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Abstract

We consider a quasi-static droplet motion based on contact angle dynamics on a planar surface.

We derive a natural time–discretization and prove the existence of a weak global-in-time solution

in the continuum limit. The time discrete interface motion is described in comparison with barrier

functions, which are classical sub- and super-solutions in a local neighborhood. This barrier property

is different from standard viscosity solutions since there is no comparison principle for our problem.

In the continuum limit the barrier properties still hold in a modified sense.
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1 Introduction

The motion of liquid drops on a planar surface is a widely studied topic. We consider a quasi–stationary
free boundary model, derived in [8], [10] and [12]. The model is contact angle driven, i.e. the motion
of the boundary of the wetted region is due to a deviation of the contact angle from the ideal contact
angle. It is also quasi–stationary in the sense that the actual profile of the drop adjusts itself to the
wetted region by minimizing a “surface energy” under a volume constraint.

We derive a natural time discretization by exploiting a formal gradient flow structure of the model. The
time-discrete solutions satisfy barrier properties similar to standard viscosity solutions. These barrier
properties stay valid in a modified sense as the time step size goes to zero.

Let us begin by a formal introduction of the model. The profile of the droplet is given by the height
function u : RN × (0, T )→ R with N = 2, the positive phase {u > 0} denotes the wetted region and the
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free boundary ∂{u > 0} denotes the contact line between drop, air and surface. It should be pointed
out that our analysis is performed in general space dimension N . Throughout the paper we denote the
spatial derivative of u by Du.
The motion of the droplet is described by contact angle dynamics - the free boundary ∂{u > 0} evolves
by a relationship between the outward normal velocity V and the contact angle |Du| of the droplet with
the surface. In this paper the normal velocity is given by

V = |Du|2 − 1 on ∂{u > 0}.

The square of the contact angle in the velocity law seems natural, as it is the only power for which
we directly have a gradient flow structure like the one considered in this paper. For discussion of the
contact angle dynamics in form of more general free boundary velocities we refer to [18].

On the other hand the shape of the drop adjusts to the wetted region by obeying two constraints: First
the volume in each component ωi of the drop is kept constant over time. Secondly the liquid/vapor
interface is minimal in the sense that it minimizes the Dirichlet integral, leading to the Euler–Lagrange
equation

−∆u(·, t) ≡ λ

in each connected components of {u > 0}. This equation, a simplification of minimal surface equation,
defines the shape of a quasi-static droplet. By choosing a suitable Lagrange multiplier λ = λI(x, t), the
volume of droplets in each component can be preserved.

Summarizing above discussion we arrive at the following free boundary problem:

(P )



−∆u(·, t) = λi(t) in ωi(t);

V = |Du|2 − 1 on ∂ωi(t);∫
ωi(t)

u(·, t) dx ≡ ci,

where, as mentioned above, V is the outward normal velocity of the connected component of the sup-
port of the drop ωi(t), so for |Du| 6= 0 one has V = ∂tu

|Du| . As the overall volume is conserved we have∑
i ci ≡ 1.

Several serious challenges arise in developing a global notion of solutions for the model described above:

Most importantly, (P ) does not satisfy the comparison principle between solutions, even in the case
of single components. For example consider two sets D1 ⊂ D2 ⊂ IRn with the droplet profile ui(x, 0)
supported in Di for i = 1, 2. Suppose we have the same volume constraint, i.e.,

∫
ui = 1. Since we

assume a quasi-stationary profile for ui, they satisfy the first equation in (P ):

−∆ui(x, 0) = λi in Di,

Due to the volume constraint and the fact that D1 ⊂ D2, it is clear that λ1 > λ2. Therefore it may be
the case that u1 > u2 in some parts of D1. Also the fact that λ1 > λ2 and the second equation in (P )
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suggests the possibility that the free boundary velocity of {u1 > 0} is bigger than in {u2 > 0} in some
parts, and therefore the evolution of D1 and D2 by (P ) may reverse the inclusion order between the
sets.

Due to the failure of comparison principle, the viscosity solutions approach applied to mean curvature
flow (see [7] and [4] for example) does not apply here, even if we assume that there is no topology
change. Observe that if λ is independent of time then standard viscosity solution theory as in [14]
applies. Based on this observation a discrete-time approximation with fixed λ in each time step was
carried out in [9]. This way a unique weak solution is obtained for star-shaped initial data, for short
times (as long as the wet region stays star-shaped). However approximating (P ) with fixed λ in small
time intervals (apparently) does not work well with topology changes.

On the other hand topology changes seem unavoidable. Splitting of droplets into multiple components is
generic for non-convex droplets, even if we start the evolution with a simply connected droplet. Merging
of different parts of the droplet also naturally occurs. (Recall that our model is quasi-stationary. This
means that the dynamics inside the liquid phase is not modeled. In some sense when a topology change
occurs we ”fast forward” the time so that the droplet becomes quasi-stationary again.) In addition to
the topological changes, we expect corner or cusp formation on the interface, due to merging, splitting,
and also shrinking of droplets (see [9]).

Lastly, there is a bifurcation (non-uniqueness) of solutions in the event of merging. More precisely, two
stationary drops touching each other at exactly one point can either decide to stay as they are, or see
each other and develop into one big drop. A similar bifurcation was also observed, for solutions of a
flame propagation model ([17]).

Our goal is to introduce a global-time notion of weak solution which describes (P ) past topological
changes and singularities. We take a variational approach, based on the following observation. Formally
speaking the droplet evolution (P ) is a gradient flow for the energy

E(ω) :=
∫
ω

|Duω|2 dx + |ω|, (1.1)

where |ω| denotes the (Lebesgue) measure of ω. The gradient flow takes place on the manifold of
possible supports of the droplet. The droplet height u itself is then part of a tangent bundle above the
manifold. We refer to Section 2 for detailed discussion of this structure.

