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Abstract

We extend the two dimensional results of Jerison [J1] on the loca-
tion of the nodal set of the first Neumann eigenfunction of a convex
domain to higher dimensions. If a convex domain Ω in IRn is contained
in a long and thin cylinder [0, N ]×Bǫ(0) with nonempty intersections
with {x1 = 0} and {x1 = N}, then the first nonzero eigenvalue is well
approximated by the eigenvalue of an ordinary differential equation,
by a bound proportional to ǫ, whose coefficients are expressed in terms
of the volume of the cross sections of the domain. Also, the first nodal
set is located within a distance comparable to ǫ near the zero of the
corresponding ordinary differential equation.

1 Introduction

Let Ω be a bounded convex domain in IRn. Let u be an eigenfunction for Ω
associated with the smallest nonzero eigenvalue λ of the Neumann problem
for Ω, that is,

∆u = −λu in Ω, uν = 0 on ∂Ω (1.1)

where uν = ν·∇u and ν denotes the outer normal unit vector at each point on
∂Ω. The purpose of this paper is to locate the first nodal set Λ = {u = 0}
and to estimate the first nonzero eigenvalue λ. We show that Λ is near
the unique zero of the first nonconstant eigenfunction of a certain ordinary
differential equation, and we estimate the difference between λ and the first
nonzero eigenvalue of the corresponding ordinary differential equation.

Assume

Ω ⊂ {(x, y1, ..., yn−1) : x ∈ [0,N ], (y1, ..., yn−1) ∈ Bǫ(0)} ⊂ IRn (1.2)

and suppose further that

Ω(s) := Ω ∩ {x = s} is nonempty for 0 < s < N. (1.3)
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Let u be the first nonconstant eigenfunction for Ω. Denote by φ1 the first
nonconstant eigenfunction with the smallest nonzero eigenvalue µ1 for the
Neumann problem on [0, N ] given by

−(wφ′1)
′ = µ1wφ1 on (0, N) ; w(s)φ′1(s) → 0 as s→ 0+ or s→ N− (1.4)

where w(s) is the (n − 1)-dimensional volume of Ω(s). Let s1 ∈ (0,N) be
the unique zero of φ1, i.e., φ1(s1) = 0. The main results of this paper are as
follows.

Theorem 1.1. If u is the first nonconstant Neumann eigenfunction of Ω
and Ω satisfies (1.2) and (1.3), then there is a dimensional constant C such
that

(a) u(x, y1, ..., yn−1) = 0 implies |x− s1| < Cǫ

(b) (1 − Cǫ/N)µ1 ≤ λ ≤ µ1.

where s1 and µ1 are given in (1.4).

Theorem 1.1 was proven by Jerison ([J1]) for n = 2. By taking a new
coordinate system, he bounds the first eigenvalue λ from below by a formula,
whose coefficients are expressed in terms of the width of the cross section
Ω(x) = {y : (x, y) ∈ Ω}. (Here y-axis is chosen so that the projection
of Ω onto y-axis has the shortest possible length.) Using ODE eigenvalue
estimates, he first locate the nodal set, and then using the location of the
first nodal set, he estimates the first eigenvalue. However for n > 2, a
parallel approach leads to a weaker result mainly due to the fact that we
do not have a proper coordinate system (s, t1, ..., tn−1) → (x, y1, ..., yn−1)
satisfying

∫ N

0
|∂syj|ds ≤ Cǫ, j = 1, ..., n − 1. (1.5)

(see the Remarks at the end of this section.)
In this paper we extend results in [J1] to higher dimensions, with a

different approach to the problem. We first estimate the difference between
the eigenvalues of the original PDE and the corresponding ODE, by taking
an one-dimensional test function and using a sharp result of Kröger on the
upper bound of a gradient of a Neumann eigenfunction, and also using a
new coordinate system which will be constructed in section 4. (we will only
need a weaker pointwise estimate (see (II′) in section 4) than (1.5).) Based
on these estimates, it turns out that we can find a bound on the width of the
first nodal set. Once we prove that the nodal set is thin, i.e., the diameter
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of the nodal set is comparable to ǫ, then we are able to locate the nodal set
near the zero of the eigenfunction of the corresponding ODE.

First, we derive the second inequality of (b). Recall that u minimizes
the Dirichlet integral

J(v) =

∫

Ω
|∇v|2 (1.6)

among all functions v on Ω satisfying

∫

Ω
v2 = 1,

∫

Ω
v = 0. (1.7)

The minimum value of J is the eigenvalue λ. If we consider functions of x
alone, i.e., v(x, y1, ..., yn−1) = φ(x), then

J(v) = I(φ) :=

∫ N

0
φ′(s)2w(s)ds (1.8)

and the constraints (1.7) become

∫ N

0
φ(s)2w(s)ds = 1,

∫ N

0
φ(s)w(s)ds = 0. (1.9)

As in [J1] we observe that the minimizer of (1.8) under the constraints (1.9)
is the first nonzero eigenfunction φ1 given in (1.4) and I(φ1) = µ1. Hence

λ ≤ µ1. (1.10)

Remark 1. If we normalize N = 1, then by [L] and [ZY], C1 ≤ λ
for some absolute constant C1 > 0, and by plugging in the test function
φ(x) = sinπx1, we get λ ≤ C2 for some dimensional constant C2.

Remark 2. In the case of Dirichlet problem on a planar convex domain,
Jerison [J2] obtained results corresponding to Theorem 1.1. Later Grieser
and Jerison ([GJ1], [GJ2]) showed that the nodal line is in an x-interval of
much shorter length Cǫ/N (possibly at distance Cǫ from s1). We expect
that there is an analogous bound in the Neumann problem.

Remark 3. An analogous approach to the method in [J1] for higher
dimensions, by modifying the methods in [J1]-[J2], leads to a result weaker
than Theorem 1.1, i.e., with ǫ log(N/ǫ) instead of ǫ.
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2 Preliminary results and corollaries

Throughout the paper we normalize Ω such that N = 1. As mentioned in
the introduction, a key ingredient in the proof of Theorem 1.1 is Kröger’s
comparison theorems on the gradient of eigenfunction u, which we state
below.

Theorem 2.1 (Kröger, [K1], [BQ] ). Let Ω be a convex domain in IRn with
smooth boundary. Let u be the first eigenfunction for the Laplace opera-
tor on Ω with the associated eigenvalue λ > 0, under Neumann boundary
conditions. Let v be a solution on some interval (a, b) of the differential
equation

v′′(x) +
n− 1

x
v′(x) = −λv(x) on (a, b) v′(a) = v′(b) = 0 (2.1)

such that v′ 6= 0 on (a, b) and [minu,max u] ⊂ [min v,max v]. Then

|∇(v−1 ◦ u)| ≤ 1.

Theorem 2.2 (Kröger, [K2]). Let Ω, u and λ be given as in Theorem 2.1.
Suppose maxu ≥ −minu. Let b be a positive number such that λ is the first
nonzero eigenvalue of

ψ′′(x) +
n− 1

x
ψ′(x) = −λψ(x) on [0, b], ψ′(0) = ψ′(b) = 0. (2.2)

If ψ is the corresponding eigenfunction with ψ(0) > 0, then

maxu

−minu
≤ maxψ

−minψ
.

Corollary 2.3. Let Ω and u be given as in Theorem 2.1. If N = 1 and
max |u| = 1, then |∇u| ≤ C for some dimensional constant C.

Proof. First, we claim that if 0 ≤ a < b then the solution v to (2.1) satisfies

max |v′| ≤
√
λ|v(a)|. (2.3)

To see this, multiply v′ to both sides of (2.1) to obtain

v′v′′ + λv′v =
1

2
((v′)2 + λv2)′ = −n− 1

x
(v′)2 ≤ 0 (2.4)

for x > 0. Hence,

(v′)2(x) + λv2(x) ≤ (v′)2(a) + λv2(a) = λv2(a)
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and the claim follows.
Now, for sufficiently large M > 0, consider an interval (a, b) ⊂ (M,∞)

such that λ is the first nonzero eigenvalue of the Neumann problem (2.1).
Let v be the corresponding eigenfunction. If M is large enough, then v is
close to a constant multiple of cos

√
λx, and thus we can normalize v so that

1 ≤ −min v ≤ 2 and 1 ≤ max v ≤ 2.
Then by Theorem 2.1, we get

sup |∇u| ≤ sup |v′| ≤ C

where the second inequality follows from Remark 1 and the above claim.

