m, the solution of (1.1) exhibits different behavior. For
1 ≤ m < 2 − 2/d, the problem is supercritical: the diffusion is dominant at low concentrations and
the aggregation is dominant at high concentration. As a result supercritical and critical problems
with singular kernels may exhibit finite time blow-up phenomena ([DP], [HV], [S1], [BlCM]). On
the other hand solutions globally exist with small mass and relatively regular initial data, and here
the diffusion dominates at large length scale (see [C] and [S2]). Indeed using the entropy dissipation
method ([CJMTU]) it is shown that the solutions with small L1 and L(2−m)d/2- norms converge to
the self-similar Barenblatt profile ([LS1]-[LS2] and [B2]).

On the other hand, in the subcritical regime (m > 2 − 2/d), the diffusion is dominant at high
concentration. For this reason there is a global solution for all mass sizes ([S1], [BCL], [BRB]). Since
aggregation dominates in low concentration, there are compactly supported stationary solutions for
any mass size (see Proposition 2.1). In fact there is no uniqueness result for stationary solutions,
even for radial solutions, except the well-known result of Lieb and Yau ([LY]) for the PKS model.
Furthermore, even for the PKS model, there are few results addressing the qualitative behavior of
general radial solutions: this is perhaps due to the fact that entropy methods faces challenge due
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to the strong aggregation term and the generic presence of the free boundary. This motivates our
investigation in this paper.

The main tools in our analysis are various types of comparison principles. While maximum-
principle type arguments are natural to parabolic PDEs, the classical maximum principle does
not hold with (1.1) due to the nonlocal aggregation term, and therefore the standard comparison
principle or the corresponding viscosity solutions theory does not apply. Instead we establish order-
preserving properties of several associated quantities: the radial monotonicity (section 4), the mass
concentration (section 5), and the rearranged mass concentration for non-radial solutions (section
6).

The following existence and uniqueness results will be used throughout our paper.

Theorem 1.1 (Theorem 3 and 7 in [BRB]. Also see [BS] and [S1]). Let V be given by (A) and
(B) and d ≥ 3. Suppose ρ0 be a nonegative function in L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd). Then for
m > 2 − 2/d there exists a unique, uniformly bounded weak solution ρ of (1.1) in R

d × [0,∞) with
initial data ρ0.

Acknowledgments: We thank Jacob Bedrossian and Thomas Laurent for helpful discussions
and communications.

1.1 Summary of results

First we investigate properties of radial, stationary solutions of (1.1):

Theorem 1.2 (Properties of Stationary solutions ). Let V be given by (A) or (B) and let m > 2− 2
d .

Let ρA be a non-negative radial stationary solution of (1.1) with
∫
ρA(x)dx = A > 0. Then

(a) ρA is radially decreasing, compactly supported and smooth in its support; (Proposition 2.1)

(b) ρA is uniquely determined for any given A. (Theorem 2.2 and Theorem 2.3.)

When V is given by (A), uniqueness of radial stationary solution is the well-known results of Lieb
and Yau ([LY]). Their proof is based on the fact that the mass function satisfies an ODE with
uniqueness properties: this property fails when V is given by (B). Instead, we look at the dynamic
equation (1.1), and prove uniqueness out of asymptotic convergence towards stationary solution.
A more direct proof of uniqueness and the uniqueness of general (possibly non-radial) stationary
solution are interesting open questions.

Next we show several qualitative behavior of the solutions:

Theorem 1.3 (Properties of solutions). Suppose m > 1. Let V be given by (A) or (B), and let
ρ(x, t) be a weak solution to (1.1), which is uniformly bounded in Rd × [0, T ), where T can be either
finite or ∞. Then the following holds:

(a) For any δ > 0, ρ is uniformly continuous in Rd × [δ, T ); (Theorem 3.1)

(b) {ρ > 0} expands over time period τ with maximal rate of Cτ−1/2; (Theorem 3.1)
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(c) If ρ(·, 0) is radially decreasing, then so is ρ(·, t) for any t ∈ [0, T ) (Theorem 4.2).

The preservation of radial monotonicity is new, to the best of the authors’ knowledge, for any
type of diffusion-aggregation equation. For the first-order aggregation equation ((1.1) without the
diffusion term), this property has been recently shown in [BGL] for the same class of potentials, via
method of characteristics.

Based on Theorem 1.2 as well as the mass comparison (Proposition 5.3), the following results are
obtained for general (not necessarily radially decreasing) radial solutions:

Theorem 1.4 (Asymptotic behavior: subcritical regime). Let V be given by (A) or (B), m > 2− 2
d ,

and let ρ(x, t) be the solution to (1.1) with radial, compactly supported initial data ρ0(x) ∈ L1(Rd; (1+
|x|2)dx) ∩ L∞(Rd) which has mass A. Let ρA be a radial stationary solution with mass A. Then

(a) The support of ρ, {ρ(·, t) > 0} stays inside of a large ball {|x| ≤ R} for all t ≥ 0, where R
depends on m, d, V and the initial data ρ0 (Corollary 5.5);

(b) ρ converges to ρA exponentially fast in p-Wasserstein distance for all p > 1 (Corollary 5.8),
and ‖ρ(·, t) − ρA‖L∞(Rd) → 0 as t→ ∞ (Corollary 5.9).

The mass comparison property have been previously observed for two-dimensional Keller-Segel
model ([BKLN]) , however the property has not been taken full advantage of, perhaps because of
the success of entropy method for the KS model.

Our method also provides interesting results for asymptotic behavior of radial and non-radial
solutions in supercritical regime, when the solution starts from a sufficiently less concentrated initial
data in comparison to a re-scaled stationary profile:

Theorem 1.5 (Asymptotic behavior:supercritical regime). Let V (x) be given by (A) or (B), and let
1 < m < 2− 2

d . Assume ρ0 is compactly supported and has mass A. Then there exists a sufficiently
small constant δ > 0 depending on d,m, µ0 and V , such that if

ρ0(λ) ≺ δdµA(δλ)

where µA(λ) is given in (5.31), then the weak solution ρ with initial data ρ0 exists globally and
algebraicaly converges to the Barenblatt profile (Corollary 5.14).

Even for the Newtonian potential, the asymptotic behavior of non-radial solutions in subcritical
regime remains open, except in some cases with sufficiently large m (in progress by authors). In
particular we do not know if the solutions lose part of their mass over time to infinity.

Lastly we state a comparison principle in terms of the symmetric rearrangement.

Let us recall that, for any nonnegative measurable function f that vanishes at infinity, the sym-
metric decreasing rearrangement f∗ is given by

f∗(x) :=

∫ ∞

0

χ{f(x)>t}∗dt (1.6)

where Ω∗ denotes the symmetric rearrangement of a measurable set Ω of finite volume in Rd.
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Theorem 1.6 (Rearrangement comparison and instant regularization). Suppose m > 1. Let V be
given by (A) or (B). Let d ≥ 3 and let ρ be the weak solution to (1.1) with initial data ρ0(x) ∈
L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd).

(a) Let ρ̄ be the solution to the symmetrized problem, i.e. ρ̄ is the weak solution to (1.1) with
initial data ρ∗0(x). Assume ρ̄ exists for t ∈ [0, T ), where T can be either finite or ∞. Then
ρ∗(·, t) ≺ ρ̄(·, t) for all 0 ≤ t < T (Theorem 6.1)

(b) Suppose m > 2 − 2
d , then for every t > 0 we have

‖ρ(·, t)‖L∞(Rd) ≤ c(m, d,A, V )t−α

for 0 < t < 1, where A =
∫
ρ0dx and α := d

d(m−1)+2 . (Proposition 6.6).

Rearrangement results have been obtained before for (1.2) (Chapter 10 of [V]) and for the two-
dimensional Keller-Segel model ([DNR]). We largely follow the arguments in [V]. The new compo-
nent in the proof is introduction of approximate equations to deal with both the degenerate diffusion
and the nonlocal aggregation term. The L∞-regularization result is interesting on its own: similar
results has been recently obtained for Keller-Segel model in [PV], by a De-Giorgi type method.

Remark 1.7. All of our results presented in the paper extends to general degenerate-diffusion type
of solutions

ρt = ∆f(ρ) + ∇ · (ρ∇(ρ ∗ V )),

where f is a smooth, increasing and convex function with f ′(0) = 0.

2 Properties of the radially symmetric stationary solution

In this section we consider non-negative radially symmetric stationary solutions of (1.1), given by

m

m− 1
ρm−1 + ρ ∗ V = C in {ρ > 0}, (2.1)

where we assume m > 2 − 2
d , and the constant C may be different in different positive components

of ρ. When V is given by (A) or (B), for any mass A > 0, the existence of stationary solution ρ with
mass A is proven in [L] and [B2].

Let us define the mass function as follows:

M(r) :=

∫

B(0,r)

ρ(x)dx,

Since both ρ and V are radially symmetric, we may slightly abuse the notation and write ρ ∗ V as
a function of r. When V = N , by the divergence theorem and radial symmetry of ρ and V we have

∂

∂r
(ρ ∗ V )(r) =

M(r)

σdrd−1
. (2.2)
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where σd is the surface area of the sphere Sd−1 in Rd.

Similarly, when V is given by (B), where V = N ∗ h, for all radially symmetric function ρ, we
have ρ ∗ V is radially symmetric, and

∂

∂r
(ρ ∗ V )(r) =

M̃(r)

σdrd−1
, (2.3)

where M̃(r) :=
∫

B(0,r)
ρ ∗ ∆V dx. Note that in both cases, we have ∂r(ρ ∗ V ) ≥ 0.

Proposition 2.1. Let V given by (A) or (B) and suppose m > 2 − 2
d . Let ρ(x) ∈ L1(Rd) be a

non-negative radially symmetric solution of (2.1). Then (a) ρ is smooth in its positive set; (b) ρ is
radially decreasing; and (c) ρ is compactly supported.

Proof. 1. To show (a) for V = N , note that the right hand side of (2.2) is continuous since

f(r) :=
M(r)

σdrd−1

is continuous at all r > 0, and f(r) → 0 as r → 0. By (2.2), ρ ∗ V is differentiable in the positive
set of ρ, which implies that ρm−1 (hence ρ) is also differentiable in the positive set of ρ. Therefore
M(r)
rd−1 is now twice differentiable, hence we can repeat this argument and conclude.