In Section 2 we approximate the solution (P ) by a time-discrete gradient flow (JKO) scheme, originated
by [13]. This scheme defines the solution in the next time step as a minimizer of a composited functional.
This functional consists partly of the energy and partly of the distance to the previous time step. See
Section 2 for details. Such approach was taken before by Almgren,Taylor and Wang [1] and Luckhaus
and Sturzenhecker [15] for mean curvature motion. In [4] it was shown that a particular selection of
the discrete scheme in [1] converges to viscosity solution of the mean curvature flow in the sense of [7].

As mentioned above our problem lacks the comparison property even in simple settings, which prevents
us to develop any connection to standard viscosity solutions approach. However it is still possible to
describe the evolution of solutions by barrier properties (Proposition 3.1 and 3.3) of the time-discrete
weak solutions. Roughly speaking this means that the time-discrete solutions evolve with the free
boundary velocity given by (P ), at “regular” points of the interface.
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In the continuum limit we show that a global-in-time weak solution (see Definition 4.4) exists. At the
moment, we are only able to describe the limiting free boundary behavior in terms of the liminf and lim-
sup of the time-discrete solutions. We refer to Section 4 for definition of weak solutions (Definition 4.4)
and precise statements (Theorem 4.6).

2 Construction of a time discrete solution

We consider a generalized version of (P ) with curvature:

(Pε)



−∆u(·, t) = λi(t) in ωi(t);

V = |Du|2 − 1− εκ on ∂ωi(t);∫
ωi(t)

u(·, t)dx ≡
∫
u(x, 0)dx.

Here ε ≥ 0 and κ = −∇·( Du
|Du| ) denotes the mean curvature of the interface, positive if the positive phase

{u(·, t) > 0} is convex. The curvature term in (P )ε is introduced to use the structure of Caccioppoli sets
in the variational arguments in Section 3. However the regularized problem (P )ε and their properties
are also of independent interest.

Let us start with the definitions:

Definition 2.1 Let B := {x ∈ IRn : |x| < R} with R a sufficiently large constant.

(a) Let us define the set of Caccioppoli sets

Cacc := {ω ⊂ B ; ω is a Borel set with finite perimeter}.

(b) For any ω ∈ Cacc and any volume c

uω,c := argmin
{∫

ω

|Du|2 dx : u ∈ H1(ω), supp u ⊆ ω,
∫
ω

u dx = c

}
.

Remark 2.2 Note that the minimizer uω,c exists for any c > 0 and any set ω ∈ Cacc that admits one

H1–function u with supp u ⊆ ω.

Definition 2.3 For a nonnegative function u ∈ H1(IRn) and for x ∈ Ω(u) we define

λ(u)(x) :=

∫
ω
|Du|2 dx∫
ω
udx

(2.1)

where ω is the connected component of Ω(u) which contains x. If
∫
ω
udx = 0 we set λ(u)(x) = 0.

Note that −∆uω,c = λ(uω,c)(x) ≡ λ(uω,c) in its positive set, if ω has a single component with smooth
boundary.
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Problem (Pε) is a formal gradient flow on Cacc for the energy

Eε(ω) :=
∫
ω

|Duω,1|2 dx + |ω| + ε per(ω), (2.2)

where |ω| and per(ω) respectively denote the Lebesgue measure and the perimeter of ω. To see this we
calculate the differential of Eε for some normal velocity field ṽ applied to ∂ω and δ̃u the change of u
introduced by ṽ:

diff Eε(ω).ṽ =
∫
ω

2Duω · Dδ̃u dx +
∫
∂ω

(1 + |Duω|2) ṽ dS +
∫
∂ω

εκ ṽ dS

= −
∫
ω

2 ∆uω δ̃u dx +
∫
∂ω

−2 |Duω|δ̃u + (1 + |Duω|2 + εκ) ṽ dS

= λ

∫
ω

δ̃u dx+
∫
∂ω

− 2 |Duω|2 ṽ + (1 + |Duω|2 + εκ) ṽ dS

=
∫
∂ω

(1 − |Duω|2 + εκ) ṽ dS.

This gives (Pε) for the Riemanian structure

gω(v, ṽ) :=
∫
∂ω

v ṽ dS ∀v, ṽ ∈ TωCacc, (2.3)

on Cacc, by the volume conservation and Definition 2.1. As the distance connected to (2.3) are difficult
to model, we introduce a modified “distance”, which was originally introduced in [1] and [15] (also see
e.g. [5] and [4].)

d̃ist
2
(ω0, ω1) :=

∫
ω0∆ω1

dist(x, ∂ω0) dx.

Here dist is the distance function, and ω0∆ω1 denotes the symmetric difference between the two sets.
Note that d̃ist

2
is not a (squared) distance function (it lacks e. g. symmetry), but an approximation of

the distance connected to (2.3).
Following [15] and the JKO–scheme [13], ωi+1

h is determined from the previous set ωih by

ωi+1
h = argmin

ω∈Cacc

{
1
h
d̃ist

2
(ωih , ω) + Eε(ω)

}
.

Lemma 2.4 For fixed h > 0, fixed volume c and any ω0 ∈ Cacc there exists at least one minimizer
ωminc ∈ Cacc of

F(ω) :=
1
h
d̃ist

2
(ω0, ω) + Eε(ω).

