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Abstract

In this paper we introduce a notion of viscosity solutions for the one phase Hele-Shaw
and Stefan problems when there is no surface tension. We prove the uniqueness and
existence of the solutions for both problems and the uniform convergence of solutions
of porous medium equation to those of the Hele-Shaw problem. We also discuss about
generalizing our method to free boundary problems with convex operators.

0 Introduction

Let €y be a bounded domain in IR" with 9y having two disjoint parts I'y and I'y, both of
them being closed hypersurfaces in IR". For convenience, we let ['y = {z € IR" : |z| = 1}. (See
Figure 1.)

uo=0

Figure 1.



Let Q ={z € R" : |z| > 1}, f € C(I'y) and consider a nonnegative function uy € C(£2) such
that

ug = f >0, on I'y
(0.1)
{UO > 0} = Qo.

In this paper we study the one phase Hele-Shaw and Stefan problems with initial data given
as in (0.1). The classical Hele-Shaw problem, in n = 2 models an incompressible viscous fluid
which occupies part of the space between two parallel, narrowly placed plates. In this case ug
denotes the initial pressure of the fluid and f denotes the rate of injection from I'y into 2. (For
convenience we assume that f is time-independent.) As more fluid is injected through a fixed
boundary, the region occupied by the fluid will grow as time increases. Let us assume that the
equilibrium temperature is zero. Assuming no surface tension, then the pressure of the fluid
u(z,t) solves the following free boundary problem:

—Au=0 in {u > 0},
(0.2)
V =w/|Du| = —Du-n = |Du| on o{u =0},

where V' is the normal velocity and 7 is the outward unit normal vector of the free boundary

0{u = 0}.

The classical Stefan problem accounts for phase transitions between solid and fluid states,
such as the melting of ice in contact with water, or the freezing of water in contact with ice.

Here we assume that the temperature varies in only one phase, which gives us the following
one phase Stefan problem for the temperature u:

ug — Au =0 in {u > 0},
(0.3)
V =uy/|Du| = —(Du) - 7n = |Du| on 0{u =0},

where V' and 7 is defined the same as in (0.2).

In both models initially smooth free boundaries may develop singularities in finite time, and
therefore classical solutions are not expected to exist globally in time. This fact motivates the
study of the solutions in a generalized sense, i.e., the weak solutions. For the Hele-Shaw problem
(0.2), the short-time existence of classical solutions when the initial interface Iy is C?T* was
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proved by Escher and Simonett [ES]. When n = 2, Elliot and Janovsky[EJ] showed the existence
and uniqueness of weak solutions in H!(Q). For the Stefan problem (0.3) an extensive amount
of study has been done. When the initial data and the interface are C***, Hanzawa [H] showed
the short-time existence of classical solutions. Kamenomostskaja [K] introduced the notion of
weak solutions of this problem in H', and proved its global existence and uniqueness. Her work
was generalized by Oleinik [O] and Friedman [F]. The formulation of the problem as a parabolic
variational inequality was initiated by Duvaut [D]. This method was developed by, for example,
Friedman and Kinderlehrer [FK| who used variational inequality to prove the existence and
uniqueness of weak solution in L*®(0,T; H>1).

In this paper we apply a notion of viscosity solutions to describe the global-time behavior
of the free boundary problems (0.2)-(0.3) past singularities. The notion of viscosity solutions,
introduced by [CL], has been used very successfully to study nonlinear elliptic and parabolic
equations. The analytical heart of the theory lies in a comparison principle derived from maximal
principle-type arguments, which in turn leads to uniqueness and existence results.

The Hele-Shaw problem can be also derived as a limiting case of the porous medium equation
(in short PME.) Let the domain ) = Q x (0,00), where 2 is given as above. We consider a

sequence of viscosity solutions {u;,}n, > 0 € C(Q), where u,, satisfies

ug — |Dul?* — (m — 1)uAu =0 in Q,

(PME),, u=f on I'y,
u(z,0) = ug(x) in QN {t=0}.
Here u,, = mvmfl, where v > 0 satisfies the usual form of porous medium equation:

vy =A(w)", in Q.

Caffarelli and Vazquez [CV] proved that there is a unique viscosity solution for the porous
medium equation for m > 1 when the initial data is given. Here viscosity solutions are defined
by comparison with the classical solutions of PME, in particular with the Barenblatt solutions
(see section 1.) As m — oo, by a formal computation we can easily see that the limiting equation
leads to the Hele-Shaw problem (0.2). However the Barenblatt solutions become strictly positive
as m — oo and thus they cannot be used as test functions for the free boundary problem (0.2).

In section 1 we define the viscosity solution of (0.2). Variational inequalities are used to
describe the free boundary condition and to make the viscosity solutions stable through limit
operations in various settings (see, for example, the proof of Theorem 1.5.) The difference
between our definition and that for PME in [CV] comes from (i) the presence of additional
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equation on the free boundary (ii) lack of well-known classical solutions. We also show that the
limit of viscosity sub(super)solutions of (PME),, as m — oo is the viscosity sub(super)solution
of (0.2) in our definition.

In section 2 we show a comparison result between two viscosity solutions of (0.2) using the
sup- and inf-convolutions. Here we require the solutions to be initially strictly separated. The
choice of test functions play an important role in the proof. For general cases, a more careful
analysis is required to prove the comparison principle, which we explain in section 3.

In section 3 a uniqueness result of viscosity solution of (0.2), and the uniqueness of the global
time free boundary is proven when the initial free boundary 0{uy, > 0} expands immediately.
This condition holds, for example, if ug satisfies

—AU() =0 in Qo,
(0.4)
|Dug| >0 on L.

Also we show that in this case the sequence {u,,} with initial data uy uniformly converge to
u as m — 0o, which is the unique viscosity solution of (0.2).

In section 4 we turn to the Stefan problem (0.3) and state the corresponding uniqueness and
existence theorems. Here the main difficulty lies in dealing with the scaling properties of (0.3)
to produce the uniqueness result. We point out the essential differences between (0.2) and (0.3)
in proving each result.
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1 The Hele-Shaw problem

Here we define a notion of viscosity sub- and supersolutions for (0.2) by using variational

inequalities. Recall that = {|z| > 1} x (0,00) and I'; = {|z| = 1}. v € C(Q) is a viscosity
solution of (0.2) if it is both viscosity sub- and supersolution.

Definition 1.1 (1) A nonnegative uppersemicontinuous function u defined in Q) is a viscosity
subsolution of (0.2) with initial data uy and fized boundary data f if

(i) u=wug att =0, u < f forxz €y



(it) {u > 0} N {t =0} = {u(x,0) > 0};
(iii) for each T > 0 the set {u > 0} N{t < T} is bounded; and

(iv) for every ¢ € C**(Q) that has a local mazimum of
u—¢in{u>0}N{t<t}NQ at (x,t),
((1) — A¢($0, t()) S 0 Zf U(l‘(),t()) > 0.

(b) min(—A¢, ¢y — |D¢|?)(xg, 1) <0 if (o, t0) € 0{u > 0}, u(zo,19) = 0.

(2) A nonnegative lowersemicontinuous function v defined in Q) is a viscosity supersolution of
(0.2) with initial data ug and fived boundary data f if

(i) v=wvy att=0,v> f forx €Ty and
(ii) if for every ¢ € C*1(Q) that has a local minimum of v— ¢ in {v >0} N{t <t} NQ at
(antO):
(CL) — Ad)(.’bo,to) >0 if (.’Eo,to) € {’U > 0},
(b)  If (wo,tp) € O{v > 0} and if
(1.1)  |D¢|(xg,t0) # 0 and {¢ > 0} N {v > 0} N Bz, to) # O for any ball B(xg,ty),

then
max(—Ag, ¢, — |D¢|?) (20, to) > 0.

Remark.

* The condition (ii) and (iii) in (1) is to control the behavior of the free boundary 0{u > 0}
respectively at t = 0 and at infinity.