When V is given by (B), we can apply the same argument on (2.3) and conclude.

2. By differentiating (2.1) we have

m

m− 1

∂

∂r
ρm−1 = −

∂

∂r
(ρ ∗ V ) in {ρ > 0}, (2.4)

and due to (2.2) and (2.3), the right hand side of (2.4) is non-positive. Hence we conclude (b).

3. It remains to check (c). Rewriting (2.1) and using the fact that ρ is radially decreasing and
thus have simply connected support, ρ can be written as

ρ(r) = (C − ρ ∗ V (r))
1

m−1 .

When V = N the proof is similar to that of Theorem 5 in [LY]: since ρ ∗ V vanishes at infinity, we
have

ρ ∗ V (r) = −

∫ ∞

r

M(s)

sd−1
ds

= −
M(r)

(d− 2)rd−2
−

∫ ∞

r

cd
d− 2

ρ(s)sds (2.5)

where cd is the volume of a ball with radius 1 in Rd. Since ρ is radially decreasing, we have

ρ ∗ V (r) ≤ 0 and − ρ ∗ V (r) ∼
1

rd−2
as r → ∞. (2.6)

If C = 0, (2.6) implies that

ρ(r) = (−ρ ∗ V (r))
1

m−1 ∼ r−
d−2

m−1 ,
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where the exponent is greater than −d when m > 2− 2
d , which contradicts the finite mass property

of ρ. Therefore C must be negative and thus ρ(r) needs to touch zero for some r.

For the case when V = N ∗ h, we have

ρ ∗ V = (ρ ∗ N ) ∗ h,

where N is the Newtonian potential. Arguing as in (2.5), we have ρ ∗ N (x) ∼ 1
|x|d−2 as |x| → ∞.

Since h is integrable in Rd and radially decreasing, we have ρ ∗ V (x) ∼ 1
|x|d−2 as |x| → ∞ as well,

hence by same argument as above, we can conclude.

Next we state the uniqueness of the radial stationary solution when V = N .

Theorem 2.2 ([LY]). Let V = N , and suppose m > 2 − 2
d . Then for all mass A > 0, the radial

stationary solution for (1.1) with mass A is unique. Moreover, the stationary solution is the global
minimizer for the free energy functional (1.5).

This theorem follows from a slight modification from the proof of Theorem 5 in [LY], which proves
uniqueness of the stationary solution of a slightly different problem. Roughly speaking, their proof
is based on two steps: for any mass A, they first show the radial global minimizer of free energy
functional (1.5) with mass A is unique, and secondly they prove every radial stationary solution is
a global minimizer for some mass.

We point out that the proof in [LY] cannot be generalized when V is given by (B): the difficulty
lies in the second step. When V = N , for any radial stationary solution ρ, its mass function
M(r) =

∫

|x|≤r ρ(x)dx solves a second order ODE

( m

m− 1

( M ′(r)

σdrd−1

)m−1
)′

=
M(r)

σdrd−1
,

where M(0) = 0 is prescribed. Thus, once ρ(0) = limr→0M
′(r)/(σdr

d−1) is known, M(r) would be
uniquely determined for all r > 0, which implies that ρ can be uniquely determined by ρ(0). This
property is crucial for the second step, since if this property holds, then both the radial stationary
solutions and the radial global minimizers can be parametrized by their value at the center of mass
(see Lemma 12, [LY]).

However, when V is given by (B), the mass function solves a nonlocal ODE, hence different
stationary solutions may have the same center density: thus their approach cannot be applied to
prove the second step. Hence when V is given by (B), it is necessary to take an alternative approach.
Instead of dealing with the stationary equation (2.1) directly, we will consider the dynamic equation
(1.1) and prove the uniqueness of the radial stationary solution by their asymptotic convergence (see
Corollary 5.10).

Theorem 2.3. Let V be given by (B), and suppose m > 2 − 2
d . Then for any mass A, the radial

stationary solution of (1.1) with mass A is unique.

When V = N , the following results can be checked with straightforward computation, making
use of the uniqueness result in Theorem 2.2 (see Figure 1).
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ρB

ρA

ρB

ρA

ρB

ρA

m > 2 m = 2 2− 2
d < m < 2

Figure 1: Stationary solutions with different mass for different m, where
∫
ρAdx <

∫
ρBdx

Proposition 2.4. Let V = N and let m > 2 − 2
d , and let ρ1 be the radial solution of (2.1) with

unit mass. Then all other radial solutions ρA of (2.1) with mass A are of the form

ρA(x) = aρ1(a
−m−2

2 x) with a := A
2

d(m−2+2/d)) . (2.7)

In particular, let A > B and let ρA and ρB be the radial stationary solutions with mass A and B
respectively. Then the following holds:

(a) When m > 2, ρA have larger support and smaller height than ρB.

(b) When m = 2, all stationary solutions have the same support.

(c) When 2 − 2
d < m < 2, ρA. have smaller support and bigger height than ρB.

3 Qualitative properties of solutions

In this section several regularity properties will be derived for general weak solutions of (1.1). We
point out that the results in this section hold for general (non-radial) solutions.

Theorem 3.1. Suppose m > 1. Let V given by (A) or (B), and let ρ be a weak solution of (1.1)
with its initial data ρ0: bounded with compact support. Further suppose ρ is uniformly bounded in
Rd × [0, T ]. Then
(a) For any δ > 0, ρ is uniformly continuous in Rd × (δ, T ].

(b) [Finite propagation property] For given 0 < t ≤ T , if {x : ρ(·, t) > 0} ⊂ BR(0), then

{x : ρ(·, t+ h) > 0} ⊂ BR+Ch1/2(0) for 0 < h < 1,

where the constant C > 0 depends on m, d, ρ0 and ||∆V ||1.

Proof. Let us take our most singular potential V = N . Parallel (and easier) arguments hold for V
given by (B). Let

C0 = sup{ρ(x, t) : (x, t) ∈ R
n × [0, T )}.
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Observe that, treating the convolution term Φ := V ∗ ρ as a priori given, ρ solves

ρt = ∆(ρm) + ∇ · (ρ∇Φ). (3.1)

Note that for all t ∈ [0, T ), Φ satisfies

|DΦ|(·, t) ≤ C0

∫

|y|≤1 |DN|(y)dy + (‖ρ(·, t)‖2)(
∫

|y|≥1 |DN|2(y)dy)1/2

≤ C1,

where C1 depends on C0, the L1 and sup-norm of ρ (both of which depend only on ρ0), and the
dimension d. Also

|∆Φ|(·, t) ≤ ‖ρ‖L∞ ≤ C0 for all t ∈ [0, T ).

Therefore, due to Proposition 3.4 of [BH], comparison principle between weak sub- and supersolution
of (3.1) holds. Moreover, Theorem 6.1 of [Dib] yields that ρ is uniformly continuous in Rd × [δ, T ).

Now let us define
Ũ(x, t) := A inf

|x−y|≤C−Ct
e−Ct(|x| + ωt−B)+,

where ω = 1 + (m− 1)(d− 1)A.

Then due to Proposition 2.15 in [KL], Ũ satisfies

Ũt ≤ (m− 1)Ũ∆Ũ + |DŨ |2 + C|DŨ | + CŨ

in Σ := {|x| ≤ 2B} × [0, ω−1B]. Hence ρ̃ := (m−1
m Ũ)1/(m−1) satisfies

ρ̃t ≤ ∆(ρ̃m) + C|Dρ̃| +
C

m− 1
ρ̃ in Σ.

Moreover, observe that ρ̃m−1 ∼ Ũ is Lipschitz continuous in space, and continuous in space and time.
Using this regularity of ρ̃ as well as above estimates on the derivatives of Φ, it follows that ρ̃ is a weak
supersolution of (1.1) in Σ, if we choose C greater than (m− 1)C1. More precisely the following is
true: for all times 0 < t ≤ ω−1B and for any smooth, nonnegative function ψ(x, t) : Rn×(0,∞) → R

with {ψ(·, t) > 0} ⊂ {|x| ≤ 2B} for 0 ≤ t ≤ ω−1B, we have

∫

ρ̃(·, t)ψ(·, t)dx ≥

∫

ρ̃(·, 0)ψ(·, 0)dx +

∫ ∫

(ρ̃m∆ψ + ρ̃ψt − ρ̃∇Φ · ∇ψ)dxdt.

Hence by comparing ρ with ρ̃ in Σ = {|x| ≤ 2B}×[0, ω−1B], with B = R+h1/2 and A = 2C0h
−1/2,

we conclude that (c) holds.

Remark 3.2. Due to [BRB], when m > 2 − 2
d , there exists a global weak solution ρ of (1.1) with

initial data ρ0. Moreover, ρ is uniformly bounded in Rd × (0,∞) due to Theorem 10 in [BRB], so
in that case we may let T = ∞.

We finish this section with an approximation lemma which links case (A) and (B). Let

hǫ := ǫ−dh(
x

ǫ
)
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with h being the standard mollifier in Rd with unit mass, and let ρǫ be the corresponding solution
of (1.1) with V = N ∗ hǫ and with initial data ρ0. Then Lemma 8 in [BRB] yields that {ρǫ}ǫ>0

are uniformly bounded for t ∈ [0, T ] for some T . This bound as well as Theorem 6.1 of [Dib] yields
that the family of solutions {ρǫ} are equi-continuous in space and time. This immediately yields the
following result:

Proposition 3.3. Let ρ0 be as given in Theorem 3.1. Let V = N ∗hǫ and let ρǫ be the corresponding
weak solution of (1.1) with initial data ρ0. Let ρ be the unique solution to (1.1) with V = N and
initial data ρ0, and assume ρ exists for t ∈ [0, T ), where T can be either finite or ∞. Then the
solutions ρǫ locally uniformly converge to ρ in Rd × [0, T ).

4 Monotonicity-preserving properties of solutions

In this section, we show that when V is given by (A) or (B), solution with radially decreasing initial
data remains radially decreasing for all time. The central observation is that maximum principle
type arguments works for the double-variable function

Φ(x, y; t) = ρ(x, t) − ρ(y, t) in {|x| ≥ |y|} × [0,∞)

to ensure that Φ cannot achieve a positive maximum at a positive time.