Corollary 2.4. Let Ω and u be given as in Theorem 2.1. Suppose that
N = 1 and 1 = maxu ≥ −minu. Let k(ǫ) be the smallest integer such that
2−k(ǫ) ≤ ǫ. For integers 1 ≤ k < k(ǫ), let

Ik = [2−k−1, 2−k] ∪ [1 − 2−k, 1 − 2−k−1]

and let Ik(ǫ) = [0, 2−k(ǫ)] ∪ [1 − 2−k(ǫ), 1]. Then there exists a dimensional
constant C > 0 such that

sup
x∈Ik

|∇u| ≤ C2−k for 1 ≤ k ≤ k(ǫ). (2.5)

Proof. Suppose u < 0 on Ω(0) and u > 0 on Ω(1). Denote m = −minu.
We claim that

max
x∈Ω(0)

u ≤ −m+ 3M0ǫ. (2.6)

where M0 is the upper bound for |∇u|. To see this, let

s0 = min{x : min
Ω(x)

u = −m}.

By Corollary 2.3,
|∇u| ≤M0 (2.7)

with a dimensional constantM0, and thus maxΩ(s0) u ≤ −m+2M0ǫ. Assume
that maxΩ(0) u > −m+ 3M0ǫ, then {u > −m+ 2M0ǫ} has a component A
such that |A| > 0 and A ⊂ {x ≤ s0}. Let

ũ =

{

u for x ∈ Ω −A
−m+ 2M0ǫ for x ∈ A
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then
∫

Ω−
|∇u|2

∫

Ω−
u2

>

∫

Ω−
|∇ũ|2

∫

Ω−
ũ2

and we get a contradiction. A parallel argument yields

min
x∈Ω(1)

u ≥ 1 − 3M0ǫ. (2.8)

Now we show (2.5) using Theorems 2.1 and 2.2. First, consider the case
k = k(ǫ), on the interval [0, 2−k(ǫ)] ⊂ [0, ǫ]. Recall that m := −minu ≤
max u = 1 and u ≤ −m+ 3M0ǫ on Ω(0). Let ψ be the first eigenfunction of
(2.2) with ψ′ 6= 0 on (0, b), ψ(0) > 0 and −minψ = m. Observe that ψ is
decreasing and thus ψ(b) = −m.

By Theorem 2.2, maxψ ≥ maxu and thus

[minu,max u] ⊂ [minψ,maxψ].

Also, since ψ satisfies (2.4) with v replaced by ψ,

ψ′(x)2 =
∫ b
x

2(n− 1)

t
ψ′(t)2 + λ(ψ(t)2)′dt

=
∫ b
x

2(n− 1)

t
ψ′(t)2dt+ λ(ψ(b)2 − ψ(x)2)

Hence for x ∈ J := {ψ ≤ −m+ Cǫ}

ψ′(x)2 ≤
∫ b
x

2(n − 1)

t
ψ′(t)2dt+ 2Cmλǫ

Assume that ψ′(x)2 = Mǫ for the first time in [x, b] ⊂ J . Then by above
inequality

Mǫ ≤Mǫ · 2(n − 1) log
b

x
+ 2Cmλǫ,

which yields log
b

x
≥ 1 −M−1C(2mλ)

2(n− 1)
. Therefore if we let M := 4Cmλ,

then we obtain x ≤ e−1/4(n−1)b.
Choose a sufficiently small dimensional constant c0 > 0 such that if

ǫ ≤ c0 then
J = {ψ ≤ −m+ Cǫ} ⊂ [e−1/4(n−1)b, b].

It follows that if ǫ ≤ c0, then

|ψ′| ≤ C1

√
ǫ, C1 =

√
4Cmλ on J.
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By Theorem 2.1 and above argument with C = 3M0, we obtain that if ǫ ≤ c0
then

|Du| ≤M1

√
ǫ in {u ≤ −m+ 3M0ǫ} (2.9)

where M1 = 2
√

3M0mλ.
Using the improved gradient bound (2.9) instead of (2.7), (2.6) improves

to
u ≤ −m+ 3M1ǫ

3/2 on {0 ≤ x ≤ ǫ}. (2.10)

Next we repeat the argument with the improved bound (2.10), i.e., with
{ψ ≤ −m+Cǫ} replaced by {ψ ≤ −m+3M1ǫ

3/2}. It follows that for ǫ ≤ c0

|Du| ≤M2ǫ
1/2+1/4, u ≤ −m+ 3M2ǫ

1+1/2+1/4 on {0 ≤ x ≤ ǫ}

where

3M2 := 6(6(3M0mλ)1/2mλ)1/2 = 61+1/23M0
1/4(mλ)1/2+1/4.

Iteration of above argument will yield that, if ǫ < c0 then

|Du| ≤ 36mλǫ ≤ C0ǫ on {0 ≤ x ≤ ǫ}

where C0 is a dimensional constant.
For other intervals [2−k−1, 2−k] (k < k(ǫ)), a similar iteration can be

applied with the first step

max
x∈[0,2−k]

u ≤ −m+ 4M02
−k, (2.11)

which follows from (2.6) and (2.7). Then a parallel argument with ǫ replaced
by 2−k proves (2.5) on [2−k−1, 2−k] for k such that 2−k ≤ c0. Note that other
than to derive (2.6), we do not use the fact that ǫ is the specific constant
depending on Ω.

For intervals near x = 1, (i.e., for [1−2−k, 1−2−k−1]) the proof is divided
into two cases. First if maxu = 1 = −minu, then for
w := −u(1 − x, y1, ..., yn−1),

−minw = maxw = 1, w < 0 on {x = 0}, and w > 0 on {x = 1}.

Therefore the argument for w on intervals near x = 0 gives the result for u
on intervals near x = 1.

Secondly if maxu = 1 > −minu, then as in the proof of Corollary 2.3,
choose sufficiently large constants a and b such that λ is the first nonzero
eigenvalue of (2.1) and the first eigenfunction v satisfies

max v = 1 and − min v ≥ −minu.
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Since [minu,maxu] ⊂ [min v,max v] and

min
Ω(1)

u ≥ 1 − 3M0ǫ = max v − 3M0ǫ,

a similar reasoning as in the interval [2−k−1, 2−k], yields the result for the
interval [1 − 2−k, 1 − 2−k−1] near x = 1.

¿From Lemma 2.3, we obtain Corollary 2.5, which states that the first
nodal set is located in the middle part of Ω. Later in section 4, Corollary 2.5
and Theorem 2.1 will be used along with a new coordinate system to estimate
the first nonzero eigenvalue λ. Based on the bound on λ, the width and
location of the nodal set are derived, again by using Theorem 2.1.

Corollary 2.5. Let Ω and u be given as in Theorem 2.1. Suppose N = 1
and sup |u| = 1. Then there exist dimensional constants c1 > 0 and c2 > 0
such that

c2 ≤ |u| ≤ 1 for x ∈ [0, c1] ∪ [1 − c1, 1].

Proof. Without loss of generality, we may assume max |u| = u(x̃, ỹ) = 1
(ỹ ∈ IRn−1) and u > 0 on {x = 1}. By Corollary 2.3, there exists a
dimensional constant c1 > 0 such that u(x, y) > 1/2 if |x − x̃| < c1. Since
the Courant nodal domain theorem [CH, p.452] implies that Ω+ and Ω− are
connected, u > 1/2 in {x > x̃− c1}.

On the other hand, since

∫

Ω−

u− =

∫

Ω+

u+, Lemma 2.3 implies −minu ≥
c2 for some dimensional constant c2 > 0. Hence we obtain Corollary 2.5 by
a similar reasoning for u− as in u+.

3 ODE eigenvalue estimates

In this section we prove several lemmas on ODE eigenvalue estimates, which
will be applied to the one-dimensional eigenfunction φ1 in section 4. In
particular Lemma 3.5 will be used to locate the nodal set in section 4,
and Lemma 3.6 yields the bound on the width of nodal set. The proof
for Lemmas 3.1, 3.2, 3.3 and 3.4 are parallel to those of the corresponding
lemmas in [J1]. The only difference in the proof is that, instead of the
concavity of the height of the cross-section h(x) for n = 2, we have the
concavity of w1/n−1(x) by the Brunn-Minkowski inequality for the volume
of cross-section w(x).
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Lemma 3.1. For a ≤ 1/2,

inf
{φ:φ(a)=0}

∫ a
0 φ

′(x)2w(x)dx
∫ a
0 φ(x)2w(x)dx

≥ 1

2n−2a2
.

Proof. The proof is the same as that of Lemma 4.2 of [J1], using the fact
that w(x) ≤ 2n−1w(t) for 0 ≤ x ≤ t ≤ a.

Lemma 3.2. There exists a constant C > 0 depending on n such that

inf
{φ:φ(a)=0}

∫ b
a φ

′(x)2w(x)dx
∫ b
a φ(x)2w(x)dx

≤ C

(b− a)2
.