* The condition (1.1) is to insure that near (zg,%) the function ¢, = max(¢,0) (zo,%o) is
nontrivial in {v > 0}. For example, ¢ satisfies the condition if there is a vector v € IR" such
that

{ (zo + hv,tg) € {v > 0} for 0 < h << 1,

0¢/ov >0 at (o, o).
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Figure 2.
For a real-valued function f(z,t) in domain D, we define
(1.2) f*(z,t) = limsup f(y,s) and f.(z,t)= liminf f(y,s).
(y,5)€D—(a,t) (y,5)€D—(a)t)

Next we define a viscosity solution of (0.2):

Definition 1.2 A lowersemicontinuous function u is a viscosity solution of (0.2) if u* is a
viscosity subsolution and if u = u, is a viscosity supersolution of (0.2).

Remark

* We mention that by definition of viscosity sub- and supersolutions it follows that u*(x,0) =
U (2,0) = ug(x). Thus u(z,t) given above converges uniformly to uy(z,0) as ¢ — 0.

* Note that we did not define u to be continuous. This is because we expect u to be discon-
tinuous when the free boundary of u develops a singularity. An easy example is when n = 1,
where € is given as two disjoint interval with fixed boundary inside each interval. (see Figure
2).

For later use, we introduce the sup- and inf-convolutions of v and v. Given a viscosity
subsolution u and a constant r > 0, we define

u,(z,t) = sup u(y,7),
Br(z,t)

where B, (z,t) = {(y,7) : |y — z|* + (¢t — 7)* < r?}. Similarly, given a viscosity supersolution v
and 6 << r we define
v(z,t) = inf w(y, 7).
By _st(x,t)
This kind of construction has been used, for example, in [ACS] and in [CV]. We point out
that for the analysis of free boundary speed it is necessary to involve the entire space-time
balls including fure times 7 > ¢ in above definitions. Let D be a bounded domain in ). We



Figure 3.

say that D has the interior (exterior) ball property at P = (x,T) € 0D if there is a closed
n + 1 dimensional (space-time) ball B C D (D¢) such that BN D¢(D) = P. For a ball B with
radius r, we denote kB as a ball with the same center as B and radius kr. Similary we define
interior(exterior) ellipsoid property .

Lemma 1.3 In the domain {x : |x| > 1+ 71} x (r,r/0), 4, is a viscosity subsolution and v, is a
viscosity supersolution of (0.2) with corresponding initial and fized boundary data. Moreover, on
the free boundary the positivity set of 4, (v,) has the interior ball and exterior ellipsoid property.
At points of the free boundaries of u,v where these balls are centered we have the complementary
results.

Proof.

1. The exterior/interior ball properties are clear from the definition. (see Figure 3,4.)

2. To show that u, is a viscosity subsolution, first observe that conditions (1)-(ii) and (1)-(iii)
in Definition 1.1 follows from the corresponding properties of u as a viscosity subsolution.Thus
we only have to show that (1)-(iv) in Definition 1.1 holds for .

3. We consider a smooth test function ¢ € C*'(Q). Suppose that @, — ¢ has a local maximum
at (xg,tp) in {@, > 0}. By definition and upper semicontinuity of w,

Ur(zo,t0) = sup wu(x,t) =u(xi,t;) for some (z1,t1) € B(xo,to)-
BT(Z'OytO)

But then u(x,t) — ¢(x — 1 + xo, t — t1 + 1) has a local maximum at (x1,¢;) in {u > 0}. This
leads to our conclusion.

4. Suppose that v, — ¢ has a local minimum zero at (xg, %) in {v, > 0}. From the definition
and the lower semicontinuity of v,

v (o, t0) =  inf  w(z,t) = v(re,t2) for some (xq,ts) € B g, (20, to)-
B, _5t4(%0,t0)



Figure 4.

If (zo,ty) € {v, > 0}, then v(z,t) — ¢(x — x2 + o, t — 12 + 1) has a local minimum at (z,t2),
and thus we get
—A¢(I0,t0) 2 0

If (zg,t0) € 0{u, > 0} and ¢ satisfies (1.1) with respect to v, at (zo,tp), then (zq,t2) €
0{v > 0} and the function ¢(x — x9,t —ts +1¢) satisfies (1.1) with respect to v at (xq,t2). Thus
v(z,t) — p(z — x9 + x9,t — ta +to) has its local minimum at (z, %), and this leads to the desired
inequality

max(—A¢, ¢ — [Do|*) (2o, to) > 0.

By definition, for Py = (zg,t) € 0{v, > 0} there is a point P, = (x9,%2) € 0{v > 0} such
that at Py the set {v, > 0} has an exterior space-time ellipsoid Ej

(x — 2)® + (t — t2)* < (r — 6t)?

and at P, the set {v > 0} has an interior space-time ball By of radius r — 0ty centered at Py
(see Figure 4.)

Let us denote Hy as the tangent hyperplane of Ey at Py and (v, m) as the inward normal vector
to Hy with respect to Ey at Py with |v| = 1. We call m as the advancing speed of the free
boundary v, at F,. Observe that the tangent hyperplane H, of By at P, has outward normal
vector (v',m—4), || = 1 with respect to Bs. (In other words, the free boundary of v, propagates
faster than that of v by d). In the following lemma we show that in fact the advancing speed m
is strictly positive.

Lemma 1.4 m > §. In other words, the free boundary of v, has positive advancing speed.

Proof.



If m < 6, then at P, = (z2,12) v has an interior ball By with negative advancing speed. Note
that by the lowersemicontinuity v(F%) = 0. Moreover, since v > 0 in By, v has a positive lower
bound in iBQ.

Now for 7 << 1, we consider h(z,t) on By N [ty — 7, t3] such that

—Ah <0 outside ;Bj

O<h<w inside 1B,

1
4

{h > 0} = Bz, |Dh| 7é 0. omn 832

(Refer Appendix A for the construction of A.)

Note that h < 0 outside By, and thus v —h > 0 on 0{v > 0} N {t < ¢y} except at P,. Also
by the maximum principle of harmonic functions, v — h > 0 inside By. Therefore v — h has its
local minimum zero at P, in {v > 0} N {t < t,}, but this contradicts the fact that at P,

—Ah <0, h,—|Dh]><—|Dh]*<0.

O

Next we prove that the limit of viscosity solutions of (PME),, as m — oo, if it exists, is a
viscosity solution of (0.2). We recall the definition of viscosity solutions for (PME),, in [CV].

A nonnegative function u € C(Q) is a classical moving free boundary solution of (PME),, if
(i) we C® ({u> 0}) solves the equation in the classical sense in {u > 0},
(ii) the free boundary of u, I' = 0{u = 0} N Q, is a C*! hypersurface in space-time, and
(iii) on I' we have u; = |Du|? and |Dul # 0.
Definition 1.5 (1) A nonnegative continuous function u defined in Q is a viscosity subsolution

of (0.2) if u < f on I'y and for every ¢ € C*'(Q) that has a local mazimum zero of u — ¢ at
(0, o)

(¢¢ — mpA¢ — [D¢|*) (zo, to) < 0.

(2) A nonnegative continuous function v defined in Q is a viscosity supersolution of (0.2) if
v>fonTy and

(a) for every ¢ € C*1(Q) that has a local minimum zero of v — ¢ at (zg,t9) € {v > 0}
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(¢¢ — mpA¢ — [D¢|*) (o, to) > 0.

(b) Any classical moving free-boundary solution that lies below v at a time t = t; > 0 cannot
cross v at a later time ty > tq.

The comparison principle and the uniqueness result for viscosity solutions of (PMFE),, are
proven in [CV]. Next we consider

uy(z,t) = imsupg, 5 (5 1) Um (Y, 5)
and
ug(z,t) = liminf(y o (20 Um(y,s), where (y,s) € Q.
Theorem 1.6 uy,uy are respectively a viscosity sub- and supersolution of (0.2).

To prove Theorem 1.6 the following lemma plays an important role.