We begin with an observation on the convolution term:

Lemma 4.1. Let V (x) be given by (B). Let u(x) be a bounded non-negative radially symmetric
function in Rd with compact support. Further suppose u(x) is not radially decreasing, then there
exists a1 = (α, 0, ..., 0) and b1 = (β, 0, ..., 0) with α, β > 0 such that

u(b1) − u(a1) = sup
|a|<|b|

u(b) − u(a) > 0. (4.1)

Then we have
(u ∗ ∆V )(b1) − (u ∗ ∆V )(a1) ≤ ‖∆V ‖L1(u(b1) − u(a1)).

Proof. Observe that ∆V is nonnegative and radially decreasing, and thus it can be approximated
in L1(Rd) ∩ L∞(Rd) by the sum of bump functions of the form cχB(0,r), where c > 0. By linearity
of convolution, it suffices to prove that for each bump function χB(0,r), where r is any positive real
number, we have

(u ∗ χB(0,r))(b1) − (u ∗ χB(0,r))(a1) ≤ ‖χB(0,r)‖1(u(b1) − u(a1)). (4.2)

Observe that

(u ∗ χB(0,r))(b1) − (u ∗ χB(0,r))(a1) =

∫

B(b1,r)

u(x)dx −

∫

B(a1,r)

u(x)dx (4.3)

=

∫

ΩB

u(x)dx −

∫

ΩA

u(x)dx (4.4)

Where ΩA := B(a1, r)\B(b1, r) and ΩB := B(b1, r)\B(a1, r) (see Figure 2).

10



x1 =α+β
2

ΩA ΩB

a10 b1

x f(x)

Figure 2: The domain ΩA and ΩB

Note that ΩA and ΩB are symmetric through the hyperplane H = {x : x1 = α+β
2 }. For any

x ∈ ΩA, use f(x) to denote the reflection point of x with respect to H , then we have

∫

ΩB

u(x)dx −

∫

ΩA

u(x)dx =

∫

ΩA

u(f(x)) − u(x)dx.

Since |x| < |f(x)| for x ∈ ΩA, we can use the assumption (4.1) to obtain

∫

ΩA

u(f(x)) − u(x)dx ≤

∫

ΩA

u(b) − u(a)dx ≤ |B(0, r)|(u(b) − u(a)),

which completes the proof.

Theorem 4.2. Let V (x) be given by (A) or (B). Suppose that the initial data ρ(x, 0) ∈ L1(Rd; (1 +
|x|2)dx) ∩ L∞(Rd) is radially decreasing, i.e. ρ(x, 0) is radially symmetric and is a decreasing
function of |x|. We assume ρ exists for t ∈ [0, T ), where T can be either finite or ∞. Then ρ(x, t)
is radially decreasing for all t ∈ [0, T ).

Proof. 1. Without loss of generality we assume that V is given by (B), and ρ(x, 0) is positive and
smooth. Then ρ(·, t) exists for all t ≥ 0, and we want to show ρ(·, t) is radially decreasing for all
t ≥ 0. When V = N , we can use mollified Newtonian kernel to approximate N ; and for general
radial decreasing initial data, we can use positive and smooth functions to approximate ρ(x, 0).
Then the result follows via Proposition 3.3.

2. Radial symmetry of ρ for all t > 0 directly follows from the uniqueness of weak solution. Let
us define

w(t) := sup
|a|≤|b|

ρ(b, t) − ρ(a, t).

then since ρ is uniformly bounded and uniformly continuous in R
d × [0,∞), w(t) is continuous in t,

and uniformly bounded for t ∈ [0,∞). Moreover, ρ(x, 0) being radially decreasing implies w(0) = 0.
We will use a maximum principle-type argument to show that w(t) = 0 for all t ≥ 0, which proves
the theorem.

To prove the claim, suppose not. Then for any λ > 0 the function w(t)e−λt has a positive maximum
at t = t1 for some t1 > 0. We will show that this cannot happen when we choose λ := 4‖ρ‖∞‖∆V ‖1.
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At t = t1 there exists a1 = (α, 0, ..., 0) and b1 = (β, 0, ..., 0) such that α < β and

ρ(b1, t1) − ρ(a1, t1) = w(t1) > 0 (see Figure 3). (4.5)

r

ρ(r, t1)

a1 b1

Figure 3: Graph of ρ at time t1

Moreover by definition ρ(b1, t) − ρ(a1, t) ≤ w(t), and thus

d

dt
((ρ(b1, t) − ρ(a1, t))e

−λt) = 0 at t = t1,

which means
ρt(b1, t1) − ρt(a1, t1) = λ(ρ(b1, t1) − ρ(a1, t1)). (4.6)

Further observe that ρ(x, t1) has a local minimum (in space only) at a1 and ρ(x, t1) has a local
maximum at b1. This yields

∇ρ(a1, t1) = 0,∇ρ(b1, t1) = 0,

and
∆ρm(a1, t1) ≥ 0,∆ρm(b1, t1) ≤ 0,

Let us now make use of the equation (1.1) that ρ satisfies to get a contradiction: we have

ρt(b1, t1) − ρt(a1, t1) = ∆ρm(b1, t1) + ∇ · (ρ∇(ρ ∗ V ))(b1, t1)

−∆ρm(a1, t1) −∇ · (ρ∇(ρ ∗ V ))(a1, t1)

≤ ρ(b1, t1)(ρ ∗ ∆V )(b1, t1) − ρ(a1, t1)(ρ ∗ ∆V )(a1, t1)

= ρ(b1, t1)((ρ ∗ ∆V )(b1, t1) − (ρ ∗ ∆V )(a1, t1))

+(ρ(b1, t1) − ρ(a1, t1))(ρ ∗ ∆V )(a1, t1).

By Lemma 4.1 we have

(ρ ∗ ∆V )(b1, t1) − (ρ ∗ ∆V )(a1, t1) ≤ ‖∆V ‖1(ρ(b1, t1) − ρ(a1, t1)).

Since (ρ ∗ ∆V )(a1, t1) ≤ ‖ρ‖∞‖∆V ‖1, we have

ρt(b1, t1) − ρt(a1, t1) ≤ 2‖ρ‖∞‖∆V ‖1(ρ(b1, t1) − ρ(a1, t1))

≤
λ

2
(ρ(b1, t1) − ρ(a1, t1)),

which contradicts (4.6).
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The following proposition sates that in the previous theorem, the condition that ∆V is radially
decreasing is indeed necessary.

Proposition 4.3. Let V (x) be radially symmetric, ∆V ≥ 0, and ∆V is continuous, but not radially
decreasing. Then there exists a radially decreasing initial data ρ0 such that the solution ρ(x, t) of
(1.1) with initial data ρ0 is not radially decreasing for all sufficiently small t > 0.

Proof. Since ∆V is not radially decreasing, we can find x1, x2 ∈ Rd, such that 0 < |x1| < |x2|, and
∆V (x1) < ∆V (x2).

For a small ǫ > 0, let ρ0(x) be given as below:

ρ0(x) = ǫχB(0,x2+1) ∗ φ(x) +
1

ǫ
φ(ǫx),

where χ is the indicator function and φ is a radially symmetric mollifier with unit mass and
supported in B(0,min{1, |x1|/2}). Note that in a small space-time neighborhood of x1 and x2, ρ
solves a uniformly parabolic equation, and thus is smooth.

Since ∆ρm(xi, 0) = ∇ρ(xi, 0) = 0 for i = 1, 2, we have

ρt(xi, 0) = ρ0(xi)(ρ0 ∗ ∆V )(xi), i = 1, 2.

Since ρ0(x1) = ρ0(x2), to show ρt(x1, 0) < ρt(x2, 0), it suffices to prove

(ρ0 ∗ ∆V )(x1) < (ρ0 ∗ ∆V )(x2). (4.7)

Note that ρ0 ∗ ∆V locally uniformly converges to ∆V (x) as ǫ → 0. Since ∆V (x1) < ∆V (x2), if
we let ǫ be sufficiently small, we would have (4.7). In particular ρ(x1, t) < ρ(x2, t) for small t > 0,
which means ρ(x, t) becomes non-radially decreasing as soon as t > 0.

5 Mass Comparison and asymptotic behavior for radial so-

lutions

Recall that there is no classical comparison principle for (1.1), due to the nonlocal term; however,
we will prove that a comparison principle actually hold for the mass function

M(r, t) = M(r, t; ρ) :=

∫

B(0,r)

ρ(x, t)dt (5.1)

(see Proposition 5.3). We point out that the corresponding property has been observed for (1.2)
([V]) and also for the Keller-Segel model ([BKLN]). It turns out that mass comparison holds for
(1.1) if the potential V satisfies ∆V ≥ 0 in the distribution sense (Proposition 5.3.) As we will see
later, mass comparison effectively describes asymptotic behavior of radial solutions in both sub- and
supercritical regime.

13



5.1 Mass comparison

First note that, in the positive set, ρ is at least C1 in space and time variable, since it is a bounded
solution of uniformly parabolic, divergence-type equation with continuous coefficients. Therefore it
follows that M(r, t) is C2 in space and C1 in time in {ρ > 0}.

Next we compute the PDE that M(r, t) satisfies in {r < R(t)}:

∂M

∂t
(r, t) =

∫

∂B(0,r)

~n · (∇ρm + ρ∇(ρ ∗ V ))dx

= σdr
d−1(

∂

∂r
((
∂M

∂r

1

σdrd−1
)m) + (

∂M

∂r

1

σdrd−1
)(

M̃

σdrd−1
))

= σdr
d−1 ∂

∂r

(
(
∂M

∂r

1

σdrd−1
)m

)
+ (

∂M

∂r

1

σdrd−1
)M̃, (5.2)

where

M̃(r, t) = M̃(r, t; ρ) :=

∫

B(0,r)

(ρ(·, t) ∗ ∆V )(x)dx. (5.3)

Definition 5.1. Let ρ1 and ρ2 be two non-negative radially symmetric functions in L1(Rd). We
say ρ1 is less concentrated than ρ2, or ρ1 ≺ ρ2, if

∫

B(0,r)

ρ1(x)dx ≤

∫

B(0,r)

ρ2(x)dx for all r ≥ 0.