Proof. Take a test function φ(x) = x. We need to show that

∫ 1

0
w(x)dx ≤ C

∫ 1

0
x2w(x)dx,

where C depends on n. Multiply w by a constant so that
∫ 1
0 w

1/(n−1)(t)dt =

1. Due to the normalization and the concavity of w1/(n−1), the arguments
in the proof of Lemma 4.3 in [J1] yield that

∫ 1

x
w1/(n−1)(t)dt ≥ (1 − x)2 for 0 ≤ x ≤ 1.

By Hölder inequality,

(

∫ 1

x
w(t)dt)1/(n−1)(1 − x)(n−2)/(n−1) ≥

∫ 1

x
w1/(n−1)(t)dt ≥ (1 − x)2,

and thus W (x) :=
∫ 1
x w(t)dt ≥ (1 − x)n. Therefore by integration by parts,

∫ 1

0
x2w(x)dx = −

∫ 1

0
x2W ′(x)dx =

∫ 1

0
2xW (x)dx

≥
∫ 1

0
2x(1 − x)ndx = 2/(n + 1)(n + 2),

where the second inequality holds because x2W (x) = 0 for x = 0, 1.
On the other hand, since w1/(n−1)(t) is concave with w1/n−1(0), w1/n−1(1) ≥

0, the graph of w1/(n−1)(t), 0 ≤ t ≤ 1 is above the triangle generated by
(0, 0), (1, 0) and (t0, w

1/n−1(t0)) where w(t0) = maxw. It follows that

∫ 1

0
w(t)dt ≤ w(t0) ≤ (2

∫ 1

0
w1/(n−1)(t)dt)n−1 = 2n−1
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and our lemma holds with C = C(n) =
2n

(n + 1)(n + 2)
.

Lemma 3.3. Let s1 be the zero point of φ1 given in (1.4). Then there exist
constants c1 > 0 and c2 > 0 depending on n such that

c1 < s1 < c2.

Proof. The lemma follows from Lemmas 3.1, 3.2 and the proof of Lemma
4.4 in [J1].

For a ∈ [0, 1], define

E[a, 1] = inf
{φ:φ(a)=0}

∫ 1
a φ

′(x)2w(x)dx
∫ 1
a φ(x)2w(x)dx

.

Lemma 3.4. Suppose that c0 ≤ a ≤ 1− c0 for some 0 < c0 < 1. Then there
exists a constant C > 0 depending on n and c0 such that

(∂/∂a)E[a, 1] ≥ C.

Proof. Normalize w so that

max
0≤x≤N

w(x) = 1. (3.1)

By concavity of w1/(n−1) and ( 3.1), w1/(n−1)(c0) ≥ c0. Let φ be the unique
nonnegative minimizer for E[a, 1] with the normalization

∫ 1

a
φ(x)2w(x)dx = 1. (3.2)

Following the proof of Lemma 3.4 in [J1], we only need to prove that

|φ(x)| ≤ CEn for a ≤ x ≤ 1, (3.3)

where E = E[a, 1] and C is a constant depending on n and c0.
Observe that, since φ satisfies −(wφ′)′ = Ewφ and φ′(1) = 0,

|wφ′|(x) ≤ |
∫ 1

x
Ew(t)φ(t)dt| (3.4)

≤ E(

∫ 1

x
φ2(t)w(t)dt)1/2(

∫ 1

x
w(t)dt)1/2
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In particular, (3.1) and (3.2) imply that |wφ′| ≤ E for a ≤ x < 1. Since
φ(a) = 0, we have

φ(t) ≤ E

∫ t

a

ds

w(s)
. (3.5)

On the other hand, by concavity of w1/n−1(t), for a ≤ s ≤ t ≤ 1,
w1/n−1(s) is above the line l(s) = αs+β connecting (c0, c0) and (t, w1/n−1(t)).
Without loss of generality, we may assume that c0 > w1/n−1(t) and α < 0
(Other cases are better.) For n ≥ 3

∫ t

a

ds

w(s)
≤

∫ t

c0

ds

(αs + β)n−1
≤ C

(αt+ β)n−2
=

C

w(n−2)/n−1(t)
. (3.6)

Hence by (3.4), (3.5) and (3.6)

|φ′(x)| ≤ E

w(x)

∫ 1

x
w(t)φ(t)dt

≤ E2

w(x)

∫ 1

x
w(t)(

∫ t

a

1

w(s)
ds)dt

≤ CE2

w(x)

∫ 1

x
w1/(n−1)(t)dt

≤ CE2 (1 − x)

w(n−2)/(n−1)(x)

≤ CE2 1

w(n−3)/(n−1)(x)
(3.7)

where the fourth and fifth inequalities follow respectively from

w1/(n−1)(t) ≤ C(n)w1/(n−1)(x) for a ≤ x ≤ t ≤ 1 (3.8)

and
w1/(n−1)(x) ≥ min{1 − x, c0} for a ≤ x ≤ 1. (3.9)

(3.8) and (3.9) are due to the concavity of w1/(n−1) and the normalization
(3.1). (For (3.8), see Remark 4.1 (b) in [J1].)

(3.7) and (3.8) yield that

|φ(x)| ≤
∫ x

a
|φ′(t)|dt ≤ C1E

2

w(n−3)/(n−1)(x)
for a ≤ x ≤ 1, (3.10)

where C1 is a constant depending on n and c0. We go back to the first
inequality of (3.7) and apply (3.10) and then (3.8) and (3.9) to obtain

|φ′(x)| ≤ C1E
2

w(x)

∫ 1

x
w(t)2/(n−1)dt ≤ C2E

3

w(x)(n−4)/(n−1)
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where C2 is a dimensional constant. Now by similar reasoning as in (3.10),
the improved estimate on |φ| holds:

|φ(x)| ≤ C3E
n

w(x)(n−4)/(n−1)
.

We repeat the above process (n − 4) more times to obtain |φ(x)| ≤
C(n)En.

Lemma 3.5. Let φ1 and s1 be given as in (1.4) and suppose N = 1. If φ
is a function on (0, 1) such that φ(s′1) = 0 and

∫ 1
s′
1

(φ′)2wds
∫ 1
s′
1

φ2wds
≤ (1 +Mǫ)

∫ 1
s1

(φ′1)
2wds

∫ 1
s1
φ2

1wds
,

then s′1 ≤ s1 + Cǫ for some constant C depending on n and M .

Proof. The lemma follows from Lemmas 3.3, 3.4 and from the fact

E[s1, 1] = µ1 =

∫ 1
s1

(φ′1)
2wds

∫ 1
s1
φ2

1wds
.

Next we show that if the energy associated with φ is bounded by (1 +
Mǫ)µ1, then sup |φ| is bigger than ǫ on any interval of length Cǫ.

Lemma 3.6. Let N = 1 and µ1 be given in (1.4). Suppose φ(s) is a function
on (0, 1) such that

∫ 1
0 φwds = 0, sup |φ| = 1, sup |φ′| ≤ C1 and

µ1 ≤
∫ 1
0 (φ′)2wds
∫ 1
0 φ

2wds
≤ (1 +Mǫ)µ1. (3.11)

If for some 0 < a < b < 1 and C2 > 0

sup
[a,b]

|φ| ≤ 2C1ǫ and |
∫ 1

a
φwds| ≥ C2

∫ 1

0
wds,

then b− a < Cǫ for some C > 0 depending on C1, C2 and M .
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Proof. Let φ1 and s1 be as given in (1.4). Suppose that

sup
[a,b]

|φ| ≤ 2C1ǫ and b = a+Cǫ,

for some a and sufficiently large C > 0. Without loss of generality we may
assume

a ≥ s1 +Cǫ/4 or b ≤ s1 − Cǫ/4. (3.12)

( If a < s1 < b, then s1 − a ≥ Cǫ/2 or b − s1 ≥ Cǫ/2. If b − s1 ≥ Cǫ/2,
replace a with (s1 + b)/2. If s1−a ≥ Cǫ/2, replace b with (s1 +a)/2. Lastly
if a < b < s1 or s1 < a < b, by replacing a or b with (a+b)/2, we get (3.12).)

Changing the sign of φ if needed, we also set

|
∫ 1

a
φwds| =

∫ 1

a
φwds.

Define

Aφ =

∫ a
0 φ

2wds
∫ 1
0 φ

2wds
, Bφ =

∫ 1
a φ

2wds
∫ 1
0 φ

2wds
, Aφ +Bφ = 1. (3.13)

By our hypothesis,
∫ 1
0 (φ′)2wds
∫ 1
0 φ

2wds
= Aφ

∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
+Bφ

∫ 1
a (φ′)2wds
∫ 1
a φ

2wds
≤ (1 +Mǫ)µ1.