Lemma 1.7 Let v be a viscosity supersolution (subsolution) of (PME),,. Suppose that ¢ is a
smooth function and v — ¢ has a local minimum (mazimum) in {v > 0} at (x¢,ty) € O{v > 0}.
If ¢ satisfies (1.1) at (xg,ty), then

(¢r — |D@[*) (o, to) > 0(< 0).

Proof.

1. We only prove the supersolution part. The subsolution part can be shown with a parallel
argument, by comparison with a supersolution of the form A(|z| — ¢t — 1), where ¢ > A > 0.

2. For r,0 > 0, we prove the lemma for

W(z,t) = inf v(y,7).

By _st (J:,t)

Then the lemma follows by first taking 6 — 0 and then » — 0. Suppose that W — ¢ has a
local minimum in {W > 0} at Py = (zo,%0) € O{W > 0} with ¢ satisfying (1.1). Suppose that
(¢ — |Do|?) (20, t0) < 0.

2. By adding €(t — to) — e€(z — z0)? to ¢ if necessary, we assume that W — ¢ has a strict local
minimum zero at P,. By condition (1.1), ¢, is nontrivial in {W > 0} and it has a smooth free
boundary near P.
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Let H be the tangent hyperplane of the free boundary of ¢, at P,. Let (v, @) be the inward
normal vector of H with respect to {¢, > 0} with |v| = 1. Then « is the advancing speed of
the free boundary of ¢. Note that & > d > 0 by Lemma 1.4.

3. Observe that from previous assumption we have

o = _¢t/¢u(x07t0) < ¢V(x0’t0)’

and therefore near (xg,t) we have the nontangential estimate

(1.2) W (z,t0) > ¢4 (,t0) > af(x — o) - V)4 + O(|lz — 20]?).

4. Next we introduce the Barenblatt solutions given by the formula

332

S(z,t;7,C) = (t+71) " (C — &m)+,

where A = (mn +2)"!',kx = A\/2 and C and 7 are arbitrary. They are classical solutions of
(PME),,. Observe that C controls the size of the support of S , and 7 controls the advancing
speed of the free boundary of S.

At t = to, by the regularity of the free boundary at Py the set {x : ¢(z,%y) > 0} has a space
interior ball B with radius 0 < r; < d;. Note that H N {t = to} is tangent to B at FPy. We may
replace origin so that (0,%,) is the center of B. Choose C, 7 such that supp S(z,t) = B and
the free boundary of S(z,t) at Py has the advancing speed «. Let H be the hyperplane with a
normal vector (v, a(1 —§)) such that HN{t =t} = HN{t =1,} .

Since the support of S is tangent to H N {t = t,} at Py and advancing faster than H near
Py, we have 0 < 0 < m/2 such that for k& = sinf the support of S(z,t) = kS(k™'z, k™ 't)
crosses H at P = (Z,7),T > t;. Note that 7 — #; as # — 7/2. Finally observe that supp

S(z,t) = (sinf)B C K, where K is a non-tangential space cone with vertex P, axis e; and
aperture 6. Note that € does not depend on the size of ry.

5. Since S(P) = 0 and S satisfies (PME),,, we have
Si/|DS|(P) = |DS|(P) = .

Due to (1.2) we can put S below W at ¢ = ¢, when r is small enough. By definition of W it
follows that a translate of S crosses the free boundary of v near the point P, which leads to a
contradiction. 0O

Proof of Theorem 1.6

1. First we show the supersolution part. Suppose that there is a smooth function ¢ such that
uy — ¢ has a local minimum zero at (zg,%) in {us > 0}. Adding €(t — t5) — e(z — z¢)? to ¢ if
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necessary, we assume that us — ¢ has a strict local minimum zero at (zg, to) N B, (o, to) for small
r > 0. Then for large enough m, along a subsequence u,, — ¢ has its minimum at (x,,%,) in
{Um > 0} N Br(xo,to) with (.’L'm,tm) — (.’L’(),t()).

3. If (zo,t0) € {ua > 0}, then (x,,,t,,) € {u, > 0} for large m. By definition

[ (90~ [D67) ~ 9 (s ) > 0

and since ¢(xg,tp) > 0, in the limit we get
—A¢($0,t0) Z 0
as desired.

4. Suppose that (zg,t) € 0{us > 0} and (1.1) holds for ¢. If we have
max(—A¢, & — |D¢|*)(xg,ty) < 0, then for large enough m

[¢¢ — (m — 1)pA¢ — |D|*)(@m, tm) < 0.

Thus (Zm,tm) € 0{um, > 0}. Moreover ¢ satisfies (1.1) at (x,,t,) for large m since ¢ is
smooth in its support. This and above inequality contradict Lemma 1.6.

5. To show the subsolution part, we first observe that for each 7" > 0 and for large m =
m(T) > 0 the family of sets ({u,, > 0} N {t < T}),, are uniformly bounded. This can be easily
shown by comparing u,, with a barrier function ¢ and using the finite propagation property
of {u,, > 0}. For example, we let p(x,t) = h(r(t)|z|), where h(r) = M? — r? and M large
enough that ug < ¢ at ¢ = 0. Now if we choose 7(t) to satisfy r(0) = 1 and r = e ®M*_ then on
0{p(z,t) > 0} = {lz| = M/r(1)},

o= —r'(t) Mo, > 2(901")2-

Thus ¢ is a supersoluton of (PME),, for large m = m(T), and {u,, > 0} C {¢ > 0} for
m > m(T) and ¢t <T. Similarly, we can also show that {u; > 0}N{t = 0} = {uy > 0}. Suppose
not, and there is a point zy such that ug = 0 in Do, (z¢) and u1(xg,t) > 0 for ¢ > 0. This leads
to a contradiction by comparing u,, with o(z,t) = M(r(t)|z — zo|*> — 7?), where M = M(r) is
large enough that uy < ¢ and r(t) = 1/(1 — M¢t).

The rest of the proof can be shown as in the supersolution part.

2 Comparison principle for separated initial data.

Definition 2.1 A pair of functions ug, vy are (strictly) separated if
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(i) the support of ug, supp(ug), is a compact subset of IR" and

supp (uo(z)) C Int(supp(vo(2)))-

(i) inside the support of ug the functions are strictly ordered:
up(z) < vo(z).

We represent such a strict ordering, or separation, by the symbol uy < vg.
Theorem 2.2 Let u,v be respectively viscosity sub- and supersolution of (0.2) in Q. If their
initial data are strictly separated (uy < vy,) then the solutions remain separated for all time:

u(z,t) < v(z,t) fort > 0.

To prove the theorem, we use sup- and inf-convolutions as in section 1. For technical reasons
concerning semicontinuous functions, we apply inf- and sup-convolution twice, first in the space
balls D,.(z,t) = {(y,t) : |z — y| < r?} and then in the space-time balls B,.(z,t) = {(y, s) :

|z — y|? + |t — s|* < r?}. More precisely, in the domain Q, = {x : |z| > 1+ 2r} x [r,7/d) let us
define functions Z and W as given below:

Z(z,t) = supg, (z1) U(Y, 5) where U(z,t) = supp, (54 u(y, 1),
Wi(z,t) =infp_ @y V(y,s) where V(z,t) =infp, 51 v(y,1).
Note that Z,U and W,V are respectively viscosity sub- and supersolutions of (0.2).
Suppose that u crosses v from below at some point. Then we have 0 < T' < oo such that
T = sup{t: u(z,7) <v(z,7),0 < T < t}.
Since {u > 0} N {t = 0} = {uo > 0}, v > u on HQ and u — v is upper semicontinuous, we can
take 7, d small enough that » < T < r/§ and W > Z on 9Q, x [r,T]. Now consider the contact

time

0<ty=sup{t: Z(z,t) < W(z,t)} <T.

Before proceeding to further arguments, we need the following two observations at ¢ = ;.

Lemma 2.3 For any T > 0,

HZ>0t>Tin{t=T}tC{Z>0;t<T}Nn{t="T}.
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Proof.