Definition 5.2. Let ρ1(x, t) be a non-negative, radially symmetric function in L1(Rd) ∩ L∞(Rd),
which is C1 in its positive set. We say ρ1 is a supersolution of (5.2) if M1(r, t) := M(r, t; ρ1) and
M̃1 := M̃(r, t; ρ1) satisfy

∂M1

∂t
≥ σdr

d−1 ∂

∂r
((
∂M1

∂r

1

σdrd−1
)m) + (

∂M1

∂r

1

σdrd−1
)M̃1 (5.4)

in the positive set of ρ1.

Similarly we define a subsolution of (5.2).

Proposition 5.3 (mass comparison). Suppose m > 1. Let V be given by (A) or (B), and let ρ1(x, t)
be a supersolution and ρ2(x, t) be a subsolution of (5.2). Further assume that ρi’s preserve its mass
over time, i.e.,

∫
ρ1(·, t)dx and

∫
ρ2(·, t)dx stays constant for all t ≥ 0. Then the mass functions are

ordered for all times: i.e., if ρ1(x, 0) ≻ ρ2(x, 0), then we have ρ1(x, t) ≻ ρ2(x, t) for all t > 0.

Proof. We claim that M1(r, t) ≥ M2(r, t) for all r ≥ 0, t > 0, which proves the lemma. For the
boundary conditions of Mi, note that

{

M1(0, t) = M2(0, t) = 0 for all t,

limr→∞(M1(r, t) −M2(r, t)) =
∫

Rd(ρ1(x, 0) − ρ2(x, 0))dx ≥ 0 for all t.

As for initial data, we have M1(r, 0) ≥M2(r, 0) for all r ≥ 0.

To prove the claim, for given λ > 0, we define

w(r, t) :=
(
M2(r, t) −M1(r, t)

)
e−λt,
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If the claim is false at t = T , then w attains a positive maximum at some point (r1, t1) in the
domain (0,∞)× (0, T ]. Moreover, since the total mass of ρ1 and ρ2 is preserved over time and thus
is ordered, we know that (r1, t1) must lie inside the positive set for both ρ1 and ρ2, where Mi’s are
C2,1

x,t .

At (r1, t1), since w attains a maximum, we have

wt = 0 =⇒
∂(M2 −M1)

∂t
= λ(M2 −M1) (5.5)

wr = 0 =⇒
∂M1

∂r
=
∂M2

∂r
(5.6)

wrr ≤ 0 =⇒
∂2M1

∂r2
≥
∂2M2

∂r2
(5.7)

Now consider the first term on the right hand side of (5.4), and the corresponding inequality for
M2. Using (5.6) and (5.7), we have

∂

∂r

(
(
∂M1

∂r

1

σdrd−1
)m

)
≥

∂

∂r

(
(
∂M2

∂r

1

σdrd−1
)m

)
at (r1, t1). (5.8)

Subtracting the inequality (5.4) with the corresponding inequality for M2, and using (5.8), we
obtain

∂(M2 −M1)

∂t
≤ (

∂M1

∂r

1

σdrd−1
)(M̃2 − M̃1) at (r1, t1). (5.9)

We next claim
(M̃2 − M̃1)(r1, t1) ≤ C(M2 −M1)(r1, t1),

where C only depend on V . For Newtonian potential this is obvious, since M̃ ≡ M . For mollified
Newtonian potential, we estimate (M̃2 − M̃1)(r1, t1) as following:

M̃2(r1, t1) − M̃1(r1, t1) =

∫

Rd

((ρ2 − ρ1) ∗ ∆V ) χB(0,r1)dx

=

∫

Rd

(ρ2 − ρ1)(χB(0,r1) ∗ ∆V )dx

By our assumption, ∆V is radially decreasing, thus χB(0,r1) ∗ ∆V is radially decreasing and has
maximum less than or equal to ||∆V ||1. Therefore we can use a sum of bump function to approximate
χB(0,r1) ∗ ∆V , where the sum of the height is less than ||∆V ||1. Hence

M̃2(r1, t1) − M̃1(r1, t1) ≤ ||∆V ||1 sup
x

(M2 −M1)(x, t1) = ||∆V ||1(M2 −M1)(r1, t1).

Once we get this estimate, plug it into (5.9), which then becomes

∂(M2 −M1)

∂t
≤ ρ1(M2 −M1) at (r1, t1). (5.10)

Now choose λ > supRn×(0,T ] ρ1, then (5.10) will contradict (5.5).
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Observe that (1.1) can be written as a transport equation

ρt + ∇ · (ρ~v) = 0,

where the velocity field ~v is given by

~v(x, t; ρ) := −
m

m− 1
∇(ρm−1) −∇(ρ ∗ V ). (5.11)

Then the mass function for a radial solution of (1.1) satisfies

∂

∂t
M(r, t) = −ρ(r, t)

∫

∂B(0,r)

~v · ~nds. (5.12)

Above observation along with Proposition 5.3 immediately yields the following corollary:

Corollary 5.4. Suppose m > 1. Let V be given by (A) or (B). Let ρ0(x) be a continuous radially
symmetric function, which is differentiable in its positive set. We assume the velocity field of ρ0 is
pointing inside everywhere, i.e., for ~v as defined in (5.11),

~v(x; ρ0) ·
−x

|x|
≥ 0 in {ρ0 > 0}. (5.13)

Let ρ be the weak solution of (1.1) with initial data ρ(x, 0), where ρ(·, 0) ≻ ρ0. Then ρ(·, t) ≻ ρ0 for
all t ≥ 0.

Proof. Let us define
ρ1(x, t) := ρ0(x), for x ∈ R

d, t ∈ R
+.

Then (5.12) and (5.13) yield that ρ1 is a subsolution of (5.2). Therefore, Proposition 5.3 applies to
ρ and ρ1 and we can conclude.

As an application of Corollary 5.4, we will show that when the initial data is radially symmetric
and compactly supported, the support of the solution will stay in a large ball for all times.

Corollary 5.5 (compact solution stays compact). Let V be given by (A) or (B), and suppose
m > 2− 2

d . Let ρ be the solution to (1.1), where the initial data ρ(x, 0) ∈ L1(Rd; (1+|x|2)dx)∩L∞(Rd)
is continuous, radially symmetric and compactly supported. Then there exists R > 0 depending on
m, d, ‖∆V ‖1 and ρ(·, 0), such that {ρ(·, t) > 0} ⊂ {|x| ≤ R} for all t > 0.

Proof. 1. We will first assume that ρ(x, 0) > 0.

2. Let A :=
∫

Rd ρ(x, 0)dx, and let ρA(x) be a radial stationary solution with mass A. For any
continuous radial initial data with ρ(0, 0) > 0, we can choose a > 0 sufficiently small, such that

ρ1(x, t) := adρA(ax) ≺ ρ(x, 0).

Our aim is to show that the velocity field of ρ1(x, t) is pointing towards inside all the time, i.e.,

v(r, t; ρ1) := ~v(r, t; ρ1) ·
−x

|x|
=

∂

∂r
ρm−1
1 (r) +

∂

∂r
(ρ1 ∗ V ) ≥ 0. (5.14)
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Let us assume that V is given by (B); the argument for V given by (A) is parallel and easier.
Recall that the stationary solution ρA(x, t) satisfies the following equation in its positive set:

m

m− 1

∂ρm−1
A

∂r
+
M̃(r; ρA)

σdrd−1
= 0 (5.15)

Therefore it follows that

m

m− 1

∂

∂r
ρm−1
1 (r) = a(m−1)d+1 m

m− 1

∂ρm−1
A

∂r
(ar)

= −a(m−1)d+1 M̃(ar; ρA)

σd(ar)d−1
,

Secondly observe that M̃(r, t; ρ1) satisfies

M̃(r, t; ρ1) =

∫

B(0,r)

∫

Rd

adρA(ay)∆V (y − x)dydx

=

∫

B(0,ar)

∫

Rd

ρA(y)a−d∆V (a−1(y − x))dydx

≥

∫

B(0,ar)

ρA ∗ ∆V dx (since a−d∆V (a−1x) ≻ ∆V when 0 < a < 1)

= M̃(ar; ρA).

(Note that when V is given by (A), direct computation yields M(r, t; ρ1) = M(ar; ρA).)

Due to (2.3) and above inequalities, it follows that

v(r, t; ρ1) =
∂

∂r
ρm−1
1 (r) +

∂

∂r
(ρ1 ∗ V )

≥
∂

∂r
ρm−1
1 (r) +

M̃(r; ρ1)

σdrd−1
(5.16)

≥ (1 − ad(m−2+2/d))ad−1 M̃(ar; ρA)

σd(ar)d−1
. (5.17)

Since m > 2 − 2/d, above inequality yields that the inward velocity field v(r, ρ1) ≥ 0 when a < 1.
Therefore Corollary 5.4 implies that ρ(·, t) ≻ ρ1 for all t ≥ 0. Since they have the same mass A, it
follows that

suppρ(·, t) ⊂ suppρ1, for all t > 0,

and we can conclude.

3. The assumption ρ(0, 0) > 0 can indeed be removed, since ρ(0, t) would still become positive in
finite time even if ρ(0, 0) = 0. That is because, for (1.2), it is a well-known fact that the solution
will have a positive center density after finite time: this can be verified, for example, by maximum-
principle type arguments using translations of Barenblatt solutions.

Note that a solution of (1.2) is a subsolution in the mass comparison sense. Hence one can compare
ρ with a solution ψ of (1.2) with initial data ρ0 and apply Proposition 5.3 to conclude that ψ ≺ ρ.
Now our assertion follows due to the continuity of ψ and ρ at the origin.
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5.2 Exponential convergence towards stationary solution in subcritical

regime

As an application of Proposition 5.3, we will prove asymptotic convergence of general radial solutions
to the unique radial stationary solution when the potential is given by (A) or (B).