Note that we do not show uniqueness. We also do not expect uniqueness for (P ) or (Pε), see Section 1.
The dependence on c is suppressed in the notation of Eε.
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Proof. There exist sets ω ⊂ B such that F(ω) <∞ (e.g. spheres around ω0) and F(ω) ≥ 0. Therefore
there exists a minimizing sequence {ωk} ⊂ Cacc such that

F(ωk) →
k→∞

inf{F(ω) : ω ⊂ B}.

By the definition of Eε(ω) we have |ωk| + ε per(ωk) < C and therefore the indicator functions χωk are
uniformly bounded in BV–norm. Thus (see e.g. [6], p.176) there exists a subsequence and a function
χ ∈ BV (B) such that

χωk → χ in L1(B)

Since χωk take values in {0, 1} so does χ and there exists a set ωminc ⊂ B such that χ = χωminc
. It

remains to show that F(ωminc ) ≤ inf F(ωk). This is direct for the part of the energy |ωk| + ε per(ωk),
by the lower semi continuity of the perimeter and the L1 convergence of χωk . For the remaining part
of the energy we have to take into account the convergence of the corresponding droplet with volume
c, uωk,c. By the boundedness of the H1–norm of uωk,c

uωk,c → ũ in L2(B).

Where
∫
ũ = c and

uωk,c = uωk,c χωk → ũ χωminc
a.e. in B.

Therefore by the lower semi-continuity of H1–norm and Definition 2.1

inf
∫
ωk,c

|Duωk,c|2 ≥
∫
ωminc

|Dũ|2 ≥
∫
ωminc

|Duωmin,c|2.

On the other hand d̃ist
2

is continuous with respect to the L1–topology of the indicator functions:∣∣∣d̃ist2(ω0, ω)− d̃ist
2
(ω0, ω̄)

∣∣∣ =
∣∣∣ ∫
ω0∆ω

dist(x, ∂ω0)dx −
∫
ω0∆ω̄

dist(x, ∂ω0)dx
∣∣∣

=
∣∣∣ ∫

(ω∆ω̄)∆ω0
dist(x, ∂ω0)dx

∣∣∣.
This vanishes as ‖χω−χω̄‖L1(IRN ) = |ω∆ω̄| → 0, by the boundedness of the distance function in B.

Definition of the time–discrete evolution. We define a time–discrete evolution of (P ). Roughly
speaking we do the minimization in Lemma 2.4 for each component of the drop separately. If two
components merge at the next time step, we go back and do the same minimization step but for the two
components together. Splitting of a component is already taken care of in the minimization in Lemma
2.4, as ωmin might have several components. To be more precise: for fixed h > 0 and i ∈ N take the
previous state ωih ∈ Cacc with possibly infinitely many connected components ωi,kh ∈ Cacc, k ∈ N. For
each connected component (in the classical sense) we have some droplet uωi,kh ,ck

by Remark 2.2 and

Lemma 2.4. Then ωi+1
h is given by

ωi+1
h :=

⋃
k

ωminck
if for any l 6= m : ωmincl

∩ ωmincm = ∅, (2.4)
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where ωminck
is a minimizer in Lemma 2.4 for the connected component ωi,kh .

If ωmincl
∩ωmincm 6= ∅ for only one pair (l,m) and if it does not intersect with other components (ωminck

, k 6=
l,m), then we define

ωi+1
h := (

⋃
k 6=l,m

ωminck
) ∪ ωmincl+ck

.

where ωmincl+ck
is a minimizer in Lemma 2.4 for initial set ωi,lh ∪ ω

i,m
h .

In general the process of sorting out merging components is non-unique: we will prescribe the following
process to proceed without ambiguity. Let us first consider the maximal index set I1 such that each
element ωminck

with k ∈ I1 intersects with ωminc1 .
Next take the first element ωminck

with k /∈ I1 and repeat the process to create the second index set I2.
If I2 intersects with I1, then we replace I1 with I1 ∪ I2. If not, check whether

ωminI1 := ωminΣck
, k ∈ I1

intersects with ωminI2
. If yes then still replace I1 with I1 ∪ I2. If no, then proceed to create the third

index set I3, and check against ωminI1
and ωminI2

. This way we end up with a sequence of (disjoint) index
sets I1, I2, ... such that ωminIk

are all disjoint. Then

ωi+1
h :=

⋃
k

ωminIk
.

Now define
uIk := uωminIk

,Σj∈Ik cj

and

uh(·, t) :=
∑
k

uIk for t ∈
[
ih, (i+ 1)h

)
. (2.5)

This way uh is a H1–function in B at any time t ∈ [0, T ]. Thus

uh ∈ L2
loc(H

1(B)).

The total volume of uh at time t is
∫
uh(·, t)dx =

∑
k ck = 1.

As the JKO–scheme is constructed to describe a time–discrete gradient flow, we have the energy decrease
for free: Suppressing in the notation the dependence of the energy on the volumes in each component,
we have:

Lemma 2.5 The time evolution defined in (2.4) and (2.5) satisfies

Eε(ωih) ≥ 1
h
d̃ist

2
(ωih , ω

i+1
h ) + Eε(ωi+1

h ). (2.6)

Proof. Equation (2.6) is obvious for any components
⋃
k∈Ij ω

i,k
h and the corresponding minimizer

ωminIj
= ωi+1

Ij
, as Lemma 2.4 can be tested with the set

⋃
k∈Ij ω

i,k
h . Furthermore

Eε(ωih) =
∑
j

Eε(
⋃
k∈Ij

ωi,kh ) ≥ 1
h

∑
j

d̃ist
2
(
⋃
k∈Ij

ωi,kh , ωminIj ) +
∑
j

Eε(ωminIj )

≥ 1
h
d̃ist

2
(ωih , ω

i+1
h ) + Eε(ωi+1

h ).
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3 The barrier properties for time discrete solutions

In this section we show, that for fixed time step h > 0 the discrete–time solution constructed above
satisfies the free boundary motion law in time scale h, in the sense that it is comparable to smooth sub–
and super–solutions of (Pε) in local neighborhoods. A more precise statement will follow in Propositions
3.1 and 3.3 for which we need the following notation:
Let us denote the positive phase of a function u(x, t) : IRN × [0,∞)→ IR+ and its boundary by:

Ωt(u) := {u(·, t) > 0} and Γt(u) := ∂{u(·, t) > 0},

and the positive phase in space–time by:

Ω(u) := {u > 0} ⊂ {B × [0,∞)} and Γ(u) := ∂Ω(u).