Suppose not. Then there is a point (z;,7) € 0{Z > 0} and h > 0 such that (xy,t) belongs
to the interior of {Z = 0} for T — h <t < T. If Z(xy,T) > 0, then we can pick (z},7T) €
0{Z(-,T) > 0} which belongs to the interior of {Z = 0} for T — h < ¢t < T. (Note that this is
possible since {Z(-,T) > 0} is bounded.) By definition of Z there is (z2,t;) € d{u > 0} such
that

(%) there is a cylinder C' = D,(x2) X [ta — h, 3] such that u = 0 in C for ¢ < t,.

Moreover, at (z2,t2) the set {u > 0} has a exterior cylinder C' = D,(z3) X [t2 — h, t2]. Now at
t =ty we can construct a strict superharmonic function ¢(x) = ¢(|z — x3|) in 2D,(z3) — D, (x3)
with the boundary data

¢=supu ond(2D,) and p=0 on dD,.
2D,

Due to (x), we can extend ¢(x,t) for ty — 7 < t < t5 with

p(2,t) = pr(k(t = t2)(Jx — 23] = 2r) + [& — z5]),
where k = (27)7! and ¢ > 0 = u for ¢ < t,. If we choose 7 sufficiently small than

@1 > kr = sup | Dy|*(z).
2D,

This choice of ¢(z,t) leads to a contradiction since u — ¢, has a local maximum in the set
(QDT —DT) N {u > 0} X (tQ —T,tg] at t = to.

O

By Lemma 2.3 and Lemma 1.4, {Z(-,%y) > 0} C {W(:,ty) > 0}. Consider Py = (x, ty), where
the nonneqative maximum of Z — W is attained in {Z > 0} N {t < to}. If Z(Py) > W(F) > 0,
at t = to the function Z — W has a maximum in {Z > 0} N {W > 0}. Then definition of Z, W
we get a contradiction by the maximum principle of harmonic functions. Hence W (FP,) = 0 and

Py € 0{Z > 0} no{W > 0}.
Lemma 2.4 Z(P)) =0.

Proof.

1. Suppose not. then Z(xg,ty) > 0. By definition there is (x1,t1) € {u > 0} with u(z1,%) =
Z(xo,to) > 0. Moreover, by definition of Z and by Lemma 1.4 there is a cylinder C' = D, (x5) X
[t1 — h,t1] such that C N {u > 0} = (z1,11).
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Figure 5.

2. Let ¢(z,t) = ¢(z) a smooth and strictly superharmonic function 2C' — C such that ¢ =0
on 0,C, ¢ > 0 outside C' and ¢ > u on the parabolic boundary of 2C. Since u — ¢ is positive
at (z1,t1), u — o has a positive maximum at (3, t3) in the set 2C' — C' and this contradicts the
definition of wu.

O

Now we come back to the analysis of W and Z at the contact time ¢t = 7. By Lemma 2.3
and 2.4, P, is the contact point of the free boundaries of W and Z and Z < W at t = ;. (From
now on we do not need the convolution in the space ball and therefore for simplicity we denote
U by u and V by v.) By Lemma 1.3, at P, the set {Z > 0} has an interior space-time ball of
radius 7, centered at P; € d{u > 0}. Also at P;, the set {u > 0} has an exterior space-time ball
By of radius r centered at Py (see Figure 5.)

By choosing appropriate origin and coordinates, we may assume that Py = (0,%) and space
projection of PyP; = de;, where e; = (1,0,...,0). Let us write z = (z;,2),2' € IR""". Finally,
if H is the tangent hyperplane to the interior ball of Z at P, let us write (e;,m) as the internal
normal vector to H with respect to {Z > 0} at Py with m = tan « for some 0 < o < 7/2. Then
m is the advancing speed of {Z > 0} and P, = (z1,t,) = (rcosa,0,%, + rsina),0 € IR" .

Moreover by Lemma 1.3 at P, the set{I¥ > 0} has a exterior space-time ball B centered at
P, € 9{v > 0}, and at P, the set {v > 0} has an interior space-time ball B, centered at Fj.
Note that the space projection of P, Py = dyeq, dy > 0.

Lemma 2.5 The tangent hyperplane H is neither vertical nor horizontal.

Proof.
1. By Lemma 1.4, m is bigger than § and therefore H is not vertical.

2. Suppose H is horizontal. Then {u > 0} has an exterior ball B; at P, with horizontal
tangency. Recall that by Lemma 2.3 21 € 0{u(-,t;) > 0} and by Lemma 2.4 u(z,t;) = 0.

15



After parabolic scaling (z,t) = (A(z — 1), N2(t—11) + 1), for any § > 0 we can build up a new
subsolution w in the unit cylinder C; = B; x [0,1] with P, = (0,1) € d{w(-,1) > 0},0 € R",
which takes on the value 0 on the bottom, and less than ¢ on the lateral boundary. Consider

8z, 1) = glle] + 70),

where g(r) : IRt — IR is such that

n —

1 1
g(1) > 4, g<Oif0<r<§, and — ¢" — g >0 forr > 0.

(For example, let g = 26(2 — r72").)

Consider ¢ = max(¢,0). Since P; € 0{w(-,1) > 0} and {#(-,1) > 0} C {|z| > 1/4}, we have
sup(w — ¢4) > w(P1) = 0in Cy. Observe that w < ¢, on the lateral boundary and bottom of
C). Therefore w — ¢ has a local maximum zero in {w > 0} N {t < T} at (z, 7).

Since —A¢ = —¢" — %=1g > 0,(z,T) € d{w > 0} N d{¢ > 0}. By taking small §, we can
make ¢’ s mall enough so that

6, — | Do = ig' —(g)2> 0 0n d{6 > 0},

which contradicts the definition of w. O

The following lemma is essential for proving Theorem 2.2. The main idea of the proof is drawn
from [CV], but we state the full proof to present the role of test functions. A nontangential
cone at P, is a space cone with vertex Py, axis e; and aperture 0 < 6 < m/2. Recall that we set
P() = (330,t0) = (O,t()).

Lemma 2.6 In any nontangential cone K,

Z
(2.1) liminf 2 10)

> 1
z—0,z€K m(x1)+ -

Proof

1. It will be convenient to displace the ¢ axis so that ¢t; =0, P, = (z1,%;) = (r cos ae, 0) and
Py = (zo,to) = (0, —rsin «). Suppose that (2.1) is not true. Then there is a sequence of points
A, = (21p, ) converging to 0 € IR" and lying in a nontangential cone K such that

(2.2) Z(Qn) <m(1—e€)(z1n)" for some € > 0
with @, = (An, ty). By definition of Z we have

u<m(l—e)(ry,)" in  B.(Qn)
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Besides © = 0 in B;. Moreover, since v = 0 at Py, at time ¢y the function W = 0 in the space
ball B’ of radius 0 < d < r — dty centered at @' and tangent to H at (0,%). Since Z < W
at t = t3 so does Z. By definition of Z we conclude that v = 0 in the set ¥ : union of the
space-time balls of radius r centered at the points of B'.

2. As a consequence of both estimates above and taking 1, = A > 0 small in (2.2) we conclude
that there is a set L = L, in space-time as portrayed in Figure 7 where u < uy = m(1 — ¢€)A.

Moreover, the boundary of L, contains a concave part closer to the origin, which is a piece of
the boundary part of 3 containing the point P;, and there we have u = 0. The farther boundary
part of Ly is formed by a piece of the sphere S,(Q,), boundary of B,(Q,) where u < uy. From
a straightforward computation it turns out that L, is of depth A and width O(v/)) in space.

Observe that ¥ contains B; with 90X N B; = {P}.

3. Consider a smooth function ¢ such that
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> (0 outside B,
o(x,1) { =0 on 0B.
—A¢ >0 outside B
(2.3) ¢ '
o(z,t) = o(r,t) where r = |z
ér =m(1 —€/3) at P;.

Since B has the outward normal vector (e;,m) at P;, we have

¢i/|D@|(Pr) = m > |DG|(P1) = ¢, (P1) = m(1 - ¢/3).

(See Appendix A for the construction of ¢.)