Theorem 5.6 (Exponential convergence for Newtonian potential). Let m > 2 − 2
d and let V be

given by (A) or (B). For given ρ0 ≥ 0: a continuous, radially symmetric function with compact
support, let ρ(x, t) be the solution to (1.1) with initial data ρ0. Next let ρA be a radial stationary
solution with mass A :=

∫
ρ0(x)dx. Then M(r, t) := M(r, t; ρ) satisfies

|M(r, t) −M(r; ρA)| ≤ C1e
−λt, for all r > 0,

where C1 depends on ρ0, A,m, d, V , and the rate λ only depends on A,m, d, V .

Proof. 1. We will only prove the case when V satisfies (B); the case for (A) can be proven with a
parallel (and easier) argument. Also note that we may assume ρ0(0) > 0 since otherwise ρ(0, t) will
be come positive in finite time as explained in step 3. of the proof of Corollary 5.5.

2. Let ρA be a stationary solution with same mass as ρ0, given as in the proof for Corollary 5.5.
Since ρ0 is compactly supported, continuous and with ρ0(0) > 0, we can choose 0 < a < 1 to be
sufficiently small, such that

adρA(ax) ≺ ρ0 and a−dρA(a−1x) ≻ ρ0.

3. With above choice of a, we next construct a self-similar subsolution φ(x, t) of (5.2) with initial
data φ(x, 0) = adρA(ax) such that Mφ(·, t) := M(·, t;φ) converges exponentially to M(·; ρA) as
t→ ∞.

Here is the strategy on construction of φ(x, t) . Due to (5.17), for all 0 < a < 1, the inward
velocity field v(r) := v(r; adρA(ax)) given by (5.14) satisfies

v(r) ≥ (1 − ad(m−2+2/d))adr
M̃ (ar; ρA)

σd(ar)d
≥ 0.

Observe that
dM̃(ar; ρA)

σd(ar)d
equals the average of ρA ∗∆V in the ball {|x| ≤ ar}. By Proposition 2.1,

ρA (hence ρA ∗ ∆V ) is radially decreasing, and thus we have

C1 ≤
M̃(ar; ρA)

σd(ar)d
≤ C2 in {ρA > 0} (5.18)

where C1, C2 only depend on A, d,m, V . That gives a lower bound for the inward velocity field v

v(r) ≥ C1a
d(1 − ad(m−2+2/d))r. (5.19)

Now if we have a self-similar function φ(x, t) where every point is moving towards center with the
speed exactly C1a

d(1 − ad(m−2+2/d))r, then we would expect it to be a subsolution of (5.2).

Let us define
φ(r, t) = kd(t) ρA

(
k(t)r

)
, (5.20)
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where the scaling factor k(t) solves the following ODE with initial data k(0) = a:

k′(t) = C1(k(t))
d+1(1 − (k(t))d(m−2+2/d)). (5.21)

Since m > 2 − 2/d, k′(t) > 0 when 0 < k < 1, and since k = 1 is the only non-zero stationary point
for the ODE (5.21), for 0 < k(0) < 1 we have limt→∞ k(t) = 1. Since

C1k
d(1 − kd(m−2+2/d)) = −C1d(m− 2 + 2/d)(1 − k) + o(1 − k),

it follows that
0 ≤ 1 − k(t) . e−C1d(m−2+2/d)t, (5.22)

which implies
0 ≤Ms(r, t) −Mφ(r, t) . e−C1d(m−2+2/d)t, for all x. (5.23)

Next we claim that φ is a subsolution of (5.2), i.e.,

∂Mφ

∂t
≤ σdr

d−1 ∂

∂r
((
∂Mφ

∂r

1

σdrd−1
)m) + (

∂Mφ

∂r

1

σdrd−1
)M̃φ in {φ > 0} (5.24)

To prove the claim, first note that by definition of φ(r, t) we have Mφ(r, t) = M(k(t)r; ρA). Hence
the left hand side of (5.24) is

∂Mφ

∂t
(r, t) = ∂rMs(k(t)r) k

′(t)r

= σdr
dρA(k(t)r)kd−1(t)k′(t)

= σdr
dφ(r, t)C1k

d(1 − kd(m−2+2/d)) (due to (5.21) and definition of φ)

On the other hand, we can proceed in the same way as (5.19), replacing a by k, to obtain

m

m− 1

∂

∂r
φm−1 +

M̃φ

σdrd−1
≥ C1k

d(1 − kd(m−2+2/d))r.

Therefore

RHS of (5.24) = σdr
d−1 ∂

∂r
φm + φM̃φ

= σdr
d−1φ

( m

m− 1

∂

∂r
φm−1 +

M̃φ

σdrd−1

)

≥ σdr
dφC1k

d(1 − kd(m−2+2/d)),

thus Mφ indeed satisfies (5.24), and the claim is proved.

4. Similarly one can construct a supersolution of (5.2). Let us define

η(r, t) := kd(t) ρA

(
k(t)r

)
,

where k(t) solves the following ODE with initial data k(0) = 1
a :

k′(t) = C2k
d+1(1 − kd(m−2+2/d)).
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Parallel arguments as in step 2 yields that η is a supersolution of (5.2) and

0 ≤Mη(r, t) −M(r; ρA) . e−C2d(m−2+2/d)t, for all r > 0. (5.25)

5. Lastly we compare φ, η with the weak solution ρ of (1.1). Since

φ(·, 0) ≺ ρ(·, 0) ≺ η(·, 0) (see Figure 4),

η(x, 0)

ρ(x, 0)

φ(x, 0)

Figure 4: Initial data for φ, ρ and η

Proposition 5.3 yields that
Mφ(·, t) ≤M(·, t) ≤Mη(·, t),

By (5.23) and (5.25), we obtain

|M(r, t) −M(r; ρA)| . e−C1d(m−2+2/d)t, ∀r.

Using the explicit subsolution and supersolution constructed in the proof of Theorem 5.6, we get
exponential convergence of ρ/A towards the ρA/A in the p-Wasserstein metric, which is defined
below. Note that the Wasserstein metric is natural for this problem, since as pointed out in [BD]
and [BS], the equation (1.1) is a gradient flow of the energy (1.5) with respect to the 2-Wasserstein
metric.

Definition 5.7. Let µ1 and µ2 be two (Borel) probability measure on Rd with finite pth moment.
Then the pth Wasserstein distance between µ1 and µ2 is defined as

Wp(µ1, µ2) :=
(

inf
p∈P(µ1,µ2)

{∫

Rd×Rd

|x− y|pp(dxdy)
}) 1

p

,

where P(µ1, µ2) is the set of all probability measures on Rd × Rd with first marginal µ1 and second
marginal µ2.

Corollary 5.8. Let ρ, ρA, A, C1, λ as given in Theorem 5.6. Then for all p > 1, we have

Wp(
ρ(·, t)

A
,
ρA

A
) ≤ C1e

−λt.

20



In fact one can also obtain uniform convergence of ρ to ρA in sup-norm, however the convergence
rate would depend on the modulus of continuity of ρ. Theorem 5.6 and the uniform continuity of ρ
and ρA, as well as the fact that ρA is compactly supported, yields the following:

Corollary 5.9. Let ρ,ρA, C1 and λ as given in Theorem 5.6. Then we have

lim
t→∞

‖ρ(x, t) − ρA(x)‖L∞(Rd) = 0,

Note that uniqueness of ρA is not required in the proof of Theorem 5.6. Indeed, uniqueness of ρA

can be obtained as a consequence of asymptotic convergence of ρ: if there are two radial stationary
solutions ρ1

A and ρ2
A with the same mass, Corollary 5.9 implies ρ(·, t) → ρi

A in L∞ norm for i = 1, 2
when ρ is given as in Theorem 5.6, which immediately establish the uniqueness of radial stationary
solution:

Corollary 5.10. Let V be given by (A) or (B), and let m > 2 − 2
d . Then for all A > 0, the radial

stationary solution ρA for (1.1) with
∫
ρA(x)dx = A is unique.

5.3 Algebraic convergence towards Barenblatt profile in supercritical regime

In this section, we consider the asymptotic behavior of radial solutions in the supercritical regime,
i.e. for 1 < m < 2 − 2

d . In this case the diffusion overrides the aggregation and thus the solution
is expected to behave similar to that of Porous Medium Equation (PME) in the long run. In fact
recently it is shown in [B1] (and also in [S1]), by making use of entropy method as well as functional
inequalities, that the solution of (1.1) with a general class of V and with small mass and small
L(2−m)d/2 norm converges to the self-similar Barenblatt solution U(x, t) with algebraic rate,

U(x, t) = t−βd(C −
(m− 1)β

2m
|x|2t−2β)

1
m−1

+ , (5.26)

where C is some constant such that ‖U(·, 0)‖1 = ‖ρ(·, 0)‖1.

As another application of mass comparison, we will give an alternative, simpler proof for above
result in the case of radial solutions, by using mass comparison (Proposition 5.3). We point out that
in our result the mass does not need to be small, and provides an explicit description of solutions
which are “sufficiently scattered” so that it does not blow up in finite time. We also point out that,
of course, the method presented in [B1] is much more delicate and yields optimal convergence results
for general solutions with small mass in the supercritical regime.

Let ρ be the weak solution to (1.1). Following [V], we re-scale ρ as follows:

µ(λ, τ) = (t+ 1)αρ(x, t); λ = x(t+ 1)−β ; τ = ln(t+ 1). (5.27)

where

α =
d

d(m− 1) + 2
, β = α/d.

Then µ(λ, 0) = ρ(x, 0), and µ(λ, τ) solves

µτ = ∆µm + β∇ · (µ∇
|λ|2

2
) + e(1−α)τ∇ · (µ∇(µ ∗ (N ∗ h̃(λ, τ))), (5.28)

21



where
h̃(λ, τ) := edβτ∆V (λeβτ ) (5.29)

(when V = N one should replace the last term by e(1−α)τ∇ · (µ∇(µ ∗ N )).

In the absense of the last term, equation (5.28) becomes a Fokker-Planck equation

µτ = ∆µm + β∇ · (µ∇
|λ|2

2
), (5.30)

which is known to converge to the stationary solution µA exponentially, where µA has mass A :=
‖µ(·, 0)‖1 and satisfies

m

m− 1
µm−1

A = (C − β
|λ|2

2
)+ for some C > 0. (5.31)

In Therorem 5.13, we will prove for m < 2−2/d, if the initial data is sufficiently less concentrated
than µA, then µ(·, τ) also converges to the same limit µA exponentially as τ → ∞.