Next we show the barrier properties for the time discrete solutions. We begin with the barrier property
for uh being a super–solution. That is, uh can be compared to a barrier function φ that is below. If φ is
not fast enough at the boundary and not curved enough in the interior, then the ordering will persist:

Proposition 3.1 (Super–solution barrier property) Let uh be defined by (2.5). Given a ball Br(x0)
in B let

λ := inf
x∈Br(x0)

{λ(uh(0, ·))(x) , λ(uh(h, ·))(x)},

where λ(u)(x) is as defined by (2.1).
Suppose there exists a smooth function φ with |Dφ| 6= 0 in Br(x0) × [0, h]. Further suppose that for
some small δ > 0

−∆φ(·, t) < λ− δ in Br(x0)× [0, h],

(3.1)
φt
|Dφ|

− (|Dφ|2 − 1− εκφ) < −δ on Γ(φ) ∩ (Br(x0)× [0, h]),

where κφ := −∇ · ( Dφ
|Dφ| ) is the mean curvature of the corresponding level set of φ. Then for sufficiently

small h > 0 – depending on δ, r, the minimum of |Dφ| and the C2-norm of φ in Br(x0)× [0, h] – the
following holds:
If φ ≤ uh on the parabolic boundary of Br(x0)× [0, h], then φ(·, h) ≤ uh(·, h) in Br(x0).

Note that φt
|Dφ| = V , where V is the outward normal velocity of ∂{φ > 0} with respect to the positive

set of φ. Therefore, Proposition 3.1 shows that a function φ which is a sub-solution of (Pε) can not
cross the discrete time solution uh. Thus, uh is a super–solution. We also mention that a local barrier
function like the ones in Proposition 3.1 can always be extended to a global barrier function satisfying
(3.1), which is not restricted to a ball Br.

We begin by a lemma which states that the support of φ cannot cross ωh too much.
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Lemma 3.2 Under the assumptions of Proposition 3.1 and for sufficiently small h > 0, there exists a
constant C > 0 independent of h > 0 such that

(φ(x, t)− Ch1/2)+ ≤ uh(x, t) in Br(x0)× [0, h]. (3.2)

In particular, if φ crosses uh on Br(x0) × [0, h], we can choose −h2 < τ < Ch1/2 such that ϕ(x, t) :=
(φ(x, t)− τ)+ crosses ωh from below by o(h2), i.e.,

0 <
∣∣(Ωh(ϕ)− ωh) ∩Br(x0)

∣∣ = o(h2). (3.3)

Proof. Once (3.2) is proved, our second claim follows from the fact that Ωh(φ) does cross ωh and φ is
smooth with |Dφ| > 0 near Ω(φ).

To prove (3.2), first observe that

Ωh(φ) ⊂
{

Ω0(φ) ∪ {x ∈ B : d(x,Γ0(φ)) ≤ C1h}
}
,

where
C1 = sup

Br(x0)×[0,h]

|φt|/|Dφ|.

Therefore, we have for ϕ

Ωh(ϕ) ⊂ {x ∈ Ω0(φ) : d(x,Γ0(φ)) ≥ C2τ − C1h}

with
C2 = inf

Br(x0)×[0,h]
|Dφ|−1(x, t).

Thus, (3.2) follows by the comparison principle if we show

S := {x ∈ (Ω0(φ) ∩Br(x0)) : d(x,Γ0(φ)) ≥ C3h
1/2} ⊂ ωh. (3.4)

To prove (3.4), let us define

ω̂h := ωh ∪ S and Σ := ω̂h − ωh = S − ωh.

Suppose that |Σ| 6= 0, otherwise we are done. Since Ω0(φ) ⊂ ω0, we have by the smoothness of φ

d̃ist
2
(ω0, ω̂h)− d̃ist

2
(ω0, ωh) ≤ −C4h|Σ|.

where C4 is proportional to the size of C3. On the other hand, since the Dirichlet energy decreases
when the domain increases,

Eε(ω̂h)− Eε(ωh) ≤ |Σ|+ ε per(ω̂h)− ε per(ωh)
≤ |Σ|+ ε|∂S − ωh| − ε|∂ωh ∩ S|
≤ C5|Σ|,

where C5 depends on φ. The last inequality follows from

|∂S − ωh| − |∂ωh ∩ S| ≤
∫
∂Σ
− Dφ

|Dφ|
(x, h) · η dS

= −
∫

Σ
∇ · ( Dφ

|Dφ|
)(x, h) dx

=
∫

Σ
κφ dx.
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Here η is the outward normal vector at x ∈ ∂Σ and κφ is the mean curvature of the level set of φ. We
conclude that if C3 is chosen sufficiently large, then

d̃ist
2
(ω0, ω̂h) + hEε(ω̂h) < d̃ist

2
(ω0, ωh) + hEε(ωh).

This contradicts the minimizing property of ωh.