We compare ¢ with win L), = LN {—7 <t < 0}. First we compare them on the boundary
of Ly ,. Since ¥ contains By, ¢ > 0 on 9%, and thus ¢ is above u on X.

Next we compare them on the other part of the boundary, S,(Q,) N {—7 <t < 0}.

Claim: For \,7 > 0 (let er = \) small enough compared to e,

(2.4) d>m(l—eA on S, N{—7 <t <0}.

(Proof of the claim.)
By definition S, consists of points (x,t) such that
lz1 — A + |2’ — kAP + (t +rsina)? = r?
with £ : bounded independently of A. Then for d; = r cos «
z|? = 22 + (2)% = dF + 221\ + 2k2'\ — 2trsina — N\ (1 + k)2

Note that rsina = dym. In the first approximation we have z; = d; + A and 2’ = O(\/X)
from the previous argument. Therefore up to terms of higher order in A and —7 < ¢t < 0 we
have

lz| = di + X — mt + o(N).

Moreover
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Figure 8.

d((dy + A — mt)ey, t)
= @((di + Ne1, 0) +t(—me, + ¢:)((di + Nei, 0) + O(t?)
= ¢((d1 + N)e, 0) + t(—mg, + ¢;)(dre1, 0) + O(tA) + O(t?)
= A, (dre1,0) + O(N2, A, 72)
= m(1 - €¢/3)A +o())

>m(l—e)A for small enough A.

Hence at each time ¢ € [—7,0], # > u on 0L, , for small A and therefore

o> u in Ly ,.

But then v — ¢ has its maximum zero at P, in L, .. Since L, ; is a neighborhood of P; in
{u>0}N{0<t<t}, by definition of u we need

min(—Ag¢, ¢, — |De|*)(Pr) < 0,

which is not true.

Proof of Theorem 2.2.
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1. At Py = (x9,t3), for any 0 < ro < dy the set {x : v(z,t) > 0} has an interior space-time
ball By with radius ry (See Figure 8). Note that by definition Bs has the outward normal vector
(e1,m — &) at Py, i.e., By has the advancing speed (m — &) at P,. Since Z < W at t = 1y, by
Lemma 2.4 and the definition of W, for any ¢y > 0 there is 0 < 79 < dsy such that

(2.5) m(l — €)d(z,0BoN{t =s}) <w(z,s) for(z,s) € Bs..

2. Take 0 < €y < §/2 and consider ¢ such that

{ > (0 inside B,

Pl 1) —0 on 8B,

—Ap <0 outside 1B
(2.6) i e

gp(x, t) = QO(T, t)

—pr =m(l — &) on 0[By N {t = ty}].

(See Appendix A for the construction of ¢.)  Here r = |z — (|, C being the space projection
of the center of B;. Since B, has the advancing speed m — ¢ at ¢ = t5, we can choose 7 so small
that

(27) —QDt/(PT < m(l — (5/2) < =@, on 8B2 N {tg - T S t S tg}.

3. By (2.5) and the last condition of (2.6), for small 7 there is 1/4 < r < 1 such that

(2.8) o(z,t) <v(zx,t) on O(rBy) N{ty — 7 <t <ty}

Since ¢ = 0 < v on By, by the maximal principle of harmonic functions v —¢ > 0 on By —rBs
for t — 7 <t < ty. Thus the function v(z,t) — ¢(z,t) has a local minimum zero at P in the

closure of X5, where
22: (BQ_TBQ)ﬂ{tZ_TStStQ}.

However, by (2.6) and (2.7) we have
max(~Ap, ¢, — [Dy|*)(P2) <0,

which leads to a contradiction.
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3 Uniqueness and Existence results.

Due to Theorem 2.2 and the scaling properties of (0.2), we now complete the comparison
principle as below. For a real-valued function f(z,t) we define

f(z,t) = lim sup f(z,s); f(z,t)=lim inf f(z,s).

=0T t<s<tte = =0t t—e<s<t

Theorem 3.1 Let u, v be respectively viscosity sub- and supersolutions of (0.2) in Q with initial
data ug(x),ve(x). Suppose that {vy > 0} is bounded, vy € C*({vy > 0}) and

(3.1) |Dug| # 0 on 0{vy = 0}.

If ug < vy, then

u(z,t)

(VAN
[

(z,t);  w(z,t) <wv(x,t) fort>0.

Proof.

1. For € > 0, define
ve(z,t) = (1 + e)v(z, (1 + €)t + ).

Then v, is also a viscosity supersolution of (0.2) with the initial data

Ve(z,0) = (1 + €)v(z, €).

2. From (3.1) it follows that the initial free boundary of v expands with strictly positive speed
|Dvg|. Moreover v is harmonic in {v > 0}, and thus vy < v(-,€) for any ¢ > 0. Hence for any
€ > 0 we have uy < v.(+,0), and from Theorem 2.2

u(z,t) < ve(z,t) for t > 0.

Now we conclude by sending € — 0.
Remark.

If vy is a superharmonic function in {vy > 0}, by standard barrier arguments (for example
refer Chapter 2 of [GT]) it turns out that v satisfies the condition (3.1) if {vy > 0} satisfies the
interior ball property on its free boundary. (In other words, if {v > 0} has interior ball property
at every point on its free boundary.)
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Corollary 3.2 Let u,v be viscosity solutions of (0.2) with initial data vy given as in Theorem
3.1. Then u=v and u* = 1.

Due to Theorem 3.1 we can prove the following result. Recall that in our initial setting the
boundary of €2y has two components I'; and I'y, where ug = f > 0 on I'; and ug = 0 on T'.

Theorem 3.3 Let uy,(x,t) be the viscosity solution of (PME),, with u.,(z,0) = ug(x), where
uo(x) has a compact support with

—AUO =0 mn Q(),
(0.4)
|Dug| >0 on Ty

Consider uy, us defined as in Theorem 1.6. Then uq is the unique viscosity solution of (0.2)
with the initial data ug. Moreover we have Us = uq.

Proof

1. Let uy, uy be defined as in Theorem 1.5, where u,,(z,0) = ug(z). According to Theorem
1.5, uy (ug) is a viscosity subsolution (supersolution) of (0.2). We claim that u; = us = f on
0Q and u; = us = ugy at t = 0. The following lemma is easily deduced from the definition of u;,
ug and the stability property of the viscosity solutions (refer [CIL].)

Lemma 3.4 uq, uy respectively satisfies the following inequalities in the viscosity sense:

min(u; — ug, —Auq)(z,0) <0,

min(u; — f,—Au;) <0 onx €Iy,
max(us — g, —Aug)(z,0) >0 if us(x,0) > 0,
max(ug — Ug, —Aus, (us); — |Dus|?)(z,0) >0 if ug(x,0) =0,
max(ug — f, —Auy) >0 onx¢el}.

Remark.

In the lemma the PDEs on wuq,uy are used in the viscosity sense. For instance the first
inequality means that, if u; > uy at = = xy, then for smooth ¢ that has a local maximum of
uy(z,0) — ¢(zr) at x = zo in {ug > 0} we have —A¢p(zy) < 0.
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2. We apply Lemma 3.3 to show that vy =us = f onx € I'y and u; = uy = ug at t = 0.
Suppose that for some xy € I'; we have u;(zo,ty) > f(xo, o). Consider a smooth function ¢:
C?*({1 < |z| < 2}) solving the following Dirichlet problem:

p=rf=f on Iy ={[z] =1},
¢ =M =maxy—f on {|z|=2}, and
—Ap=1 in {1<|z]<2}.

where f¢ is C? in the neighborhood of I'y, and f¢ — f locally uniformly as € — 0. In fact ¢
is C? up to the boundary T'; (refer [CC].)

Since u; < M, by the maximal principle of harmonic functions u; (z,t) — ¢(z) has its positive
maximum in {1 < |z| < 2} x [0,%o] for small e. But this contradicts Lemma 3.3. We showed
that u; < f on x € I'y. Since u,,, = f on x € I'; for all m, we get u; > f, and thus we conclude
that vy = f on 0Q). Similarly we can also prove that us = f on 0Q).