The proof of Therorem 5.13 is obtained by mass comparison. We define the following mass
function for µ: Mµ(r, τ) := M(r, τ ;µ), where M is as given in (5.1). Also, for any function f , we
define M̃(r, τ ; f) :=

∫

B(0,r)
f ∗ h̃(·, τ)dλ, where h̃ is as given in (5.29). (For V = N , h̃(·, τ) is the

delta function for all τ , hence M̃ ≡M .)

Then Mµ satisfies the following PDE in the positive set of µ:

Mµ
τ = σdr

d−1(
∂Mµ

∂r

1

σdrd−1
)
[ m

m− 1

∂

∂r
((
∂Mµ

∂r

1

σdrd−1
)m−1) + βr + e(1−α)τ M̃(r, τ ;µ)

σdrd−1

]

(5.32)

First we prove that mass comparison also holds for the rescaled equation (5.28).

Proposition 5.11. Let V (x) be given by (A) or (B), and let m < 2 − 2
d . Assume µ1(λ, τ) is a

subsolution and µ2(λ, τ) is a supersolution of (5.32). Further assume that µi’s preserve its mass
over time, i.e.,

∫
µ1(·, τ)dλ and

∫
µ2(·, τ)dλ stays constant for all t ≥ 0.

Then the mass is ordered for all times: i.e., if µ1(λ, 0) ≺ µ2(λ, 0), then we have µ1(λ, τ) ≺ µ2(λ, τ)
for all τ > 0.

Proof. Let ρi(x, t) be the corresponding re-scaled versions of µi, then ρ1 (ρ2) would be subsolution
(supersolution) of (5.2). The proof is straightforward from Proposition 5.3 and from the fact that

M(r, τ ;µi) = e(α−β)τM(reβτ , eτ ; ρi).

Now we state a technical lemma which is used later in the proof of the convergence theorem.

Lemma 5.12. Let k(t) solve the ODE

k′(t) = C1k(1 − kα) + C2k
d+1e−βt, (5.33)

where C1, C2, α, β are positive constants. Then there exists a constant δ > 0 such that if 0 < k(0) < δ,
then k(t) → 1 exponentially as t→ ∞.
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Proof. When 0 < k < 1, the right hand side of (5.33) is bounded above by (C1 +C2)k. Hence if the
initial data satisfies 0 < k(0) < 1, the inequality k(t) ≤ k(0)e(C1+C2)t will hold until k reaches 1. In

other words, k(t) is guaranteed to be smaller than 1 until time t1 := − lnk(0)
C1+C2

.

Now if we choose k(0) to be sufficiently small such that 0 < k(0) < δ, where

δ := (αC1C
−1
2 2−d−2)

C1+C2
β ,

then t1 would be sufficiently large such that

C22
d+1e−βt1 ≤

C1α

2
.

We claim g(t) := 1 + e−ǫ(t−t1) is a supersolution of (5.33) for t ≥ t1, where ǫ := min{β, 1
2C1α}. It

is obvious that g(t1) > 1 ≥ k(t1), thus it suffices to show

g′(t) ≥ C1g(1 − gα) + C2g
d+1e−βt for t ≥ t1. (5.34)

By definition of g, we have

RHS of (5.34) ≤ −C1αe
−ǫ(t−t1) + C22

d+1e−βt1e−β(t−t1) (5.35)

≤ −
1

2
C1αe

−ǫ(t−t1) (5.36)

≤ −ǫe−ǫ(t−t1) = LHS of (5.34). (5.37)

Therefore k(t) ≤ 1 + e−ǫ(t−t1) for all t ≥ t1. Similarly we can show that k(t) ≥ 1 − e−ǫ(t−t1) for all
t ≥ t1, thus

|k(t) − 1| ≤ Ce−ǫt,

where C := e−ǫt1 depends on C1, C2, α, β.

Now we are ready to prove the main theorem. We will first prove it for radially decreasing
solutions.

Theorem 5.13. Let V (x) be given by (A) or (B), and let 1 < m < 2− 2
d . Assume µ0(λ) is radially

decreasing, compactly supported and has mass A. Then there exists a sufficiently small constant
δ > 0 depending on d,m, µ0 and V , such that if

µ0(λ) ≺ δdµA(δλ),

where µA(λ) is given in (5.31), then the weak solution µ(λ, τ) to (5.28) with initial data µ0 ex-
ists globally. Furthermore, the mass function M(r, τ ;µ) defined in (5.1) converges to M(r, τ ;µA)
exponentially as t→ ∞ and uniformly in r.

Proof. The proof of theorem is analogous to that of Theorem 5.6: we will construct a self-similar
subsolution φ(λ, τ) and supersolution η(λ, τ) to (5.28), both of which converge to µA exponentially.

Observe that (5.28) can be written as a transport equation

µt + ∇ · (µ~v) = 0,
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where the velocity field ~v is given by

~v :=
m

m− 1
∇(µm−1) + βλ+ e(1−α)τ∇(µ ∗ (N ∗ h̃(y, τ)).

Hence that the inward velocity field v(r, τ ;µ) := −~v · x
|x| for the rescaled PDE (5.28) is

v(r, τ ;µ) =
m

m− 1

∂

∂r
(µm−1) + βr + e(1−α)τ M̃(r, τ ;µ)

σdrd−1
.

We first construct a self-similar subsolution φ(λ, τ), which is a continuous scaling of µA with the
scaling factor k(τ) to be determined later:

φ(λ, τ) := kd(τ)µA

(
k(τ)λ

)
,

Since µA satisfies (5.31), the inward velocity field of φ is then given by

v(r, τ ;φ) = (1 − kd(m−1)+2)βr + e(1−α)τ M̃(r, τ ;φ)

σdrd−1
.

Note that the last term of v(r, τ ;φ) is always non-negative, thus v(r, τ ;φ) ≥ (1−kd(m−1)+2)βr. That
motivates us to choose k(τ) to be the solution of the following equation

k′(τ) = βk(1 − kd(m−1)+2), (5.38)

with initial data k(0) sufficiently small such that φ(·, 0) ≺ µA and φ(·, 0) ≺ µ(·, 0).

One can proceed as in the proof of Theorem 5.6 to verify φ is indeed a subsolution. Moreover, it can
be easily checked that k(τ) → 1 exponentially, hence M(r, τ ;φ) converges to M(r;µA) exponentially
as t→ ∞ and uniformly in r.

In the construction of the supersolution

η(λ, τ) := kd(τ)µA

(
k(τ)λ

)
,

the main difficulty comes from the aggregation term, which might cause the solution to blow
up in finite time. To find an upper bound of the inward velocity field, we first need to control
M̃(r, τ, kdµA(kλ)):

M̃(r, τ ; kdµA(kλ)) =

∫

B(0,r)

kdµA(k·) ∗ edβτ∆V (eβτ ·)(λ)dλ

≤ ‖∆V ‖1

∫

B(0,r)

kdµA(kλ)dλ

= ‖∆V ‖1

∫

B(0,kr)

µA(λ)dλ ≤ C(kr)d/σd,

where the first inequality is due to Riesz’s rearrangement inequality and the fact that µA is radially
decreasing; and C is some constant that does not depend on k, r, τ .

The above inequality gives the following upper bound for the inward velocity field of η:

v(r, τ ; η) ≤ (1 − kd(m−1)+2)βr + Ckde(1−α)τr.
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Therefore we let k(t) solve the following ODE

k′(τ) = βk(1 − kd(m−1)+2) + Ckd+1e(1−α)τ , (5.39)

and choose the initial data k(0) such that η(·, 0) = kd(0)µA

(
k(0)λ

)
≻ µ(·, 0), then η would be a

supersolution to (5.28).

Now it suffices to show the solution to (5.39) exists globally and converges to 1 exponentially.
From the assumption that µ(λ, 0) ≺ δdµA(δλ), we may choose k(0) = δ. Due to Lemma 5.12,
k(τ) → 1 exponentially when k(0) = δ is sufficiently small, hence M(r, τ ; η) converges to M(r;µA)
exponentially.

Since the supersolution η exists globally, we claim the weak solution µ exists globally as well.
Suppose not, then due to Theorem 4 of [BRB], µ has a maximal time interval of existence T ∗, and
limτրT∗ ‖µ(·, τ)‖∞ = ∞. On the other hand, Proposition 5.11 yields that

µ(·, τ) ≺ η(·, τ) for all τ < T ∗. (5.40)

Note that Proposition 4.2 implies that µ is radially decreasing for all τ < T ∗, (Proposition 4.2 is
proved for the solution to (1.1), however it works for the solution to (5.28) as well, since (5.28) is
derived from a continuous scaling of (1.1)), which gives

‖µ(·, τ)‖∞ ≤ ‖η(·, τ)‖∞ for all τ < T ∗. (5.41)

The above inequality implies limτրT∗ ‖η(·, τ)‖∞ = ∞, which contradicts the fact that ‖η(·, τ)‖∞ is
uniformly bounded for all τ .

Once we have global existence of µ, Proposition 5.11 yields

φ(·, τ) ≺ µ(·, τ) ≺ η(·, τ) for all τ ≥ 0.

Since both φ and η converges exponentially towards µA, we can conclude.

The following generalization of Theorem 5.13 will be proved in section 6. We mention that the
conditions on the initial data given in this section does not restrict to solutions with small mass.

Corollary 5.14. Let V (x) be given by (A) or (B), and suppose 1 < m < 2 − 2
d . For a nonnegative

fucntion µ0 in L1(Rd), define A :=
∫
µ0(λ)dλ, and let µA(λ) be as given in (5.31). Then the

followings are true:

(a) there exists a sufficiently small constant δ > 0 depending on d,m, µ0 and V , such that if

µ∗
0(λ) ≺ δdµA(δλ),

then the weak solution µ(λ, τ) to (5.28) with initial data µ0 exists globally.

(b) If µ0 is radially symmetric and compactly supported, the mass function M(r, τ ;µ) defined in
(5.1) converges to M(r, τ ;µA) exponentially as τ → ∞ and uniformly in r.
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Remark 5.15. It is shown in [L] that when V is given by (B) and m < 2 − 2
d , there exists a

stationary solution to (1.1) for large mass. We suspect that in this case similar techniques as in
[BKLN] may yield stability.