Proof of Proposition 3.1:
1) Suppose the proposition is not true. Then φ(x0, h) > uh(x0, h) at some point x0 ∈ Ωh(uh). Due
to the maximum principle for harmonic functions, this implies that Ωh(φ) ∩ (B\ωh) 6= ∅ for one of the
components ωh in Ωh(uh). Let ω0 be a corresponding component in Ω0(uh) which gives rise to ωh.
For notational simplicity, we prove the proposition assuming that ωh is indeed the only component
generated by ω0, i.e. ω0 has not splitted into multiple components and ωh is generated by only one
component: the proof for the general case is parallel.

2) Let us define

ϕ(x, t) := (φ(x, t)− τ)+

where −h2 < τ < Ch1/2 is as given in Lemma 3.2. In the proof we use ϕ instead of φ, which is possible
without violating the assumptions according to Lemma 3.2. Next set

ω̃h := ωh ∪
(
Ωh(ϕ) ∩Br(x0)

)
.

We claim that

d̃ist
2
(ω0, ω̃h) + hEε(ω̃h) < d̃ist

2
(ω0, ωh) + hEε(ωh), (3.5)

which yields a contradiction to the minimizing property of ωh.

3) To prove (3.5) first observe that

d̃ist
2
(ω0, ω̃h)− d̃ist

2
(ω0, ωh) =

∫
ω̃h∆ωh

signdist(x, ∂ω0)dx

≤
∫
ω̃h∆ωh

signdist(x,Γ0(ϕ))dx,

where signdist is the signed distance function, that is negative inside the set. Here the first equality is
due to straightforward computation, and the inequality is due to the fact that Ω0(ϕ) is a subset of ω0.
By construction of ϕ, for each point x ∈ ω̃h∆ωh there exists a time t∗ with 0 ≤ t∗ ≤ h + o(h2) such
that x ∈ Γt∗(ϕ). Therefore, as ϕt

|Dϕ| (0, ·) denotes the outward normal velocity of Γ(ϕ),

signdist(x,Γ0(ϕ)) ≤ h ϕt
|Dϕ|

+ o(h). (3.6)

Next we consider the energy difference

Eε(ωh)− Eε(ω̃h) = I + II + III
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where

I =
∫
|Duh|2(·, h)−

∫
|Dũh|2, II = −

∫
ω̃h∆ωh

1 dx, III = ε per(ωh) − ε per(ω̃h).

Here ũh(x) := uω̃h,
R
uh . In the next step we will show that

I ≥
∫
ω̃h∆ωh

|Dϕ|2(·, h) dx and III ≥
∫
ω̃h∆ωh

−εκϕ dx

This proves our claim by (3.1) and (3.6). Note that (3.1) is strict and therefore extends to a small
region inside.

4) Let us estimate III. Note that, as before,

per(ωh)− per(ω̃h) ≥
∫
∂ωh\∂ω̃h −

Dϕ

|Dϕ|
(·, h) · η dS −

∫
∂ω̃h\∂ωh −

Dϕ

|Dϕ|
(·, h) · η̃ dS

=
∫
ω̃h∆ωh

∇ · ( Dϕ
|Dϕ|

)(·, h)dx

=
∫
ω̃h∆ωh

−κϕ dx

where η̃ = −Dϕ/|Dϕ|(x, h) is the outward normal vector at x ∈ ∂ω̃h, η is the outward normal vector
at x ∈ ∂ωh, and κϕ is the mean curvature of the level sets of ϕ.

It remains to estimate I. To this end let us define two auxiliary functions, ū and v:

−∆ū = λ in ω̃h with supp (ū) = ω̃h,

−∆v = 0 in ωh with v = ϕ(·, h) on ∂ωh.

(3.7)

We remark that ū is defined by approximation from outside and v is defined by approximation from
inside, i.e.

ū(x) := inf{f(x) : −∆f = λ in {f > 0} with w̃h ⊂ {f > 0}},

and
v(x) := sup{f(x) : −∆f = 0 in ωh with f < φ on B\ωh}.

Let us define c :=
∫
ωh
uh(·, h), c̄ :=

∫
ω̃h
ū and ũ := c

c̄ ū. Then the following holds:∫
ωh
|Duh(·, h)|2 −

∫
ω̃h
|Dũh|2 = λ

∫
ωh
uh(·, h) − λ(ũ)

∫
ω̃h
ũ

= c
c̄λ (

∫
ω̃h
ū −

∫
ωh
u).

(3.8)

Furthermore, ū ≥ max
(
(uh + v)

∣∣
ωh
, ϕ
)
(·, h) since

ω̃h = Ωh
(

max
(
(uh + v)

∣∣
ωh
, ϕ
))

and max
(
−∆(uh + v)

∣∣
ωh
, −∆ϕ)(·, h) ≤ λ.

For the same reason, on the reduced boundary of ωh we have, for the inward normal η,

∂η(uh(·, h) + v) ≥ ∂η ϕ (·, h). (3.9)
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Thus,

λ

(∫
ω̃h

ū −
∫
ωh

uh(·, h)
)
≥ λ

∫
ωh

v + λ

∫
ωh∆ω̃h

ϕ(·, h)

≥ −
∫
ωh

∆(uh(·, h) + v) v −
∫
ωh∆ω̃h

(∆ϕϕ)(·, h)

≥
∫
ωh

(D(uh(·, h) + v))Dv +
∫
∂ωh

∂η(uh(·, h) + v) v

+
∫
ωh∆ω̃h

|Dϕ|2(·, h) −
∫
∂ωh

(∂ηϕϕ)(·, h)

≥
∫
ωh

|Dv|2 +
∫
ωh∆ω̃h

|Dϕ|2(·, h),

by (3.9) and (3.7). Thus together with (3.8) we have

I ≥ c

c̄

∫
ωh∆ω̃h

|Dϕ|2(·, h).