3. Next suppose that u;(z,0) — ug(x) has a positive maximum at z = xy. Since the ini-
tial free boundary of (u,), moves with the normal velocity |Duyg|, it is easy to see that
{ui(z,0) > 0} = {up > 0}. If 2o € int{uy = 0}, then it contradicts the fact that u; is sub-
harmonic in a neighborhood of zy. Thus o € {ug > 0}. Let = Dug(zo) € IRY. Then there is
a sequence (x,y.) — (zo,xo) where the function

ui(x,0) = uo(y) — € |z —y + ep?

has a positive maximum in {ug > 0} x {uy > 0}.
By continuity of ug, for small €, u;(z¢,0) > ug(ze) > 0, and thus
—Au(z,0) <0.
Moreover, since |z, — y. + €u| = o(€?), we have uy(y.) = ug(xe) + eu® + o(€) > 0, and thus
—Aug(ye) =0 for small € > 0.
Now standard viscosity solutions argument (refer Lemma 3.2 in [CIL]) leads to a contradiction
as € goes to zero. We proved that u; < ug, and therefore u; = wy.

4. Finally suppose that us(x,0) — ug(z) has a negative minimum at z = z,. Note that
uo(zo) > 0 in this case, since uy > 0. If —Auy(xy) > 0 then we proceed as above to make a
contradiction. If not then uy(xy,0) = 0 and there is a smooth function ¢(z,t) such that uy — ¢
has a minimum at (zg,0) and —A¢ < 0,¢; — |Dd|* > 0 at (xo,0). This leads to a contradiction
since then for any A > 0 us + At — ¢ has a minimum at (zo,0) and we have
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(¢¢ — | Dg|*) (o, 0) > A.

5. Thus us = uy. Now we can apply Theorem 3.1 to show that u; < %y and u; < us, which
means that
u; = Uy and Uy = Uy.

Theorem 3.5 Let Iy be a closed C* hypersurface in Q. Then for given continuous boundary
data f(x) > 0 on Ty, there exists a unique viscosity solution of (0.2) with its initial free boundary
Lo and its initial data ug satisfying (0.4). In fact for any viscosity solution u of (0.2), its initial
data ug s a viscosity solution of

(3.4) —Auy=0 in {ug > 0}.

Proof.

1. We prove the second assertion first. Suppose we have a viscosity solution of (0.2) with
initial data uy and take a positive time sequence t,, — 0 as n — oo. Then by definition of u we
have

uy < lirgr_lggfu(x,tn) < linm_)s;ip u(z,tn) < uo,

and thus the sequence u,(x) = u(x,t,) and u,(z) = u(z,t,) uniformly converges to ug(z). Since
—Auyp(z) > 0 and —Au,(z) < 0in {u, > 0} for each n, we can conclude by the stability
property of viscosity solutions.

2. Recall that Q) is a subset of  such that 99y = I'y UT;. Since Iy, I'; is C!, we can solve
the Dirichlet problem

—AUO =0 in Qo,
(3.5) uy = f in I’y and
ug =0 on ['y.

Due to the regularity of 'y, the set {ug > 0} has the interior ball condition on its free
boundary and thus condition (0.4) holds. Now we apply Theorem 3.2 to obtain the unique
viscosity solution of (0.2).
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For a closed C' hypersurface Ty in {z : |z| > 1} and a positive continuous function f on I'y,
let Q4(To, f) = int{z : u(z,t) > 0}, where u(x,t) = u(Ty, f;x,t) is the unique viscosity solution
of (0.2) in Theorem 3.4 . From previous arguments we have the following results for €,:

Corollary 3.6  (a) If Q(To, f) C Qo(Lo, f), then

(T, f) € (T, f) fort > 0.

(b) If f(z) > g(x) > 0, then

Qt(FOag) G Qt(FOaf) fO’I" t>0.

Proof.

1. For (a), observe that uo (I, f) < (Lo, f) by the maximum principle of harmonic functions.
Now (a) follows from Theorem 2.1.

2. For (b), there is an € > 0 such that f > (1 +¢€)g on I'y. For this € define

(3.6) ue(Lo, g;2,t) = (1 + €)u(lo, g; 7, (1 + €)1).

Since |Du(x,0)| > 0 on I'y (refer the remark below Theorem 3.1), the initial free boundary
expands immediately and thus we have

Q(To, g;x,t) € Q(Ty, g5, (1 + €)t) for every t > 0.

On the other hand, note that u.(Ty, g;z,t) = u(To, (1 + €)g; x,t). From (3.6) and (a),
Qt(FOag;ma (1 + G)t) = Qt(FOa (1 + G)g;ﬂ?, t) - Qt(POa faxa t)

and hence we get the conclusion.

4 The Stefan problem

In this section we study the Stefan problem (0.3) stated as below:
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up—Au=0 in {u > 0},
(4.1) ug— |[Dul>=0  on d{u > 0},
u(z,0) = ug(x).

Definition 4.1 (1) A nonnegative uppersemicontinuous function u in IR"™ x [0, 00) is a viscosity
subsolution of (4.1) if (i) u(zx,0) = ug, (i) {u > 0}n{t = 0} = {uy > 0} and (i) for € C>*(Q)
that has a local maximum of

u—¢ in{u>0IN{t<t}NQ at (z0,1),

(a) (bt - A¢($0at0) < 0 ifU(.To, tO) > 07

(b) min(¢; — A, ¢y — |Dd|?)(zo,t0) < 0 if (zo,t0) € O{u >0}  and u(zo,ty) = 0.

(2) A nonnegative lowersemicontinuous function v defined in Q is a viscosity supersolution of
(4.1) if v(z,0) = uy and for ¢ € C*'(Q) that has a local minimum of

v—a0¢ in{v>0}N{t <t} NQ at (xg,to),

(a) o — AQS(.To,t()) >0 if (.To,t()) € {’U > 0},

(b)  If (wo,to) € O{v > 0} and if (1.1) holds, then
max (¢, — Ag, ¢y — |Dg|*) (o, o) > 0.

(8) u is a wviscosity solution of (4.1) if u* is a viscosity supersolution and u, is a viscosity
supersolution of (4.1).

Theorem 4.2 Let u,v be respectively viscosity sub- and supersolution of (4.1) in @ x (0, 00)
with strictly separated initial data ug < vy in 2. Then the solutions remain ordered for all time:

u(z,t) < v(z,t) fort > 0.

As before, in the domain Q, = {z : || > 1+ 2r} x [r,r/§) let us define functions Z and W
as given below:

Z(z,t) = SUPg, (z,1) Uly,s) where U(z,t) = SUPp, (,1) u(y, t),
Wi(z,t) =infp,_ @y V(y,s) where V(z,t) =infp, 50 v(y,1).
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Note that Z,U and W,V are respectively viscosity sub- and supersolution of (P). Since
ug < vo and u — v is uppersemicontinuous, Z < W at t = r if r is small.

Suppose that u crosses v from below at some point. Then we have 0 < T' < oo such that
T = sup{t : u(z,t) < v(z,t)}.

Since {u > 0} N{t =0} = {up > 0}, v > v on 0Q and u — v is upper semicontinuous, we can
take r, 0 small enough that r <T < r/6 and W > Z on 0Q, N [r,T]. Now consider the contact
time

0 < to=sup{t: Z(z,t) < W(x,t)} <T.

Lemma 4.3 For any T > 0,

HZ>0t>TIN{t=T}yC{Z>0;t<T}n{t=T}.

Proof.

Suppose not. Then there is a point (x1,7") € 0{Z > 0} such that (x1,t) belongs to the interior
of {Z=0}for T—h <t <T.If Z(x1,T) = 0 then we proceed as in Lemma 2.3 to conclude.
If Z(z,,T) =9 > 0, then

(%) there is a cylinder C' = D, (z1) x [T — h,T]| such that Z=0in C for T—h >t <T.