If we rescale back to the original space and time variables, Theorem 5.13 immediately yields the
algebraic convergence of mass function for the solution to (1.1).

Corollary 5.16. Let V,m, µ and µ0 be as given in Corollary 5.14, and let ρ be given by (5.27). Let
U(x, t) denote the Barenblatt function defined in (5.26). Then ρ is a weak solution to (1.1), and ρ
vanishes to zero as t→ ∞ with algebraic decay. In particular if ρ0 is radially symmetric then

|M(r, t) −M(r, t;U)| ≤ Ct−γ , for all r ≥ 0,

for some C, γ depending on ρ(x, 0),m, d and V .

Corollary 5.17. Let V,m, µ, µ0, A and ρ be as given in Corollary 5.16. If µ0 is radially symmetric,
then for all p > 1 we have

Wp(
ρ(·, t)

A
,
U(·, t)

A
) ≤ Ct−γ ,

where C, γ depend on ρ(x, 0),m, d and V .

6 A comparison principle for general solutions and Instant

regularization in L
∞

In this last section we consider general (non-radial) solutions of (1.1). Our goal is to prove the
following result:

Theorem 6.1. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak solution to (1.1)
with initial data ρ(x, 0) = ρ0(x). Let ρ̄ be the weak solution to (1.1) with initial data ρ̄(x, 0) = ρ∗0(x).
Assume ρ̄ exists for t ∈ [0, T ), where T can be either finite or ∞. Then ρ∗(·, t) ≺ ρ̄(·, t) for all
t ∈ [0, T ).

As an application of Theorem 6.1, we will show that solutions of (1.1) with its initial data in L1

immediately regularizes in L∞ (see Proposition 6.6.)

The proof of Theorem 6.1, which we divide into several subsections follows that of the correspond-
ing theorem for solutions of (1.2) (see Chapter 10 of [V]). The theorem in [V] is proved by taking
the semi-group approach and applying the Crandall-Liggett Theorem. The challenge lies in the fact
that our operator in (1.1) is not a contraction, in either L1 or L∞. For this reason the proof requires
an additional approximation of our equation with the one with fixed drift: see (6.5).

6.1 Implicit Time Discretization for PME with drift

Consider the following equation
ρt = ∆ρm + ∇ · (ρ∇Φ), (6.1)
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where Φ is a priori given function such that Φ(x, t) ∈ C(Rd × [0,∞)), and Φ(·, t) ∈ C2(Rd) for all t.

Following the proof in the case of (1.2) in [V], let us approximate (6.1) by an implicit time discrete
scheme. For a small constant h > 0, Ui is recursively defined as the solution of the following elliptic
equation:

Ui − Ui−1

h
= ∆Um

i + ∇ · (Ui∇Φi), i = 1, 2, . . . (6.2)

where U0 = u(·, 0),Φi = Φ(·, ih). Now define

ρh(t) := Ui for (i− 1)h < t ≤ ih where i = 1, 2, .. (6.3)

The following result, whose proof is given in the Appendix, states that our approximation scheme
is valid.

Proposition 6.2. Let u0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd), and let ρh be defined by (6.3).Then we
have

ρ(x, t) := lim
h→0

ρh(x, t), (6.4)

where the convergence is in L1(Rd) in x-variable and uniform on t ∈ [0, T ] for all T > 0. Moreover,
ρ coincides with the unique weak solution for (6.1).

6.2 Rearrangement comparison

For a given function u(x) : Rd → R, let us define u∗ as given in (1.6).

Consider the following equation, where f(x, t) ∈ C([0,∞);L1(Rd)) be a given function:

ρt = ∆ρm + ∇ · (ρ∇(f ∗ V )), (6.5)

Let us first prove the rearrangement result for above equation.

Theorem 6.3. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak solution to
(6.5) with initial data ρ(x, 0) = ρ0(x). Let ρ̄ be the weak solution to the symmetrized problem

ρt = ∆ρm + ∇ · (ρ∇(f∗ ∗ V )), (6.6)

with initial data ρ̄(x, 0) = ρ∗0(x). Then we have ρ̄ is radially decreasing, and

ρ∗(·, t) ≺ ρ̄(·, t) for all t > 0.

Due to Proposition 6.2, it suffices to show the following Proposition, whose proof will be given in
the appendix.

Proposition 6.4. Suppose m > 1, and let V be given by (B). Let u ∈ D (the domain D is defined
in (A.1)) be the weak solution of

−h∆um − h∇ · (u∇(f ∗ V )) + u = g, (6.7)

where f, g ∈ L1(Rd) is nonnegative. And let ū ∈ D be the solution to the symmetrized problem, i.e.
ū solves (6.7) with f, g replaced by f̄ and ḡ respectively, where f̄ and ḡ are radially decreasing, have
same mass as f and g respectively, and satisfy f∗ ≺ f̄ and g∗ ≺ ḡ. Then u∗ ≺ ū.
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Proof of Theorem 6.3:

We can prove ρ̄ is radially decreasing by using a similar argument as in Theorem 4.2. In fact the
argument is easier here since we already know f∗ ∗ ∆V is a radially decreasing function.

Now we prove ρ∗ ≺ ρ̄ for all t ≥ 0 when V is given by (B). Let Ui be the discrete solution
for the original problem, and let Vi be the discrete solution for the symmetrized problem. Due to
Proposition 6.2 it suffices to prove that U∗

i ≺ Vi for all i ∈ N. Here Ui solves

Ui − Ui−1

h
= ∆Um

i + ∇ · (Ui∇(fi ∗ V )), (6.8)

where U0 = u(·, 0), fi = f(·, ih), and Vi solves

Vi − Vi−1

h
= ∆V m

i + ∇ · (Vi∇(f∗
i ∗ V )), (6.9)

where V0 = u∗(·, 0).

Since U∗
0 ≺ V0, by applying Prop 6.4 inductively, we can conclude.

When V = N , we can use mollified Newtonian kernel to approximate N , and the result follows
via Proposition 3.3. 2

Now we are ready to prove our main result:

Proof for Theorem 6.1:

Let us define a sequence {ρi}i∈N as follows:

Let us first prove the theorem when V is given by (B), where we have global existence of solutions.
Let ρ1(·, t) := ρ∗(·, t) for all t ≥ 0, where ρ(x, t) is the weak solution of (1.1) with initial data
ρ(x, 0) = ρ0(x). For i > 1, we let ρi be the weak solution to the following equation:

(ρi)t = ∆(ρi)
m + ∇ · (ρi · ∇(ρi−1 ∗ V )), (6.10)

with initial data ρi(x, 0) = ρ∗(x, 0). Observe that ρi(·, t) is radially decreasing for all i ∈ N+, t ≥ 0.

By Theorem 6.3, we have ρi ≺ ρi+1 for all i ∈ N. Hence we have

ρ∗(·, t) = ρ1(·, t) ≺ ρ2(·, t) ≺ ρ3(·, t) ≺ . . . , for all t. (6.11)

Due to Theorem 3.1, {ρi} is locally uniformly continuous in space and time. Hence by Arzela-Ascoli
Theorem any subsequence of {ρi} locally uniformly converges to a function ρ̄ along a subsequence.
On the other hand ρ̄ is the unique weak solution for (1.1) with initial data ρ̄(x, 0) = ρ∗0(x). This
means that the whole sequence {ρi} locally uniformly converges to ρ̄. Now we can conclude due to
(6.11).

When V = N , we can use mollified Newtonian kernel to approximate N , and the result follows
via Proposition 3.3. 2

Corollary 6.5. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak solution of
(1.1) with initial data ρ0(x). Let ρ̄ be the solution to the symmetrized problem, i.e. ρ̄ is the weak
solution to (1.1) with initial data ρ∗0(x). Assume ρ̄ exists for t ∈ [0, T ), where T can be either finite
or ∞. Then for any p ∈ (1,∞] we have

‖ρ(·, t)‖Lp(Rd) < ‖ρ̄(·, t)‖Lp(Rd), for all t ∈ [0, T ).

28



We are now ready to generalize Theorem 5.13.

Proof of Corollary 5.14: Let µ̄(λ, τ) be the weak solution to (5.28) with initial data µ∗
0(λ).

Then µ̄(·, 0) meets the assumptions for Theorem 5.13, which implies the global existence of µ̄. Due
to Corollary 6.5, ‖µ(·, τ)‖∞ ≤ ‖µ̄(·, τ)‖ for all τ during the existence of µ; hence the uniform
boundedness of µ̄ yields that µ cannot blow up and thus must exist globally.

When µ is radially symmetric and compactly supported, once we obtain global existence of µ, we
can construct subsolution and supersolution as in the proof for Theorem 5.13 and conclude. 2

6.3 Instant regularization in L
∞

Lastly, we present the following regularization result as a corollary of Theorem 6.1.

Proposition 6.6. Let V be given by (A) or (B), and let m > 2 − 2/d. Let ρ(x, t) be the weak
solution for (1.1), with initial data ρ0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd). Then for every t > 0 we
have ρ(·, t) ∈ L∞(Rd) with

‖ρ(·, t)‖L∞(Rd) ≤ c(m, d,A, V )t−α for all t < 1

where A = ‖ρ0‖1 and α := d
d(m−1)+2 .

Proof. By Corollary 6.5, it suffices to prove the inequality when ρ0 is radially symmetric. Also, in
this proof we denote c(m, d,A, V ) by all constants which only depends on m, d,A, V .

Let ρA to be the radial stationary solution of (1.1) with mass A. Note that ρA is radially
decreasing, and thus ρA(0) > 0. Since u0 is a radial function in L∞, we can scale ρA to make
it more concentrated than u0, i.e. we choose 0 < a < 1 to be sufficiently small, such that

u0 ≺ a−dρA(a−1x).