If C is sufficiently large, then Lemma 3.4 and above inequality imply that
∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
≤ µ1 ≤

∫ 1
a (φ′)2wds
∫ 1
a φ

2wds
. (3.14)

We will construct a test function ψ such that
∫ 1
0 ψwds = 0 and

(1 +Mǫ)

∫ 1
0 (ψ′)2wds
∫ 1
0 ψ

2wds
<

∫ 1
0 (φ′)2wds
∫ 1
0 φ

2wds
, (3.15)

which contradicts our hypothesis.
First, construct a continuous function ψ̃ such that ψ̃ = φ on the left

interval [0, a] and ψ̃ = φ + C2(b − a)/10 on the left interval [b, 1]. For
α = C2/10, let

ψ̃(s) =























φ(s) for 0 ≤ s ≤ a

φ(s) + α(s − a) for a ≤ s ≤ b = a+ Cǫ

φ(s) + α(b− a) for b ≤ s ≤ 1.
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¿From a straightforward calculation, it follows that the energy of ψ̃ on [a, 1]
gets smaller than the energy of φ on [a, 1] by some amount. More precisely

∫ 1
a ψ̃

′2wds
∫ 1
a ψ̃

2wds
≤ (1 − C0Cǫ)

∫ 1
a φ

′2wds
∫ 1
a φ

2wds
(3.16)

for some C0 > 0 depending on C1 and C2.
Next we perturb ψ̃ and get ψ such that

∫ 1
0 ψwds = 0 and will show that

ψ satisfies (3.15). Set

ψ(s) =







ψ̃(s) = φ(s) for 0 ≤ s ≤ a

β(ψ̃(s) − φ(a)) + φ(a) for a ≤ s ≤ 1

where β > 0 is chosen to satisfy
∫ 1
0 ψwds = 0, i.e.,

∫ 1
a ψwds =

∫ 1
a φwds.

Then

β = 1 − α|b− a|
∫ 1
a wds

∫ 1
a φwds

+O(ǫ2).

Since
∫ 1

a
φwds ≤

√

∫ 1

a
φ2wds

√

∫ 1

a
wds, (3.17)

it follows that

∫ 1

a
ψ̃2wds ≤ (1 + 2α|b− a|

∫ 1
a wds

∫ 1
a φwds

+C3ǫ
2)

∫ 1

a
φ2wds.

Therefore
∫ 1

a
ψ2wds ≤ (1 + C3ǫ

2)

∫ 1

a
φ2wds

and
Bψ ≤ (1 + C3ǫ

2)Bφ (3.18)

where Bψ is defined as in (3.13) (Recall that Aψ = 1 −Bψ). Therefore,
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∫ 1
0 (ψ′)2wds
∫ 1
0 ψ

2wds
= Aψ

∫ a
0 (ψ′)2wds
∫ a
0 ψ

2wds
+Bψ

∫ 1
a (ψ′)2wds
∫ 1
a ψ

2wds

= Aψ

∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
+Bψ

∫ 1
a (ψ′)2wds
∫ 1
a ψ

2wds

≤ (1 + C3ǫ
2)(Aφ

∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
+Bφ

∫ 1
a (ψ′)2wds
∫ 1
a ψ

2wds
)

≤ (1 + C3ǫ
2)(Aφ

∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
+Bφ(1 − C0Cǫ)

∫ 1
a (φ′)2wds
∫ 1
a φ

2wds
)

≤ Aφ

∫ a
0 (φ′)2wds
∫ a
0 φ

2wds
+Bφ(1 − C0Cǫ)

∫ 1
a (φ′)2wds
∫ 1
a φ

2wds
+ C3ǫ

2(1 +Mǫ)µ1

≤
∫ 1
0 (φ′)2wds
∫ 1
0 φ

2wds
−BφC0Cǫ ·

∫ 1
a (φ′)2wds
∫ 1
a φ

2wds
+ C3ǫ

2(1 +Mǫ)µ1

where we obtain the first inequality from Aφ+Bφ = Aψ+Bψ = 1, (3.18) and
(3.14), the second inequality from (3.16), the third inequality from (3.11).
From the hypothesis

∫ 1
a φwds ≥ C2

∫ 1
0 wds and (3.17), one can observe that

Bφ is bounded below by a constant depending on C2. Hence if we choose a
sufficiently large C depending on C1, C2 and M , and if ǫ is sufficiently small
compared to C, then (3.15) holds.

In the next lemma, we show the nondegeneracy of φ1 near the zero s1.

Lemma 3.7. Let φ1 be the first nonzero eigenfunction of (1.4) with N =
1 and let s1 be the zero of φ1 - Note that c1 ≤ s1 ≤ c2 by Lemma 3.3.
Normalize φ1 such that φ1 > 0 on (s1, 1] and maxφ1 = 1. Then φ′1 ≥ 0 on
[0, 1]. Moreover there exists a dimensional constant c = c(n) such that

φ′1 ≥ c(n) on [s1 − c1/2, s1 + (1 − c2)/2].

Proof. By the normalization φ1 > 0 on (s1, 1] and φ1 < 0 on [0, s1). Hence
from (1.4) we observe that wφ′1 has its maximum at x = s1 and wφ′1 is
increasing on [0, s1] and decreasing on [s1, 1]. From the boundary condition
it follows that φ′1 ≥ 0 on [0, 1] and thus φ1(1) = 1. We will only prove that
φ′1 ≥ c(n) on [s1, s1 + (1 − c2)/2]: a parallel argument leads to the rest of
the claim.
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Observe that from (1.4) we have

φ′1(x) =

∫ 1
x µ1w(t)φ1(t)dt

w(x)
. (3.19)

We will use (3.19) to find lower bounds on φ′ respectively near t = 1
and then near t = s1, using that wφ′ has its maximum at s1. Note that for
c1 ≤ x ≤ t ≤ 1, the concavity of w1/(n−1)(x) implies

(1 − t)w1/(n−1)(x) ≤ w1/(n−1)(t). (3.20)

(See Remark 4.1 (a) in [J1].) Thus (3.8) and (3.20) imply that

C1(1 − x)nw(x) ≤
∫ 1

x
w(t)dt ≤ C2(1 − x)w(x) (3.21)

where C1 and C2 are positive dimensional constants. Let φ1(s2) = 1/2 for
s2 ∈ [s1, 1]. Then by (3.19) and (3.21), it follows that for x ∈ [s2, 1],

C1µ1(1 − x)n+1 ≤ φ′1(x) ≤ C2µ1(1 − x). (3.22)

Since φ1(1) = 1, (3.22) implies that φ1(x) ≥ 1 − C3µ1(1 − x) ≥ 1/2 if
x ∈ [A, 1] where C3 and A are dimensional constants. Therefore s2 ≤ A and

φ′1(s2) ≥ C1µ1(1 − s2)
n+1 ≥ C4, (3.23)

where C4 is a dimensional constant. Now we have, for s1 ≤ t ≤ s2,

φ′1(t) ≥
w(s2)

w(t)
φ′1(s2) ≥ C5φ

′
1(s2) ≥ C6

where the second inequality is due to t ≤ s2 < A and the last from (3.23).
For t ∈ [s1, s1 + (1 − c2)/2], (3.22) implies φ′1(t) ≥ C7 and our claim is
proved.

4 A new coordinate system

In this section, we define a new coordinate system for Ω satisfying certain
properties, which will enable us to use Fubini’s Theorem when we construct
a one-dimensional test function with small energy. For the proof of the main
lemma (Lemma 4.1), first we will prove Lemma 4.2 for general dimensions.
Then we construct in detail coordinate systems for n = 3 and n = 4 sat-
isfying the properties given in the main lemma. We will then discuss the
general dimension based on the three and four-dimensional cases.
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Lemma 4.1. Let Ω be a bounded convex domain in IRn satisfying (1.2) and
(1.3). Suppose N = 1. Then there exists a coordinate system (s, t1, ..., tn−1) ∈
[0, 1]×B1(0) to (x, y1, ..., yn−1) ∈ Ω such that the following statements hold.

(I) s =x

(II) |∂syj| ≤ Cǫmax{1/s, 1/(1 − s)} for a dimensional constant C.

(III) the mapping f : (s, t1, ..., tn−1) → (s, y1, ..., yn−1), has a constant Ja-
cobian anw(s), where w(s) is the volume of cross-section Ω(s) and an
is a dimensional constant.

Here we denote by ∂syj = ∂yj/∂s, the partial derivative of yj with t1,...,
tn−1 held fixed. For the proof of Lemma 4.1, we need the following lemma.

Lemma 4.2. Let D be a planar bounded convex domain. Suppose (0, ǫ) ∈
∂D, (0,−C1ǫ) ∈ ∂D (C1 > 0), and (±ǫ, 0) ∈ D. Further suppose that the
length of projection of D on the y-axis is less than C2ǫ for some C2 > 0. If

(r cos θ, r sin θ) ∈ ∂D and (s cos(θ − ∆θ), s sin(θ − ∆θ)) ∈ ∂D,

then there exists C depending on C1 and C2 such that

|r − s| ≤ Cr2∆θ/ǫ

for sufficiently small ∆θ.