Lastly, note that as τ → τ0, λ(ũ) converges to λ(uh), due to the minimizing property of ωh. Hence
c̄→ c and we can choose τ − τ0 given in (3.3) small enough that c̄ ≤ c(1 + o(h)) to conclude.

�

By a parallel argument in the proof of Proposition 3.1, uh can also be compared with barriers which
are super-solutions of (Pε):

Proposition 3.3 (Sub-solution – barrier property) Let uh be defined by (2.5). Given a ball Br(x0) in
B, let

λ := inf
x∈Br(x0)

{λ(uh(0, ·))(x) , λ(uh(h, ·))(x)},

where λ(u)(x) is as defined in (2.1).
Suppose there exists a smooth function φ with |Dφ| 6= 0 in Br(x0) × [0, h]. Further suppose that for
some small δ > 0

−∆φ(·, t) > λ+ δ and
φt
|Dφ|

− (|Dφ|2 − 1− εκφ) > δ in Br(x0)× [0, h]. (3.10)

Then for sufficiently small h > 0 – depending on δ, r, the minimum of |Dφ| and the C2-norm of φ in
Br(x0)× [0, h] – the following holds:
If uh ≤ φ+ := max(φ, 0) on the parabolic boundary of Br(x0)× [0, h], then uh(·, h) ≤ φ(·, h)+ in Br(x0).

Proof. The proof is analogous to the proof of Proposition 3.1. We still present it, as the estimation of
the Dirichlet integral has a non-trivial difference from the previous proof.

Suppose the above proposition is not true. Then φ(·, h) crosses uh(·, h) from above at some point
in Br(x0). As before, the maximum principle for harmonic functions states that then Ωh(φ) ∩ ωh is

12



nonempty for a component ωh of Ωh(uh). Set ω0 be the component of Ω0(uh) which generates ωh.
Again we construct a contradiction to the minimizing property of ωh and uh. With a parallel argument
to Lemma 3.2 one can change φ to ϕ := (φ+ τ)+, h2 ≤ τ ≤ Ch1/2, such that uh(x, h) ≤ (φ(x, h) + τ)+

and
0 <

∣∣(ωh − Ωh(ϕ)) ∩Br(x0)
∣∣ = o(h2).

This time we denote:
ω̃h = ((ωh ∩ Ωh(ϕ)) ∩Br(x0)) ∪ (ωh ∩ (B\Br(x0)).

We claim that
d̃ist

2
(ω0, ω̃h) + hEε(ω̃h) < d̃ist

2
(ω0, ωh) + hEε(ωh).

First observe that this time

d̃ist
2
(ω0, ω̃h)− d̃ist

2
(ω0, ωh) = −

∫
ω̃h∆ωh

signdist(x, ∂ω0)dx

≤ −
∫
ω̃h∆ωh

signdist(x,Γ0(ϕ))dx.

By integration of the velocity of Γt(ϕ) we have

−signdist(x,Γ0(ϕ)) ≤ −h ϕt
|Dϕ|

+ o(h). (3.11)

Next we consider the energy difference

Eε(ωh)− Eε(ω̃h) = I + II + III (3.12)

where

I =
∫
|Duh|2(·, h)−

∫
|Dũh|2, II =

∫
ω̃h∆ωh

1 dx, III = ε per(ωh) − ε per(ω̃h).

Here ũ(x) solves −∆ũ = λ̃ with support ω̃h, where λ̃ is chosen such that
∫
ũ =

∫
uh(·, h). We will show

that
I ≥ −

∫
ω̃h∆ωh

|Dϕ|2(·, h) dx and III ≥
∫
ω̃h∆ωh

εκϕ dx

This proves our claim by (3.10), (3.12) and (3.11).

First let us estimate III:

per(ωh)− per(ω̃h) ≥
∫
∂ωh\∂ω̃h

Dϕ

|Dϕ|
(·, h) · η dS −

∫
∂ω̃h\∂ωh

Dϕ

|Dϕ|
(·, h) · η̃ dS

= −
∫
ω̃h∆ωh

∇ · ( Dϕ
|Dϕ|

)(·, h)dx

=
∫
ω̃h∆ωh

κϕ dx

where η̃ = −Dϕ/|Dϕ|(x, h) is the outward normal vector at x ∈ ∂ω̃h, η is the outward normal vector
at x ∈ ∂ωh, and κϕ is the mean curvature of the level sets of ϕ.
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It remains to estimate I. We again consider the two auxiliary functions, ū and v defined by (3.7). As
before we have for c :=

∫
ωh
uh(·, h) and c̄ :=

∫
ω̃h
ū:∫

ωh
|Duh|2(·, h)−

∫
ω̃h
|Dũ|2 = c

c̄λ (
∫
ω̃h
ū −

∫
ωh
uh(·, h)). (3.13)

But this time the inequality (min[ū, ϕ(·, h)]− v)+ ≥ uh(·, h) holds on ωh, as

ωh = supp (min[ū , ϕ(·, h)]− v)+

and
−∆(min[ū , ϕ(·, h)]− v) ≥ λ.