Now for T'—h < t < T we can solve the heat equation for ¢(z,t) in D,(z;) with the boundary
data bigger than Z(z1,T) on 0D, and with ¢(z1,7 — h) < §/2. Now if h is small enough then
©(z1,T) 4+ 6h < § and we have a contradiction.

O

Due to Lemma 4.3, {Z(-,ty) > 0} C {W(-,t5) > 0}. Moreover from Lemma 4.3 and by a
barrier argument we can easily show that the set {Z > 0} N {t < ¢} is bounded, and thus at
t =ty the intersection 0{Z(-,ty) > 0} NO{W(-,ty) > 0} is nonempty. By the maximal principle
of the heat equation and by a parallel result of Lemma 2.4, we can show that Z < W at t = t,.

Now to apply barrier arguments as in Theorem 2.2, we only have to choose appropriate
test functions, which are essentially (local) smooth sub- and supersolutions of (4.1). For the
construction of such functions, refer Appendix B.

Next we proceed to the comparison result for general initial data. For the Stefan Problem,
the scaling property of the Hele-Shaw problem (0.2) does not hold, and therefore more careful
analysis is required to prove the following theorem. Let ¥ be defined the same as in Theorem
3.1.
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Theorem 4.4 Let u,v be respectively viscosity sub- and super-solutions of (4.1) in Q with initial
data uo(z),vo(x). Suppose that vy satisfies

(4.2) vy € C*({vo > 0}) and — Avy > 0 on d{vy > 0}.

If ug < vy, then we have

Remark.

* Observe that from Theorem 4.2 and from the standard viscosity theory (for example refer
the proof of Theorem 4.6) the functions

U(z,t) = sup{a(z,t)|a: a viscosity subsolution of (4.1) with a(z,0) < vg(x)}

and
V(z,t) = inf{B(z,t)| : a viscosity supersolution of (4.1) with vg(x) < 3(z,0)

are respectively the maximal and minimal viscosity solutions with initial data vy(x) with U = U*
and V = V,. Therefore it is enough to prove the theorem when v = U and v = V. In the following
proposition we first prove that the free boundary 0{wv(-,t) > 0} strictly expands. Then we use
the main idea of the proof of the proposition to prove Theorem 4.2.

* The condition (4.2) is to guarantee the smooth behavior of v at t = 0. (4.2) can be replaced
by the short-time existence of a classical solution of (4.1) with initial data vy. Note that the
condition (4.2) implies (3.1), if the initial free boundary satisfies the interior ball condition.

In the following proposition we first prove that the free boundary of a viscosity solution strictly
expands. Then we use the main idea of the proof of the proposition to prove theorem 4.2.
Proposition 4.5 Let v be a viscosity solution of (4.1) with initial data vy, where (3.1) and (4.2)
holds for vy. Then the free boundary of v strictly expands, i.e.,

{v*(-,t) > 0} cC {v.(,t+s) >0} ift>0,s>0.

Proof.

1. Suppose not. Then there is T' < oo such that 7' = inf,{s € M}, where
M= {s:0{v"(-,s) >0} NO{v.(-,s+€) >0} #0for 0 < e < ey =¢€(s)}.
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Figure 9.

Note that by (3.1), T > 0.

For simplicity we first assume that 7' € M and €(T) = ¢y > 0. Observe that for § > 0 and for
a = a(d) satisfying
v(z,0) < (1 4+ a)vi(z,€) for0<e<$

we have v*(z,t) < (1 4+ a)v.(z,t+€) for t < T, 0 < € < 6 by the maximum principle of heat
equation.

2. Now consider the function

w(z,t) = (14 a)v.(z, (1 + )t — F)

where a = a(e) and 3 is such that (14 )T — 8 =T + € (see Figure 9.) Take 7 so small
that at t =T — 7 we have t < (1 4+ «)t — 3, and thus v*(z,T — 7) < w(xz,T — 7). Observe that
w satisfies

wy — (1 + a)Aw >0 in {w > 0},
@ {

max(w; — (1 + a)Aw, w; — |[Dw|?) >0 on o{w > 0}.
Take r > 0,0 < § << r small enough that

W(z.t)= inf w(y,s)

Br—ét(l"t)

and

Z(z,t) = sup v*(y,s)
By (z,t)
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satisfies Z < W7 at t =T — 7. By definition, Z crosses W from below at T'— 7 <t < T. If
Z crosses W with Z =W > 0 at t = t,, then for
Wy = inf (1 + a)v.(z,t +7)
By _s¢
with v such that ¢ty +v = (1 + )ty — S (see figure 6), Z — W5 has a local maximum zero at
t =tyin {Z; > 0} N {t < to}. Observe that for T" < t < ¢y, the free boundary of Z doesn’t

cross Wy since t + v > (1 + )t — 3 for t < ty. But this contradicts the fact that Z; — W5 is a
subsolution of the heat equation in {Z; > 0} C {Wy > 0} for T — 7 < t < ty.

3. Thus the contact point is on the boundary: in other words, W and Z intersect at Py, =
(xo,to) on the free boundary with Z < W for T — 7 < t = t; < T. Thus we expect the free
boundary of Z to advance faster than that of W at the contact point . But roughly speaking,
the free boundary of W advances with speed larger than |DW |+ §, whereas that of Z advances
with speed smaller than |[DZ|. This implies that |[DW| < |DZ|, which contradicts the fact that
Z < W for t < ty. Following the steps of the proof for theorem 2.2, a contradiction occurs if
there is a corresponding test function for (4.3) to compare with W. Such test functions can be
built with a slight modification from the construction in Appendix B. Now we proceed as in the
proof of theorem 2.2 to conclude.

4. To prove the general case, i.e. when T' ¢ M, we argue at time ¢t = T instead of ¢ = T and
replace t =T — 7 by t =T where T} is given as

Ts = iIslf{S 1 0{v*(-,s) > 0} N O{v.(-, s +9) > 0} # 0}.

(For details refer the proof of theorem 4.4 below.) To apply above arguments we only need
to show that if § is small enough then there is & > 0 such that

(4.3) vo < (1 4+ a)vi(z,€) for 0 < e <4, and a|T —Tj| < 0.

This is always possible if Avy > 0, since then the interior regularity of v at ¢ = 0 and straight-
forward computation implies that we can choose o = 0(9). Thus we assume that Av, is negative
at some point and therefore at that point v is decreasing. Let Z = Z(J) be the point where
v«(z,0) — v(z,0) has its negative minimum. Note that by (4.2) v strictly increases near the free
boundary for 0 < ¢ < 7 for small 7 and thus vy(Z) > ¢, for small §, where ¢y: independent of 4.
Now if we take 0 so small that |T — Tj| < 1/4M, where M = —k/cy > 0 and & is the strictly
negative minimum of Awvy, then o = 2M§ satisfies (4.3). O

Now we turn to prove Theorem 4.4.

Proof of theorem 4.4
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1. As mentioned above, it is enough to consider the case when v = U and v = V. (In
particular v(z,0) = u(x,0) = vy and v < u.) For given 4, take o > 0 so that

vo(z) < (1 + a)vi(z,€) for 0 < e <.

2. Let
vs(x,t) = (1 + )v(z, t +9).

Suppose that u crosses v from below at ¢ = T. Then for small § > 0, u crosses vs at
P = (.’13(5, T(g), where T' < Tj.

As shown above, we can choose § small enough so that a(7T5 —T) < §. As in lemma 4.3 we
consider
w(x,t) = vs(z, (1 + a)t — aTy).

3. Then u(z,T) < w(z,T) and w crosses u from above at P = (z,T) with T < T < Tj. If
u=w >0 at P, then
flz,t) =u—(1+a)v(z,t+7)=0 at P,

where v = 7; is chosen to satisfy f(z,t) = (u — w)(z,t) at t = T. Note that f is a subsolution
of the heat equation in the domain {u > 0} x (7', T]. From the choice of o and by the fact that
vy<6u<(A+a)v(z,t+y)att=T. Alsofor T <t < T, we have (1+a)(t—T)+T+0 < t+~
and thus

{u(z,t) > 0} ¢ {w(z,t) > 0} C {v(z,t+7v) > 0}.