Proof. Suppose 0 ≤ θ ≤ π/4. Consider a line l passing through (0, ǫ) and
(r cos θ, r sin θ). Let

(s̃ cos(θ − ∆θ), s̃ sin(θ − ∆θ)) ∈ l

and
(s cos(θ − ∆θ), s sin(θ − ∆θ)) ∈ ∂D.

Since Ω is convex, s ≤ s̃. The equation for l is y =
r sin θ − ǫ

r cos θ
x+ ǫ and thus

s̃ sin(θ − ∆θ) =
r sin θ − ǫ

r cos θ
s̃ cos(θ − ∆θ) + ǫ.

If ∆θ is sufficiently small,

s ≤ s̃ ≤ r(1 + 2(
r cos θ

ǫ
+
r sin θ tan θ

ǫ
)∆θ) ≤ r(1 + C

r∆θ

ǫ
).
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On the other hand, if l̃ is a line passing through (0,−C1ǫ) and (r cos θ, r sin θ),
by a similar reasoning

r ≤ s(1 + C
s∆θ

ǫ
)

for C depending on C1 and the proof is done for 0 ≤ θ ≤ π/4.
Next, suppose π/4 ≤ θ ≤ π/2. From the hypothesis on Ω, the angle

between the tangent line to ∂Ω at (r cos θ, r sin θ) and the line connecting
the origin to (r cos θ, r sin θ) is bounded below by an angle depending on C2.
Hence,

|s− r| ≤ Cr∆θ ≤ C
r2∆θ

ǫ

for some C depending on C2, where the second inequality follows from r ≤
Cǫ.

Using Lemma 4.2, we prove Lemma 4.1.
Proof of Lemma 4.1. Without loss of generality, we may assume that

(0, 0, ..., 0), (1, 0, ..., 0) ∈ ∂Ω,

since if l = {(x, l1(x), ..., ln−1(x)) : 0 ≤ x ≤ 1} is a line segment connecting a
point on Ω̄∩{x = 0} to a point on Ω̄∩{x = 1}, then 1 ≤ length(l) ≤ 1+Cǫ
and |l′j | ≤ Cǫ for 1 ≤ j ≤ n− 1 and C depending on n.

Denote ai = 2−i, bi = 1 − 2−i (a1 = b1). For i ≥ 1, set

Ii = (ai+1, ai), I−i = (bi, bi+1).

With this notation, the condition (II) of Lemma 4.1 becomes equivalent to
the following statement:

(II ′) |∂syj| ≤ C2iǫ for s ∈ I±i

which will be verified in the proof instead of (II).
Recall that Ω(s) = Ω ∩ {x = s}. Denote by h1(Ω(x)), the minimum

length of projection of Ω(x) ⊂ IRn−1 on a line l1 ⊂ IRn−1, and denote by
hj(Ω(x)), j = 2, ..., n − 1, the minimum length of projection of Ω(x) on a
line lj which is perpendicular to lk for 1 ≤ k ≤ j − 1 (See Figure 1). Since
Ω is convex, each Ωi := Ω ∩ {x ∈ Ii} has orthonormal basis

ei1, ei2, ..., ein−1 ∈ IRn−1
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such that for x ∈ Ii,














|pei1
(Ω(x))| ≈ h1(Ω(x)) ≈ h1(Ω(ai))

·
·
|pein−1

(Ω(x))| ≈ hn−1(Ω(x)) ≈ hn−1(Ω(ai))

(4.1)

where |peij
(Ω(x))| denotes the length of projection of Ω(x) on a line parallel

to eij . Denote

ǫi1 = h1(Ω(ai)), ..., ǫin−1 = hn−1(Ω(ai)),

so that Ω(x) has dimensions comparable to ǫi1, ..., ǫin−1 for x ∈ Ii where
ǫi1 ≤ ǫi2 ≤ ... ≤ ǫin−1.

For a domain D ∈ IRn, define the center of mass of D as

1

|D|

∫

D
xdx,

where |D| denotes the volume of D. Let (x,L(x)) be the curve in Ω, that
is linear on each interval I±i and equal to the center of mass of the cross-
section at each endpoints of Ii. In other words, L(ai) is the center of mass
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of Ω(ai), and similarly for bi. On Ii, denote

L(x) = L1(x)ei1 + ...+ Ln−1(x)ein−1, x ∈ Ii.

Since the line segment connecting (0, 0, ..., 0) and (1, 0, ..., 0) is contained in
Ω, (ai, 0, ..., 0) ∈ Ω(ai) and (ai+1, 0, ...0) ∈ Ω(ai+1), which imply

|Lj(ai) − Lj(ai+1)| ≤ |Lj(ai)| + |Lj(ai+1)| ≤ Cǫij

and hence
|L′
j(x)| ≤ C2iǫij for x ∈ Ii. (4.2)

4.1 n = 3

First, when n = 3, we define a new coordinate system (s, t1, t2) ∈ [0, 1] ×
B1(0) to (x, y, z) ∈ Ω as follows.

(i) x = s, (y, z) = f(s, t1, t2)

(ii) f(s, 0, 0) = L(s), f(s, 1, 0)− f(s, 0, 0) is parallel to ei1 for every s ∈ Ii

(iii) the mapping f : (t1, t2) → (y, z), with s held fixed, is linear on every
line segment from (0, 0) to ∂B1(0)

(iv) the mapping f : (t1, t2) → (y, z), with s held fixed, has a constant
Jacobian w(s)/π, where w(s) is the area of Ω(s).

Note that with s held fixed, f(t1, t2) is defined so that B1(0) ∩ {0 ≤ θ ≤ a}
is mapped onto a sector Ω(s)∩{0 ≤ ∠(ei1, (y1, y2)−L(s)) ≤ b} with volume
V satisfying

a

2π
=

V

|Ω(s)| .

(Here, ∠(v1, v2) denotes the angle between v1 and v2, that is

∠(v1, v2) = arccos(
(v1, v2)

|v1||v2|
).)

Observe that if g1(s) is a function on Ii such that

{(s, g1(s)ei1) : s ∈ Ii} ⊂ ∂Ω,

then by the convexity of Ω,

|g′1(s)| ≤ C|g1(s)|/|s| ≤ C2iǫi1 for s ∈ Ii. (4.3)
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Similarly, if {(s, g2(s)ei2) : s ∈ Ii} is a curve on ∂Ω, then

|g′2(s)| ≤ C2iǫi2 for s ∈ Ii. (4.4)

(4.3) and (4.4) imply that if x ∈ Ii and h > 0 is sufficiently small,

|Ω(x) − Ω(x+ h)| ≤ C2ihǫi1ǫi2 (4.5)

where

Ω(x) − Ω(x+ h) := (Ω(x) ∪ Ω(x+ h)) − (Ω(x) ∩ Ω(x+ h)).

Now to prove (II′) for x ∈ Ii, fix (t1, t2) ∈ ∂B1(0). Since ∇L(x) satisfies
(4.2) and ǫij ≤ ǫ, we may assume L(x) = L(x+h) without loss of generality.
Denote

θx = ∠(ei1, f(x, t1, t2) − L(x))

and
rx = |f(x, t1, t2) − L(x)|.

Change the coordinates in IR2 so that L(x) = L(x+ h) = 0 and

f(x, t1, t2) = (rx cos θx, rx sin θx).

Fix a sufficiently small h > 0, and denote

f(x+ h, t1, t2) = (rx+h cos θx+h, rx+h sin θx+h).

Since f has a constant Jacobian, (4.5) implies

r2x|θx+h − θx| ≤ C2ihǫi1ǫi2 (4.6)

since

|Ω(x) ∩ {0 ≤ θ ≤ θx} − Ω(x+ h) ∩ {0 ≤ θ ≤ θx}| ≤ |Ω(x) − Ω(x+ h)|
≤ C2ihǫi1ǫi2.

Let s > 0 be a number such that (s cos θx+h, s sin θx+h) ∈ ∂Ω(x). Then
Lemma 4.2 implies

|s− rx| ≤ Cr2x|θx+h − θx|/ǫi1, (4.7)

which yields

|(rx cos θx, rx sin θx) − (s cos θx+h, s sin θx+h)| ≤ Crx|θx+h − θx| + |s− rx|
≤ C2ihǫi2
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where the last inequality follows from (4.6), (4.7) and ǫi1 ≤ Crx.
On the other hand, since

A := (s cos θx+h, s sin θx+h) and B := (rx+h cos θx+h, rx+h sin θx+h)

are points on ∂Ω(x) and ∂Ω(x+ h) with the same angle from ei1, a similar
argument as in (4.3 ) and (4.4) yields

|A−B| ≤ C2ihs ≤ C2ihǫi2.