For the same reason we have for the outward normal η of ω̃h

∂η(uh(·, h) + v) ≥ ∂η ϕ (·, h). (3.14)

Thus, as min(ū, ϕ) = ū in ω̃h and min(ū, ϕ) = ϕ in ω̃h∆ωh, using the smoothness of ϕ it follows that

λ (
∫
ω̃h
ū−

∫
ωh
uh(·, h)) ≥ λ

∫
ω̃h
v − λ

∫
ωh∆ω̃h

ϕ(·, h)

≥ −
∫
ω̃h

∆(uh(·, h) + v) v +
∫
ωh∆ω̃h

(∆ϕϕ)(·, h)

+
∫
ωh∆ω̃h

(−∆ϕ − λ)ϕ(·, h)

≥
∫
ω̃h

(D(uh(·, h) + v))Dv −
∫
∂ω̃h

∂η(uh(·, h) + v) v

−
∫
ωh∆ω̃h

|Dϕ|2(·, h) +
∫
∂ω̃h

(∂ηϕϕ)(·, h) +
∫
ωh∆ω̃h

o(h)

≥
∫
ωh
|Dv|2 −

∫
ωh∆ω̃h

|Dϕ|2(·, h) +
∫
ωh∆ω̃h

o(h)

by (3.14) and (3.7). Thus together with (3.13) we have

I ≥ c

c̄

∫
ωh∆ω̃h

|Dϕ|2.

Lastly we need to show that
c̄→ c as |τ − τ0| → 0.

To see this, first note that uh(x, h) ≤ (φ(x, h) + τ0)+. In particular

uh(·, h) ≤ C|τ − τ0| on ∂w̃h − ∂wh ⊂ ∂{x : φ(x, h) + τ ≥ 0}

where C depends on the C2-norm of φ. It follows that uh(·, h)
∣∣
ωh
≤ ūh + C|τ − τ0|, and therefore

c ≤ c̄+O(τ − τ0). Hence we conclude.
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4 The continuum limit and existence of weak solutions

In this section we show that in the limit h → 0 and ε = h the time discrete solution uh converges to
a weak solution u(·, t) ∈ H1(B) of (P ) in the sense that the liminf and limsup -envelopes satisfy the
barrier property at infinitesimal time scale (see Definition 4.4). We begin by defining viscosity sub- and
supersolutions for a given multiplier function λ(x, t) : B × [0,∞)→ [0,∞).

Definition 4.1 A lower semi-continuous function u : B × [0,∞)→ IR is a viscosity super-solution on

[t1, t2] with respect to λ(x, t) if following holds:

For a given function φ ∈ C2,1({φ > 0}) with |Dφ| 6= 0 in Br(x0) × [t1, t2], suppose that φ ≤ u on the

parabolic boundary of Br(x0)× [t1, t2] with

−∆φ(·, t) < λ(·, t) in Br(x0)× [t1, t2],
φt
|Dφ|

− (|Dφ|2 − 1) < 0 in Γ(φ) ∩ {Br(x0)× [t1, t2]}.

Then φ ≤ u in Br(x0)× [t1, t2].

For the subsolution part, in the context of our limit as h→ 0, we have to take into account the possibility
that {uh > 0} leave thin segments or isolated points in the limit, which are not traceable from the limit
of uh. We get around this difficulty by including a set Σ in the definition:

Definition 4.2 Let u : B × [0,∞) → IR+ be upper semi-continuous, and let Σ be a closed subset of

B × [0,∞) containing Ω(u). Then the pair (u,Σ) is a viscosity sub-solutionon [t1, t2] with respect to

λ(x, t) if the following holds:

For a given function φ ∈ C2,1({φ > 0}) with |Dφ| 6= 0 in Br(x0)× [t1, t2], suppose that

−∆φ(·, t) > λ(·, t) in Br(x0)× [t1, t2],
φt
|Dφ|

− (|Dφ|2 − 1) > 0 in Γ(φ) ∩ {Br(x0)× [t1, t2]}.

If u ≤ φ and Σ ⊂ Ω(φ) on the parabolic boundary of Br(x0) × [t1, t2], then u ≤ φ and Σ ⊂ Ω(φ) in

Br(x0)× [t1, t2].

Let us go back to the time discrete solutions uh. Define

G := {k2−n : k, n ∈ N} and h = h(n) = 2−n, n ∈ N.

Then uh is defined on grid times t ∈ G by (2.5), with the choice of ε = h. Due to the Dirichlet energy
bound, along a subsequence

uh(·, t)→ u(·, t) weakly in H1(IRN ) for each t ∈ G. (4.1)

We then choose a common subsequence of h(n) such that (4.1) holds along the same sequence for
each time. We obtain a weak form of convergence in the continuum limit h → 0 along a subsequence.
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Unfortunately a stronger, point-wise convergence of uh cannot be obtained without extra regularity of
uh such as equicontinuity in time. Instead we consider the limit infimum and supremum:

u∗(x, t) := lim
r→0

inf
{|x−y|≤r, |s−t|≤r, h≤r}

uh(y, s) (4.2)

and

u∗(x, t) := lim
r→0

sup
{|x−y|≤r, |s−t|≤r, h≤r}

uh(y, s). (4.3)

Let us also define

Σ := {(x , t)
∣∣∃ a sequence (xh, th)→ (x, t) such that xh ∈ Ω(uh(·, th))}. (4.4)

Note that Σ contains Ω(u∗). Σ is a closed set, including “traces” of supports of uh(·, t) which may
degenerate into zero set of u∗ in the limit h→ 0. Let us denote
Σ(s) := Σ ∩ {t = s}.

Next we define appropriate limits for the multipliers to be used for u∗ and u∗.

Definition 4.3 For ω ⊂ B, let us define

λin(ω, c) := lim
δ→0

λ(uωδ,c)

and

λout(ω, c) := lim
δ→0

λ(uωδ,c),

with ωδ := {x : d(x, ω) ≤ δ} and ωδ := {x : Bδ(x) ⊂ ω}.