As in the proof of Theorem 5.6, let us define

η(r, t) := kd(t) ρA

(
k(t)r

)
,

where k(t) solves the following ODE with initial data k(0) = a−1:

k′(t) = c(m, d,A, V )kd+1(1 − kd(m−2+2/d)),

where c(m, d,A, V ) corresponds to C2 in the proof for Theorem 5.6. It is shown in the proof that

ρ(·, t) ≺ η(·, t) for all t ≥ 0,

which in particular yields that

‖η(·, t)‖L∞(Rd) ≥ ‖ρ(·, t)‖L∞(Rd) for all t ≥ 0.

Observe that, by definition,

h(t) := ‖η(·, t)‖L∞(Rd) = kd(t)ρA(0) = c(m, d,A, V )kd(t).
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Therefore to prove our proposition it is enough to show

h(t) ≤ c(m, d,A, V )t−α for all h(0) > 0,

which becomes an ODE problem: h(t) solves

h′(t) = c(m, d,A, V )kd−1k′

= c(m, d,A, V )h2
(
1 − hm−2+2/d

)
.

Hence when h ≥ 2, h(t) satisfies the following inequality

h′(t) ≤ −c(m, d,A, V )hm+2/d.

If we replace h(t) with c(m, d,A, V )t−α with α as given above, then it will achieve equality. Therefore
h(t) ≤ η(t) for t ≥ 0 and we can conclude.

A Appendix

A.1 Proof for Proposition 6.2

The proof for Proposition 6.2, which is an application of Crandall-Liggett Theorem ([CL], also see
Theorem 10.16 in [V]), are based on the following two lemmas.

Let us consider the following domain:

D :=
{

u ∈ L1(Rd) : um ∈ W 1,1
loc (Rd),∆um ∈ L1(Rd), |∇um| ∈Md/(d−1)(Rd)

}

. (A.1)

Here, the Marcinkiewicz space Mp(Rd), 1 < p <∞, is defined as set of f ∈ L1
loc(R

d) such that

∫

K

|f(x)|dx ≤ C|K|(p−1)/p,

for all subsets K of finite measure. The minimal C in the above inequality gives a norm in this
space, i.e.

‖f‖Mp(Rd) = sup
{

meas(K)−(p−1)/p

∫

K

|f |dx : K ⊂ R
d,meas(K) > 0

}

.

A parallel argument as in Theorem 2.1 of [BBC] yields existence for the discretized equation.

Lemma A.1 (existence). Let d ≥ 3 and let u0 ∈ L1(Rd),Φ ∈ C2(Rd). then there exists a unique
weak solution u ∈ D of the following equation:

u− u0

h
= ∆um + ∇ · (u∇Φ). (A.2)

Next we state the L1-contraction result. The proof is parallel to that of Prop 3.5 in [V] for (1.2).
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Lemma A.2 (L1 contraction). Let Φ ∈ C2(Rd), u0i ∈ L1(Rd) and let u1, u2 ∈ D be the weak
solution to the degenerate elliptic equation

ui − u0i

h
= ∆(ui)

m + ∇ · (ui∇Φ), i = 1, 2 (A.3)

Then ui satisfies
‖u1 − u2‖L1(Rd) ≤ ‖u01 − u02‖L1(Rd). (A.4)

Proof for Proposition 6.2

Proof. Let us define the nonlinear operator A : D → L1(Rd) by the formula

A(u) = −∆um −∇(u∇Φ),

in the domain D defined above.

Then Lemma A.1 and Lemma A.2 yields that for any h > 0, there is a unique solution u in D for
the equation

hA(u) + u = f,

and the map f 7→ u is a contraction in L1(Rd). Now arguing as in [V], the Crandall-Liggett Theorem
yields the conclusion.

A.2 Proof for Proposition 6.4

The proof for Proposition 6.4 is parallel to that of Theorem 11.7 in [V] for (1.2). First we state a
lemma which deals with the extra convolution term.

Lemma A.3. Let V be given by (B). Let f ∈ L1(Rd) and φ ∈W 1,∞
0 (Rd) be non-negative functions.

Then for any non-negative number a, b, we have
∫

{a<φ<b}

∇(f ∗ (−V )) · ∇φ ≤

∫

{φ∗>a}

(f∗ ∗ ∆V )(max{φ∗, b} − a), (A.5)

where the equality is achieved if f, φ are both radially decreasing.

Proof. Let

η(x) :=







b if φ(x) ≥ b,

φ(x) − a if a < φ(x) < b,

0 if φ(x) ≤ a.

Then η(x) ∈W 1,∞
0 (Rd), ∇φ = ∇η in {a < φ(x) < b}, and ∇η = 0 in Rd\{a < φ(x) < b}. Therefore

LHS of (A.5) =

∫

Rd

∇(f ∗ (−V )) · ∇η

≤

∫

Rd

(f∗ ∗ ∆V )η∗ =

∫

{φ∗>a}

(f∗ ∗ ∆V )(max{φ∗, b} − a),

where the inequality comes from Riesz’s rearrangement inqeuality. Note that it would be an equality
if f = f∗ and η = η∗, hence the lemma is proved.
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The following lemma corresponds to the Theorem 17.5 in [V].

Lemma A.4. Let V be given by (B). Let f, f̄ and g be non-negative radially decreasing functions
in L1(Rd), where f ≺ f̄ .

Let h > 0, and let v1, v2 ∈ D be two non-negative radial decreasing functions. Assume v1 satisfies

−h∆(v1)
m − h∇ · (v1∇(f ∗ V )) + v1 ≺ g, (A.6)

and v2 solves
−h∆(v2)

m − h∇ · (v2∇(f̄ ∗ V )) + v2 = g (A.7)

Then we have v1 ≺ v2.

Proof. Let ui := vm
i and define u := u1 − u2, v := v1 − v2, A(r) :=

∫

B(0,r) v(x)dx. Our goal is to

show A(r) ≤ 0 for all r ≥ 0.

For all r ≥ 0, subtracting (A.6) from (A.7) and integrating it in B(0, r) yields

∫

B(0,r)

−h∆udx− h
(

v1(r)

∫

B(0,r)

f ∗ ∆V dx− v2(r)

∫

B(0,r)

f̄ ∗ ∆V dx
)

+A(r) ≤ 0, (A.8)

which can be written as

−hcdr
d−1u′(r) − hv(r)

∫

B(0,r)

f ∗ ∆V dx− hv2(r)

∫

B(0,r)

(
f − f̄) ∗ ∆V dx +A(r) ≤ 0. (A.9)

(Here the existence of u′(r) is guaranteed by the assumption that vi ∈ D for i = 1, 2, which implies
that ∆u is in L1.) Due to our assumption f ≺ f̄ and V given by (B), we have

∫

B(0,r)((f−f̄)∗∆V )dx ≤

0 for all r ≥ 0. Therefore

−hcdr
d−1u′(r) − hv(r)

∫

B(0,r)

f ∗ ∆V +A(r) ≤ 0 for all r ≥ 0. (A.10)

Note that since ui and vi both vanishes at infinity, from (A.10) it follows that limr→∞A(r) ≤ 0.
Hence suppose A(r) is positive somewhere, it must achieve its positive maximum at some r0 > 0.
At r = r0 we have v(r0) = A′(r0) = 0, and (A.10) becomes

u′(r0) ≥
A(r0)

hcdrd−1
> 0,

which means u2 − u1 is strictly increasing at r0: hence v2 − v1 will also be strictly positive in
(r0, r0 + ǫ) for some small ǫ, which implies A(r0 + ǫ) > A(r0), contradicting our assumption that
A(r) achieves its maximum at r0. Therefore A(r) must be ≤ 0 for all r, which means v2 ≺ v1.

Proof of Proposition 6.4: The proof is parallel to that of Theorem 11.7 as in [V]. For any test
function φ ∈W 1,∞

0 (Rd), we have

h

∫

Rd

∇um · ∇φ+ h

∫

Rd

u∇(f ∗ V ) · ∇φ+

∫

Rd

uφ =

∫

Rd

gφ, (A.11)
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where φ ∈ W 1,∞
0 (Rd) is any test function. Now let us plug in φ(x) := (um(x) − t)+ for any real

number t > 0, and differentiate the equation with respect to t. Then we have:

− h(
d

dt

∫

{um>t}

|∇um|2)

︸ ︷︷ ︸

I1

− h(
d

dt

∫

{um>t}

m

m+ 1
∇(f ∗ V ) · ∇(um+1))

︸ ︷︷ ︸

I2

+

∫

{um>t}

u

︸ ︷︷ ︸

I3

=

∫

{um>t}

g

︸ ︷︷ ︸

I4

(A.12)
Following the proof of Theorem 17.7 in [V], one can check that

I1 ≤

∫

{(u∗)m>t}

h∆((u∗)m), (with equality if u ≡ u∗)

I3 =

∫

{(u∗)m>t}

u∗,

I4 ≤ sup
|Ω|=|{um>t}|

∫

Ω

g∗ =

∫

{(u∗)m>t}

g∗.

It remains to examine I2. Using Lemma A.3, it follows that

I2 = h lim
ǫ→0

1

ǫ

∫

{t<um<t+ǫ}

m

m+ 1
∇(f ∗ (−V )) · ∇(um+1)

≤ h lim inf
ǫ→0

1

ǫ

∫

{t<(u∗)m<t+ǫ}

m

m+ 1
(f∗ ∗ ∆V )(max{um+1, (t+ ǫ)1+

1
m } − t1+

1
m )+

= ht
1
m

∫

{(u∗)m>t}

f∗ ∗ ∆V

Plug in the four inequalities into (A.12), the following inequality holds for all t ≥ 0:

−

∫

{(u∗)m>t}

h∆((u∗)m) − ht
1
m

∫

{(u∗)m>t}

f∗ ∗ ∆V +

∫

{(u∗)m>t}

u∗ ≤

∫

{(u∗)m>t}

g∗, (A.13)

since t ≥ 0 is arbitrary, the above inequality implies

−h∆((u∗)m) − h∇ · (u∗∇(f∗ ∗ V )) + u∗ ≺ g∗. (A.14)

On the other hand, by assumption, ū solves

−h∆(ūm) − h∇ · (ū∇(f̄ ∗ V )) + ū = ḡ, (A.15)

where f̄ ≻ f∗ and ḡ ≻ g∗. Note that u ∈ D implies u∗ ∈ D, hence we can apply Lemma A.4 and
get u∗ ≺ ū. 2
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