Hence we conclude

|f(x, t1, t2) − f(x+ h, t1, t2)|

= |(rx cos θx, rx sin θx) − (rx+h cos θx+h, rx+h sin θx+h)|

≤ C2ihǫi2 ≤ C2ihǫ

and this implies (II ′) by sending h to 0.

4.2 n = 4

Next we consider n = 4. Recall that for x ∈ Ii, peij
(Ω(x)) ≈ ǫij with

ǫi1 ≤ ǫi2 ≤ ǫi3, and

(x,L(x)) = (x,L1(x)ei1 + L2(x)ei2 + L3(x)ei3)

is a line segment connecting the center of mass of Ω(ai) to that of Ω(ai+1)
on Ii. To define a new coordinate system, we first divide Ω(x) into two parts
with the same volume as follows. Let L̃3(x) be a number such that

|{y1ei1 + y2ei2 + y3ei3 ∈ Ω(x) : y3 ≥ L̃3(x)}| = |Ω(x)|/2.

Let (r, θ1, θ2) be a polar coordinate in Ω(x) with r = 0 at

L̃(x) := L1(x)ei1 + L2(x)ei2 + L̃3(x)ei3. (4.8)

Let gx be a density function on ∂Ω(x) with total mass 1, i.e., for any
0 ≤ a1, a2, b1, b2 ≤ 2π

|{(r, θ1, θ2) ∈ Ω(x) : a1 ≤ θ1 ≤ b1, a2 ≤ θ2 ≤ b2}|

= |Ω(x)|
∫

∂Ω(x)∩{aj≤θj≤bj , j=1,2}
gxdθ1dθ2. (4.9)
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(Note that

gx(y) = C
r(y)3

|Ω(x)| , r(y) = |y − L̃(x)|

where C > 0 is a dimensional constant.)
Now we construct a coordinate system (s, t1, t2, t3) ∈ [0, 1] × B1(0) to

(x, y1, y2, y3) ∈ Ω as follows.

(i) x = s, (y1, y2, y3) = f(s, t1, t2, t3)

(ii) f(s, 0, 0, 0) = L̃(s), f(s, 1, 0, 0)− f(s, 0, 0, 0) is parallel to ei1 for every
s ∈ Ii

(iii) the mapping f : (t1, t2, t3) → (y1, y2, y3), with s held fixed, is linear on
every line segment from (0, 0, 0) to ∂B1(0)

(iv) the mapping f : (t1, t2, t3) → (y1, y2, y3) satisfies the following proper-
ties

(a) f maps the half sphere

Bright
1 (0) := {(t1, t2, t3) ∈ B1(0) : t3 ≥ 0}

onto

Ωright(x) := {y1ei1 + y2ei2 + y3ei3 ∈ Ω(x) : y3 ≥ L̃3(x)}.

(b) f maps the half cone

B(θ) := {t ∈ Bright
1 (0) : ∠(t, e1) ≤ θ}

onto

Ω(x, φ(x, θ)) := {y ∈ Ωright(x) : ∠(−→y , ei1) ≤ φ(x, θ)}

where −→y is a vector from L̃(x) to y, and φ(x, θ) is the angle such
that

|B(θ)|
|Bright

1 (0)|
=

|Ω(x, φ(x, θ))|
|Ωright(x)| .

(c) Let B̃(θ) = {t ∈ ∂Bright
1 (0) : ∠(t, e1) = θ} and

Ω̃(x, φ(x, θ)) = {y ∈ ∂Ωright(x) : ∠(−→y , ei1) = φ(x, θ)}.
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Then the mapping f : B̃(θ) → Ω̃(x, φ(x, θ)), with s and θ held
fixed, satisfies

∫

f(A)
gx

∫

Ω̃(x,φ(x,θ))
gx

=
|A|

|B̃(θ)|
(4.10)

for any A ⊂ B̃(θ).

(d) f satisfies parallel properties for Bleft(0) := B1(0) − Bright
1 (0)

and Ωleft(x) := Ω(x) − Ωright(x).

(f might be discontinuous on the intersection of Bright(0) and Bleft(0).)
The conditions (i)-(iii) are parallel to those when n = 3, and the only

difference between n = 3 and n = 4 is the condition (iv). In fact, when
n = 3, there is a unique map f : (s, t1, t2) → (y, z) with a constant Jacobian
on each cross sections, if we fix one direction ei1 (See condition (ii)). However
when n = 4, there are infinitely many maps f : (s, t1, t2, t3) → (y1, y2, y3)
with a constant Jacobian, even if we fix any two directions. In other words
when n = 4, the properties stated for three dimensional case do not suffice to
construct a function f which satisfies (II′). Hence when n = 4, we construct
a (unique) map f with a constant Jacobian, under the constraint (iv) that
f maps a two dimensional surface in B1(0) with a fixed angle θ from e1, to
a two dimensional surface in Ω(x) with a fixed angle φ(x, θ) from ei1. Then
the map f , with θ fixed, is two-dimensional and area-preserving with respect
to the normalized density function gx/|

∫

gx|. Hence we can proceed as in
the case n = 3. Here we divide Ω into two parts Ωright(x) and Ωleft(x), so
that the shorter arcs of

{y ∈ Ω(x) : ∠(y, ei1) = φ(x, θ)}

are mapped to the shorter arcs of

{y ∈ Ω(x̃) : ∠(y, ei1) = φ(x̃, θ)}

by fx̃ ◦ f−1
x , where fx and fx̃ denote the map f with s = x and s = x̃,

respectively.
Now to prove (II′), let x ∈ Ii and fix a sufficiently small h > 0. Translate

Ω so that (x, L̃(x)) = 0. Let z1 = a1ei1 + a2ei2 and z2 = b1ei1 + b2ei3 be
points on

Ω̃(x, φ(x, θ))

(See Figure 2).
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In other words, z1 ∈ ∂Ω(x) is a point on ei1ei2 plane such that the angle
between ei1 and z1 equals φ(x, θ). Similarly, z2 ∈ ∂Ω(x) is the point on
ei1ei3 plane such that the angle between ei1 and z2 equals φ(x, θ). Denote
by δ1, the distance from z1 to ei1-axis and by δ2, the distance from z2 to ei1-
axis. Since ǫi1 ≤ ǫi2 ≤ ǫi3, one can observe that δ1 ≤ Cδ2 for a dimensional
constant C. Also denote r1 = |z1| and r2 = |z2|, then r1 ≤ Cr2. Observe
that since Ω(x, φ(x, θ)) is convex,

ǫi1δ1δ2/C ≤ |Ω(x, φ(x, θ))| ≤ Cǫi1δ1δ2 (4.11)

for a dimensional constant C.
On the other hand, by similar arguments as in (4.3) and (4.4)

|Ω(x) − Ω(x+ h)| ≤ C2ih|Ω(x)| (4.12)

for x ∈ Ii and a small h > 0. This implies

ǫi1ǫi2|L̃3(x) − L̃3(x+ h)| ≤ C2ih|Ω(x)|

and thus

|L̃′
3(x)| ≤ C2iǫi3, |L′

1(x)| ≤ C2iǫi1, |L′
2(x)| ≤ C2iǫi2 (4.13)
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where the second and third inequalities follow by the same argument as in
(4.2). Recall that by definition of φ(x, θ) and φ(x+ h, θ),

|Ω(x, φ(x, θ))|
|Ω(x)| =

|B(θ)|
|B1(0)|

=
|Ω(x+ h, φ(x+ h, θ))|

|Ω(x+ h)| .

The above equality and (4.12) imply

||Ω(x, φ(x, θ))| − |Ω(x+ h, φ(x + h, θ))|| ≤ C2ih|Ω(x, φ(x, θ))|. (4.14)

To simplify notations, denote

Ω0 = Ω(x, φ(x, θ)), Ω2 = Ω(x+ h, φ(x + h, θ))

and let Ω1 be an intermediate region such that

Ω1 = Ωright(x) ∩ {y : ∠(−→y , ei1) ≤ φ(x+ h, θ)}.