Clearly λin ≥ λout, as ωδ ⊂ ωδ. Now we are ready to define our weak solution:

Definition 4.4 For functions u1, u2 : B× [0,∞) and a closed set Σ ⊂ B× [0,∞), the triple (u1, u2,Σ)
is a weak solution of (P ) if the following holds:

(a) u1 ≤ u2 and {u2 > 0} ⊂ Σ;

(b) u1 is a viscosity supersolution with respect to λ1(x, t) := λout(ω, c1), where ω is the connected

component of Ωt(u2) containing x and

c1 :=
∫
ω

u1(·, t)dx.

(c) (u2,Σ) is a viscosity subsolution with respect to λ2(x, t) := λin(ω, c2), where ω is the connected

component of Ωt(u1) containing x and

c2 :=
∫
D

u2(·, t)dx, where D is the connected component of Ωt(u2) containing ω.
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Roughly speaking, λ1 and λ2 are respectively the smallest and the largest possible value of the multiplier
one can obtain by the lim sup and lim inf operation at a given point (x, t). These definitions are tailored
for u1 = u∗ and u2 = u∗.

Remark 4.5 Classical solutions (i.e. u ∈ C2,1(Ω̄(u)) with smooth Γ(u) satysfying (P ) in the classical

sense), if they exist, would be weak solutions of (P ) in our definition with u1 = u2 = u and Σ = Ω(u).

In the rest of the section we will show the following:

Theorem 4.6 The triple (u∗, u∗,Σ) defined in (4.2) - (4.4) is a weak solution of (P ).

Remark 4.7 1. In [9] it was proven that starting from a star-shaped intial data, there is a unique

star-shaped weak solution (u, u,Ω(u)) of (P ) for a short time, and for global time with additional

symmetries in the initial data. Short-time existence of any nature for general smooth initial data is an

open problem.

2. For free boundary problems which satisfy a comparison principle (such as the mean-curvature flow

or (P ) with fixed λ), the sub-solution would stay below the super-solution, which would then yield that

u∗ ≤ u∗. This in turn yields u∗ = u∗ and in particular the uniform convergence of uh to a weak solution

readily follows. Unfortunately for us this line of argument cannot be applied since (P ) does not satisfy

a comparison principle.

Proposition 4.8 Let us define λ1(x, t) and λ2(x, t) as in Definition 4.4 with u1 = u∗ and u2 = u∗.

(a) Suppose (x, t) ∈ Σ. There is xh ∈ Ωth(uh) such that (xh, th) → (x, t). Let w∗ be the connected
component of Σ(t) containing x and let wh be the corresponding connected component containing
xh. Then

λ1(x, t) ≤ lim inf
h→0

λ(uh(·, t))(x)

(b) Suppose (x, t) ∈ Ω̄(u∗). Then there is xh ∈ Ωth(uh) such that (xh, th) → (x, t). Let w∗ be the
connected component of Ω(u∗) containing x, and let wh be the corresponding connected component
containing xh. Then

lim sup
h→0

λ(uh(·, t))(x) ≤ λ2(x, t).

Proof. To prove (a), first note that for fixed δ we have that uh(·, th) converges uniformly to zero outside
of ω∗,δ := {x : d(x, ω∗) ≤ δ}. Therefore, we can lower uh to its essential part: there exists εh → 0 such
that ũh := (uh − εh)+ satisfies Ωt(ũh) ⊂ ω∗,δ. Moreover we have, by definition of c1,

lim inf
h→0

∫
ω∗,δ

uhdx ≥ c1.
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Therefore,
λ1(x, t) ≤ λ(uω∗,δ,c1(·, t))(x)

≤ lim infh→0

∫
ω∗,δ
|Dũh|2(·, t)dx

c1

= lim infh→0 λ(uh(·, t))(x).

To prove (b), note that for any δ > 0, there exists h0 < δ, such that wδ := {x : Bδ(x) ⊂ w∗} is contained
in wh0 : Suppose ωδ 6⊂ ωh for some δ > 0 for any small h > 0. Then there exists a sequence of points xh
converging to a point x̄ in ωδ such that uh(th, xh) = 0. This is a contradiction to the fact ωδ ⊂ Ωt(u∗).
Therefore ωδ ⊂ ωh at least for a sequence of h converging to zero. Furthermore, by definition of c2,

lim sup
h→0

∫
ωδ

uh(·, t)dx ≤ c2.

And
lim sup
h→0

λ(uh(·, t))(x) ≤ lim
δ→0

λ(uωδ,c2)(x) ≤ λ2(x, t).

Proof of Theorem 4.6 The proof carries over the barrier properties of the time discrete solutions.
We will only show that u∗ is a viscosity supersolution of (P ) with respect to λ1(x, t). The subsolution
part can be shown via parallel arguments.
Suppose there exists a smooth function φ as in Definition 4.1 in S := Br(x0) × [t1, t0] such that φ
crosses u∗ from below at (x0, t0).: i.e. u∗ − φ has a minimum zero at (x0, t0). By using φ̃(x, t) :=
(φ(x, t) − σ(x − x0)2 + σ(t − t0))+ with small σ > 0 if necessary, one may assume that the minimum
is strict in S. Then for small h > 0 the function uh − φ also has a minimum at (xh, th) in S with
(xh, th)→ (x0, t0) as h→ 0. Since by Definition 4.1

−∆φ(x, t) < λ1(x, t),

we have that by Proposition 4.8(a) there exists δ > 0 such that

−∆φ < λ(uh)(·, t0) in Bδ(x0) for 0 < h < δ.

The above inequality as well as the second inequality in Definition 4.1 yield that φ satisfies (3.1) for h and
r sufficiently small. Hence Proposition 3.1, applied to φ and uh at (xh, th) in S, yields a contradiction.

�
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