This and the maximal principle of the heat equation lead to a contradiction.

4. Hence u = w = 0 at P, i.e., the contact point is on the free boundary. Now we proceed as
in Proposition 4.5 to get a contradiction, observing that v and w have the same motion law on
the free boundary.

O
Corollary 4.6 If u,v are lowersemicontinuous viscosity solutions of (4.1) with initial data vy,

then we have
u=v andi=u".

Theorem 4.7  Let [y be a closed CY' hypersurface in IR™ and Let Qy be the region bounded
by Ty. Then there exists a unique lowersemicontinuous viscosity solution v of (4.1) for given
ingtial data ug > 0 with {ug > 0} = Qo and with the condition (4.2).
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Proof

1. We apply Perron’s method to show the existence part. First consider ¥: a solution of
heat equation in Qg = o X (0, 00) with initial data uy and zero on the lateral boundary. Then
U(z,t) is a supersolution of (4.1) since ¥; — |Dw)|? = —|Dv|? < 0 on 9{¥ = 0}. Let

U = sup{z : z is a subsolution of (4.1), 2y =wup and ¥ < z.}

From barrier arguments at each point on I’y one can easily check that U*(z,0) = ug(x) and
{U* > 0} = {up > 0}. Since U is a supremum of viscosity subsolutions, it follows that U* is a
viscosity subsolution with initial data ug. Hence by definition of U we have U = U™.

2. Next we claim that

U.(z,t) = liminf U(y,s) is a supersolution of (4.1).

(y,8)—= (1)

Since ¥ < U, we get U, = ug. We only have to show that U, is a supersolution on the
free boundary of U,. (For the arguments in the interior of positive set see for example [CIL].)
Suppose not. Then there is a smooth function

(z,t) = s(t —tg)+ < p,x — 9 > +1/2 < X(x — 30), . — 29 > +o(|x — 20|? + [t — to]),

where (s,p, X) € IR x IR" x S™ such that U, — ¢ has its local maximum zero in
{U, > 01N {t <t} NQ at (xg,t) € 0{U, = 0}, ¢ satisfies (1.1) and

(4.4) s—[p>>0 and — traceX > 0.
Here S™ is the set of n X n symmetric matrices. Then, by (4.4) and (1.1), the function
Usy(w,t) = (¢, t) + 6 — (|2 — zol* + [t — to[*))+

is a supersolution of (4.1) in B, = {(z,t) : |z — 20>+ |t —to|* < r*} for all small r, 4,y > 0. Note
that by (1.1), we can choose § = d; > 0 such that U = 0 outside of {U > 0} U B, ,. Finally,
observe that by definition there is a sequence (zy, t,) — (o, to) such that U(z,, t,) — U.(xo, to)
and thus

—6 = Hm (U(@p, tn) — Uz, t,)) > Ulwo, to) — U(zo, to).

n—0o0

Hence we have a bigger subsolution U, if we let

max{U,U} if |z — zo|> + |t — 1|2 < 2,
Us(z) =
U(x) otherwise.
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with Uy = U on 0@ for small . This contradicts the definition of U.

3. By Theorem 4.4 we obtain Ux < U,, and therefore U* = U, = U,* and v = U, is our
desired solution.

Appendix

A Construction of h, ¢ and .

Here we construct our test functions in section 1 and section 2, based on a space-time ball
B. For simplicity we set B: a unit space ball centered at the origin. First we construct ¢ in
the Proof of Lemma 2.4 based on B = B;: an space-time exterior ball of 0{u > 0} at P;. We
will specify later that we also construct A in the proof of Lemma 1.3 with a slight modification.
For convenience we may assume that B; = B;(0,0) is a unit space-time ball centered at the
origin, with P, = (cos aey,sina) € 0B; for some 0 < a < /2. Note that in this case we have
m = tana > 0 as the advancing speed of 0{u > 0} at P;.

At first we solve the ODE

n—1

Orr + ¢, =0, where r > 0.

Then we get ¢o(r) = —Inr if n =2 or ¢o(r) = r>" if n > 2. For r > 0, let

Inr —rt if n=2,
(151(7“):{

2 —r2mn_pl=nif > 2.
For z € IR", let

1 1
#2(z) = p1((2% + ...+ 22)2)  outside ZBl(O).
then for r > 1/4, ¢o, > 0 and

1

n —
—A¢y = =1 4r — T¢1,r =(n—-1r 7" >0.

Since ¢o, > 0 on 05B;(0), we can extend ¢y to 1B;(0) so that
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>0 outside Bi(0),
bo() =0 on 0B;(0),
<0 inside Bi(0).

Now to extend it to the space-time ball B;(0,0)/{t = £1}, define

After multiplying a constant depending on m, for given € > 0 we get

> (0 outside By,
o(z,t) {: on 0By,

<0 inside B,

(A.1) o(z,t) = o(r,1), where r = |z,
—A¢p >0 outside ti,
¢r =m(l —€/3) on 0B; N{t =sina}.

In particular at P;,

o _ P

¢ D]

m > ¢, = |Dg| > 0.

Thus ¢ is a local supersolution of [HS] near P;. For constuction of i in Lemma 1.3, instead
of the last condition in (A.1) we put

B.

A~ =

0 < ¢ <infu on
B

N

(This is possible since v > 0 in B.)

Next we set B = By as in the proof of Theorem 2.2, where Bs is the interior ball of {v > 0} at
P, € 0{v > 0}. Recall that at t = t,, B, propagates with normal velocity m(1 — ¢). By letting
¢ = —¢ and multiplying a constant, we can construct ¢ such that
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>0 inside B,
o(z,t) {: 0 on 0B,
<0 outside B.
(A.2) -Ap <0 outside 1B,
o(z,t) = o(r,t) where r = |z,
—pr=m(l —¢), € <d/4 on d[BN{t =t}

Observe that at t =ty = sin a,

Pt Pt
—— = =m(l—46/2).
¢r Dyl (1=672)

Thus for 7;0 small enough and 0 < €y < §/2 we get

_7 <m(1—-9/2) < —p, ondBN{te—7 <t <t}
Pr

B Test functions for the Stefan problem

Here the test functions used in section 4 are constructed. Observe that for the supersolution
part, for m > 0: the advancing speed of the free boundary at P;, we can simply use the same
function ¢ constructed in previous section, since we have ¢, = m|D¢| > 0 at P; and thus
¢y — A¢ > 01in {¢ > 0} in a neighborhood of P;.

Therefore we only have to construct a local subsolution ¢ in a neighborhood of P, = (x4, 15) €
0{v > 0} for the proof of Theorem 4.2. Recall that at P, {v > 0} has an interior space-time
ball B, with its advancing speed m — 6. We consider S such that

T + M8

SN{t=ty+s}= B,

T

where 71 is the radius of B, m; = m — 6/2 and B, where B = By N {t = ty}. Note that
SN[ty —7,t5] C By for small 7 > 0. Let ¢(gzx,t) = @(r — myt), where r = |x — ¢|, ¢ is the center
of B, and solve for ¢, — Ap < 0in S —1/4S. For convenience, we take ¢ = 0, r; = 1 and ¢, = 0.
Then we get

o(z,t) = @o(r — mt) + e(r? — (myt + 1)?),
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where € > 0 and

1
wo(r) :/ s"e T ds.

After multiplying a constant, for small € and for t € [ty — 7,t5], we get

0 inside S—18
oo {2 i
ples1) = on 0S.
—Ap <0 outside 15,
(B.1) oY R
ol,1) = o, 1 where 7 = [z,
—pr=m(l —¢€), € <d/4 on 0S N{t = to}.

Note that for small 7 we have

(pt/‘DQO‘ <m; < —@, on 8Sﬂ{t2—7§t§t2}

Now we proceed the same as in the proof of Theorem 2.2 to show that for small 7, we have
p<wvon (S—rS)N{ty—7 <t <ty}. Thus ¢ crosses v from below at P», and this leads to
a contradiction since ¢ is a (strict) local subsolution of (4.1).
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