(Note that Ω1 is an intermediate region in the sense that Ω0 and Ω1 are
contained in Ω(x), but the angle from ǫi1 to ∂Ω1 is the same as the angle
from ǫi1 to ∂Ω2.) Then by similar reasoning as in (4.3) and (4.4), and by
(4.13)

|Ω1 − Ω2| ≤ C2ih|Ω1| ≤ C2ih|Ω0|
if h is sufficiently small so that |φ(x, θ)−φ(x+h, θ)| is small enough. Hence

|Ω0 − Ω1| = ||Ω0| − |Ω1|| ≤ ||Ω0| − |Ω2|| + ||Ω1| − |Ω2||
≤ ||Ω0| − |Ω2|| + |Ω1 − Ω2|
≤ C2ih|Ω0|
≤ C2ihǫi1δ1δ2

where the first inequality is due to the fact that either Ω0 ⊂ Ω1 or Ω1 ⊂ Ω0,
the third inequality follows from (4.14), and the last equality follows from
(4.11). Denote

∆φ = |φ(x+ h, θ) − φ(x, θ)|
then by the above inequality,

|∆φ|r22δ1 ≤ |Ω0 − Ω1| ≤ C2ihǫi1δ1δ2

and which yields
|∆φ| ≤ C2ihǫi1δ2/r

2
2. (4.15)
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Fix t = (t1, t2, t3) ∈ ∂B1(0). Without loss of generality, we may assume
t2, t3 ≥ 0. Denote by z and w, the points on Ω(x) and Ω(x+ h) such that

z = f(x, t), w = f(x+ h, t).

(Note that ∠(ei1,
−→z ) = φ(x, θ) and ∠(ei1,

−→w ) = φ(x + h, θ) for the angle θ
between e1 and t.) For the proof of (II′), it suffices to show

|z − w| ≤ C2ihǫi3 ≤ C2ihǫ. (4.16)

To prove (4.16), introduce intermediate points z1 and z2 on ∂Ω(x) such
that

∠(ei1,
−→z1) = ∠(ei1,

−→z ), ∠(ei2,
−−−→
p(z1)) = ∠(ei2,

−−→
p(w))

and
∠(ei2,

−−−→
p(z2)) = ∠(ei2,

−−−→
p(z1)), ∠(ei1,

−→z2) = ∠(ei1,
−→w )

where p is a projection on the ei2ei3-plane. Using the bound (4.15) on ∆φ ,
Lemma 4.2 implies

|z1 − z2| ≤ C(r∆φ+ r2∆φ/ǫi1)

≤ C2ihδ2r
2/r22

≤ C2ihǫi3 (4.17)

where r = |z1 − L̃(x)|, the second inequality follows from ǫi1 ≤ Cr and the
last inequality follows from r ≤ Cr2 and δ2 ≤ Cǫi3. Moreover, since z2 and
w are points on Ω(x) and Ω(x + h) with the same angles from ei1 and ei2,
(4.13) and a similar argument as in (4.3) yield that

|z2 − w| ≤ C2ihǫi3.

Hence it suffices to prove |z − z̃| ≤ C2ihǫi3 for the proof of (4.16).
To simplify notations, denote

θ2(z) = ∠(ei2,
−−→
p(z))

where p is a projection on ei2ei3-plane. Also let

S0 = {y ∈ ∂Ω(x) : ∠(ei1, y) = φ(x, θ), 0 ≤ θ2(y) ≤ π},
S1 = {y ∈ ∂Ω(x) : ∠(ei1, y) = φ(x, θ), 0 ≤ θ2(y) ≤ θ2(z)},
Sh0 = {y ∈ ∂Ω(x+ h) : ∠(ei1, y) = φ(x+ h, θ), 0 ≤ θ2(y) ≤ π},
Sh1 = {y ∈ ∂Ω(x+ h) : ∠(ei1, y) = φ(x+ h, θ), 0 ≤ θ2(y) ≤ θ2(w)}.
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Then (4.10) implies
∫

S1

gx
∫

S0

gx

=

∫

Sh
1

gx+h

∫

Sh
0

gx+h

. (4.18)

We claim that the denominators in (4.18) are very close to each other, more
precisely,

|
∫

S0

gx −
∫

Sh
0

gx+h| ≤ C2ih

∫

Sh
0

gx.

To prove the claim, recall that

gx(y) = Cr(y)3/|Ω(x)|

where r(y) = |y − L̃(x)| and C is a dimensional constant. If y ∈ S0 and
y′ ∈ Sh0 are points satisfy θ2(y) = θ2(y

′), then

|gx(y) − gx+h(y
′)| ≤ |Cr(y)

3

|Ω(x)| − Cr(ỹ)3

|Ω(x)| | + C2ihgx(y)

= (|1 − r(ỹ)3

r(y)3
| + C2ih)gx(y)

≤ (
C2ihδ2r(y)

2

r22r(y)
+C2ih)gx(y)

≤ C2ihgx(y)

where the first inequality follows from (4.12), the second inequality follows
from a similar argument as in the second inequality of (4.17), and the last
inequality follows from δ2r(y) ≤ r22. Thus

|
∫

S0

gx −
∫

Sh
0

gx+h| ≤ C2ih

∫

Sh
0

gx

and due to (4.18)

|
∫

S1

gx −
∫

Sh
1

gx+h| ≤ C2ih

∫

S1

gx

= C2ih

∫

S1

r(y)3

|Ω(x)|

≤ C2ihr(z)

∫

S1

r(y)2

|Ω(x)|

≤ C2ihr(z)2r1
|Ω(x)| =

C2ihr2r1
|Ω(x)| (4.19)
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where r = r(z) = |z − L̃(x)|. Here the second inequality is from the fact
r(y) ≤ Cr(z) on S1 (See Figure 2). Thus

r3|θ2(z) − θ2(w)|
|Ω(x)| ≤ C|

∫

S1

gx −
∫

Sh
1

gx+h| ≤
C2ihr2r1
|Ω(x)| (4.20)

and which yields

∆θ2 := |θ2(z) − θ2(w)| ≤ C2ihr1/r. (4.21)

By applying Lemma 4.2 on ∂Ω(x, φ(x, θ)) with ǫ = r1, we get

|z − z1| ≤ C(r∆θ2 + r2∆θ2/r1)

≤ C2ihr

≤ C2ihǫi3. (4.22)

Combining (4.22) with the bounds on |z1−z2| and |z2−w|, (4.16) is proved.
Remark Observe that in the construction of f we divided Ω(x) into

Ωright(x) and Ωleft(x) in a way that any point y on

∂Ω(x) ∩ ∂Ωright(x) ∩ ∂Ωleft(x)

has the shortest distance from the center L̃(x) among the points on

{z ∈ ∂Ω(x) : ∠(ei1,
−→z ) = ∠(ei1,

−→y )}.

In fact, if the shorter arcs were not fixed by f , then our bound in (4.21)
would be C2ihr̃/r for some r̃ ≥ r1, which is not strong enough to obtain the
second inequality of (4.22).

4.3 n > 4

As in n = 4, in each Ii we fix orthonormal basis ei1, ..., ein−1 as before
(with ǫi1 ≤ ... ≤ ǫin−1) and construct one-to-one map f(s, t1, ..., tn−1) with
a constant Jacobian, under the constraint

f(s, ·) : B1(0) ∩ {tn−1 ≥ 0} → Ω(x) ∩ {yn−1 ≥ L̃n−1(x)},

and f(s, ·) maps the (n− 2)-dimensional surface

{t ∈ B1(0) : ∠(t, ek) = φk(y, θk)}

to
{y ∈ Ω(x) : ∠(x, eik) = φk(x, θk)}.
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Then with θ1, ..., θn−3 fixed, f is a one-to-one map between two-dimensional
surfaces, with shorter arcs (of length r1) being fixed, and area-preserving

with respect to the normalized density function
gx

|
∫

gx|
, where gx is a density

function on ∂Ω(x) ⊂ Rn−1 defined similarly as in (53).
Then parallel arguments as in n = 4 would yield the corresponding

inequality to (61):
|∆φk| ≤ C2ihǫi1δn−2/r

2
n−2

where
∆φk = φk(x, θk) − φ(x+ h, θk) and 1 ≤ k ≤ n− 3.

Thus we get (4.17) with z̃′ replaced by z̃′k and ǫi3 replaced by ǫin−1, where

∠(z̃, eik) = φk(x, θk), ∠(z̃k
′, eik) = φk(x+ h, θk)

and 1 ≤ k ≤ n− 3.
Similar arguments as in (4.20) would yield that

rn−1|θn−2(z) − θn−2(w)|
|Ω(x)| ≤ C|

∫

S1

gx −
∫

Sh
1

gx+h| ≤
C2ihrn−2r1

|Ω(x)| ,

which would yield (4.21) and thus (4.22) with ǫi3 replaced by ǫin−1. Com-
bining these inequalities as in n = 4, we obtain (II ′).

5 Proof of Theorem 1.1

Throughout the proof, all dimensional constants will be denoted by C.
We start with assuming that Ω has a smooth boundary - we will con-
sider the general case at the end of the proof. Normalize u and Ω so that
0 < −minu ≤ max u = 1 and N = 1. In the first part of the proof, the
difference between the first eigenvalues λ and µ of (1.1) and (1.4) will be
estimated by a bound Cǫ. From this bound, the nodal set will be located
in an x- interval of length Cǫ, which is also near the zero s1 of the first
eigenfunction φ1 of the corresponding ordinary differential equation (1.4).

Let (s, t1, ..., tn−1) be the new coordinate system constructed in Lemma 4.1.
Using Fubini’s Theorem with this new coordinate system, we can choose
(t̃1, ..., t̃n−1) such that

∫

Ω
|∇u|2 =

∫

[0,1]×B1(0)
|∇u|2anw(s)ds...dtn−1

≥
∫ 1

0
|∇u(s, f(s, t̃1, ..., t̃n−1))|2w(s)ds. (5.1)
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Based on (5.1), we will construct a one-dimensional test function ψ to
compare with φ1 as follows. Let k0 be the smallest integer such that 2−k0 ≤ ǫ
and let

Ji = [2−i−1, 2−i] ∪ [1 − 2−i, 1 − 2−i−1] for 1 ≤ i ≤ k0.

Define a function φ̃ in Ω such that

(i) φ̃(z) = φ̃(w) for z, w ∈ Ω(x), 0 ≤ x ≤ 1

(ii) φ̃ = u on {(s, f(s, t̃1, ..., t̃n−1)) : 2−k0 ≤ s ≤ 1 − 2−k0}

(iii) φ̃ = φ̃(2−k0 , f(2−k0 , t̃1, ..., t̃n−1)) for 0 ≤ x ≤ 2−k0

(iv) φ̃ = φ̃(1 − 2−k0 , f(1 − 2−k0, t̃1, ..., t̃n−1)) for 1 − 2−k0 ≤ x ≤ 1.

Observe that φ̃ is continuous on Ji and may have a jump discontinuity at
endpoints of Ji. But since

|∇u| ≤ C2−i on Ji

due to Corollary 2.4, and since Ω(x) has a diameter less than 2ǫ,

u(z) − u(w) ≤ C2−iǫ for z,w ∈ Ω(x). (5.2)

(5.2) implies that there exists a continuous function φ such that for 1 ≤ i ≤
k0

φ = φ̃+ di on [2−i−1, 2−i], di is a constant with |di| ≤ Cǫ

and similarly on [1−2−i, 1−2−i−1]. In other words, φ is constructed so that
φ is continuous, ∇φ = ∇φ̃ on Ji and

1 − Cǫ ≤

∫

Ω
|φ|2

∫

Ω
|φ̃|2

≤ 1 + Cǫ. (5.3)

Now we will obtain an estimate on the first eigenvalue λ ((b) of Theo-
rem 1.1) using a function perturbed from φ. On Ji,

|∇φ| = |∇φ̃| = |∂φ̃/∂x|
≤ (1 + |∂syj|)|∇u(s, f(s, t̃1, ..., t̃n−1))|
≤ (1 + C2iǫ)v(s)
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where v(s) is a one-dimensional function in Ω such that

v(s) = |∇u(s, f(s, t̃1, ..., t̃n−1)|.

Hence
∫

Ω
|∇φ|2 =

∫

Ω(∪1≤i<k0
Ji)

|∇φ|2

≤
∫

Ω
v2 +

k0−1
∑

i=1

Cǫ2i
∫

Ω(Ji)
v2

≤
∫

Ω
v2 + C

k0−1
∑

k=1

ǫ2−i
∫

Ω(Ji)
1

≤ (1 + Cǫ)

∫

Ω
|∇u|2 + Cǫ|Ω| (5.4)

≤ (1 + Cǫ)

∫

Ω
|∇u|2

where Ω(Ji) := Ω∩{x ∈ Ji}, the second inequality follows from Corollary 2.4
and the third inequality follows from (5.1). On the other hand, by (5.2),
Corollary 2.5 and (5.3)

1 − Cǫ ≤

∫

Ω
φ2

∫

Ω
u2

≤ 1 + Cǫ. (5.5)

Therefore (5.4) and (5.5) imply
∫

Ω
|∇φ|2

∫

Ω
φ2

≤ (1 +Cǫ)

∫

Ω
|∇u|2

∫

Ω
u2

(5.6)

Since φ does not satisfy the constraint

∫

Ω
φ = 0, we construct ψ by

perturbing φ, which satisfies

∫

Ω
ψ = 0 as well as (5.6). From (5.2) and

∫

Ω
u = 0,

|
∫

Ω
φ| ≤ Cǫ|Ω|. (5.7)
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Let z = (z1, ..., zn) be a point on

{(s, f(s, f(s, t̃1, ..., t̃n−1)) : 0 ≤ s ≤ 1}

such that u(z) = 0. (Note that z = (z1, ..., zn) ∈ Λ.) Then by Corollary 2.5,
c1 ≤ z1 ≤ 1 − c1 for a dimensional constant c1 > 0. This bound on z1
and (5.7) imply that there exists c0 such that ψ(x) := φ(x) + c0ǫ(x − z1)

+

satisfies

∫

Ω
ψ = 0 with |c0| < C for a dimensional constant C. Observe that

(5.6) also holds for ψ, and thus

µ1 ≤

∫

Ω
|∇ψ|2

∫

Ω
ψ2

≤ (1 + Cǫ)

∫

Ω
|∇u|2

∫

Ω
u2

= (1 + Cǫ)λ (5.8)

which proves part (b) of Theorem 1.1.
For the proof of part (a), we first show that the projection of the nodal

set Λ of u onto x axis is contained in an interval of length Cǫ and then we
locate Λ near the zero of φ1. Let p be a projection on the x-axis. Then
p(Ω̄+) and p(Ω̄−) are intervals because the Courant nodal domain theorem
[CH, p.452] implies Ω+ and Ω− are connected. Hence p(Λ) = [a, b] for some
a ≤ b. By (5.2),

max
[a,b]

|u| < Cǫ

and since max |ψ − u| ≤ Cǫ,

sup
[a,b]

|ψ| < Cǫ. (5.9)

By Corollary 2.5, |
∫ 1

a
φwds| > C

∫ 1

0
wds for a dimensional constant C >

0. Hence Lemma 3.6 with (5.8) and (5.9) implies that b − a < Cǫ for a
dimensional constant C. In other words, the nodal set Λ is contained in an
x-interval of length Cǫ.
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Now, observe

∫ 1

z1

ψ′2wds

∫ 1

z1

ψ2wds

≤ (1 + Cǫ)

∫ 1

z1

φ′2wds

∫ 1

z1

φ2wds

≤ (1 + Cǫ)

∫

Ω′

|∇u|2
∫

Ω′

u2

≤ (1 + Cǫ)

∫

Ω+

|∇u|2
∫

Ω+

u2
= (1 + Cǫ)λ ≤ (1 + Cǫ)µ1

where Ω′ = Ω ∩ {z1 ≤ x ≤ 1}, ψ(z1) = φ(z1) = 0, the second inequality
follows from a similar argument as in (5.6) and the third inequality follows
from b− a < Cǫ, |u| ≤ 1 and |∇u| ≤ C. By Lemma 3.5, z1 ≤ s1 +Cǫ. By a
similar argument on the interval [0, z1], we obtain s1 − Cǫ ≤ z1. Since the
length of the projection of the nodal set on the x-axis is less than Cǫ, part
(a) is proved.

Lastly we discuss the general case. For a general domain Ω, let {Ωk}k
be an increasing sequence of smooth domains which converges to Ω uni-
formly on each cross sections Ωk(x1). Let uk be the corresponding first
nonzero eigenfunctions of Ωk with sup |uk| = 1. Then by Kröger’s theorem
(Theorem 2.1), supΩk

|∇uk| is uniformly bounded. Hence there exists a sub-
sequence {ukj

}j which converges uniformly to u and {λkj
}j converges to λ

as j → ∞. On the other hand, since the volume wk(x) of Ωk(x) uniformly
converges to w(x), we may assume that {φkj

}j converges uniformly to φ1

and {µkj
}j converge to µ as j → ∞. Now by the nondegeneracy of φkj

(Lemma 3.7) and the nondegeneracy of ukj
in the scale ǫ (Lemma 3.6), we

obtain Theorem 1.1 for u and λ.

References

[BQ] D. Bakry, Z. Qian, Some new results on eigenvectors via dimension,
diameter, and Ricci curvature Adv. Math. , 155(2000), 98-153.

[CH] R. Courant, D. Hilbert Methods of Mathematical Physics vol. I ,
Interscience Publishers, New York (1953).

[GJ1] D. Grieser, D. Jerison, Asymptotics of the first nodal line of a convex
domain Inventiones Math. , 125(1996), 197-219.

34



[GJ2] D. Grieser, D. Jerison, The size of the first eigenfunction of a convex
planar domain J. Amer. Math. , 11(1998), 41-72.
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