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Abstract

In this paper we study the long-time behavior of solutions of the
one phase Hele-Shaw problem without surface tension. We show that
after a finite time solutions of the Hele-Shaw problem become Lipschitz
continuous with nondegenerate free boundary speed. It then follows
that after a finite time the solution and the free boundary become
smooth in space and time.

0 Introduction

Let K = {x ∈ IRn : |x| = 1} and suppose that a bounded domain Ω
contains K and let Ω0 = Ω − K and Γ0 = ∂Ω (see figure 1). Note that
∂Ω0 = Γ0∪∂K. Let u0 be the harmonic function in Ω0 with u0 = f ≡ 1 > 0
on K and zero on Γ0. In addition we suppose u0 satisfies

(I) |Du0| > 0 on Γ0.

     
0

0 >0

Ω 0

Γu

u 0=0

K

Figure 1.

1



The classical Hele-Shaw problem models an incompressible viscous fluid
which occupies part of the space between two parallel, narrowly placed
plates. In this case u0 denotes the initial pressure of the fluid and f de-
notes the rate of injection from ∂K into IRn − K. As more fluid is injected
through a fixed boundary, the region occupied by the fluid will grow as time
increases. Assuming no surface tension, then the pressure of the fluid u(x, t)
solves the following problem:

(HS)



























−∆u = 0 in {u > 0} ∩ Q,

ut − |Du|2 = 0 on ∂{u > 0} ∩ Q,

u(x, 0) = u0(x); u(x, t) = 1 for x ∈ ∂K.

where Q = (IRn −K)× (0,∞). We refer to Γt(u) := ∂{u(·, t) > 0}− ∂K
as the free boundary of u at time t. Note that if u is smooth up to the free
boundary, then the free boundary moves with normal velocity V = ut/|Du|,
and hence the second equation in (HS) implies that V = |Du|.

The short-time existence of classical solutions when Γ0 is C2+α was
proved by Escher and Simonett [ES]. When n = 2, Elliot and Janovsky
[EJ] showed the existence and uniqueness of weak solutions formulated by a
parabolic variational inequality in H1(Q). For our investigation we use the
notion of viscosity solutions, which have been recently introduced in [K1]
(also see section 1.)

In general one cannot expect the free boundary to be smooth, mostly due
to the collision between parts of the free boundary. In fact one cannot expect
the solution u to be continuous in time (see [K1] for a counterexample).
Nevertheless it is observed (see Theorem 2.2) that after t > T0, where T0

is the time when the positive set of a solution u overflows the smallest ball
where its initial support is contained, the free boundary becomes starshaped
and thus there would be no more collision of the free boundaries. Based
on this observation we will then show that after some time the solution u
become Lipschitz continuous and the spatial gradient of u is nondegenerat up
to the free boundary. Based on these properties, further regularity analysis
in [K2] yields that u is indeed a classical solution and the free boundary is
smooth after t > T0.

Similar results are proven in [CVW] for viscosity solutions of the Porous
Medium equation

(PME) ut − ∆(um) = 0; u ≥ 0,
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using barrier arguments and estimates for the derivatives of u. For (HS)
our arguments are simpler because our solution is harmonic at each time
and therefore the solution is determened solely by the geometry of the free
boundary at a fixed time and the fixed boundary data.

In section 1 we recall the properties of viscosity solutions of (HS) and
introduce several notations used in the following sections. In section 2 we
prove the Lipschitz continuity of the free boundary with bounds for the
propagation speed. In particular it follows that u is continuous for t > T0.
In section 3 The upper and lower bounds for |Du| are obtained near the free
boundary of u. Here we also state the further regularity result obtained in
[K2].

Remark.
1. If the fixed boundary data f on ∂K is not constant or if K is not

starshaped, then one cannot expect the free boundary to be starshaped even
for large times. If f = f(t) > 0 is a smooth function of time, then one can
use the scaling

ū(x, t) := a(t)u(x,

∫ t

0
a2(s)ds), a(t) = 1/f(t),

to obtain corresponding results.
2. Throughout the paper condition (I) is assumed to guarantee the

lower bound of the propagation speed for the free boundary (see Lemma
2.4). Recently it is proved in [CJK] that such lower bound can be obtained
for initially Lipschitz domains with small Lipschitz constant. This result
and theorem 2.2 suggests that our result on the large time behavior holds
for general initial data without condition (I).

1 Preliminaries

In addition to the terms and conditions introduced in the introduction, we
will use the following notations:

• Dr(x0) = {x ∈ IRn : |x − x0| < r}, Dr = Dr(0);

• Br(x0, t0) = {(x, t) ∈ IRn × IR : |(x, t) − (x0, t0)| < R}, Br = Br(0);

• W (θ, ν;x0) = {y ∈ IRn : cos(y − x0, ν) ≥ cos θ}, 0 ≤ θ < π.

• Two functions u0, v0 are (strictly) separated (denoted by u0 ≺ v0) if
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(i) the support of u0, supp(u0) = {u0 > 0}, is a compact subset of IRn

and

supp(u0(x)) ⊂ Int(supp(v0(x))).

(ii) inside the support of u0 the functions are strictly ordered:

u0(x) < v0(x).

• For a nonnegative real valued function u(x, t) defined in a cylindrical
domain D × (a, b),

u∗(x, t) = lim sup(ξ,s)∈D×(a,b))→(x,t) u(ξ, s);

Ω(u) = {(x, t) : u(x, t) > 0}, Ωt(u) = {x : u(x, t) > 0};

Γ(u) = ∂{(x, t) : u(x, t) = 0}, Γt(u) = ∂{x : u(x, t) = 0};

Next we recall the definition of viscosity solutions of (HS) from [K1].
Let Q = (IRn − K) × (0,∞) and let Σ be a cylidrical domain D × (a, b) in
IRn × (0,∞).

Definition 1.1 (1) A nonnegative upper semicontinuous function u defined
in in Σ̄ is a viscosity subsolution of (HS) in Σ if

(a) for each a < T < b the set Ω(u) ∩ {t ≤ T} is bounded;

(b) for every φ ∈ C2,1(Σ) such that u− φ has a local maximum in Ω(u) ∩
{t ≤ t0} ∩ Σ at (z0, t0),

(i) −∆φ(z0, t0) ≤ 0 if u(z0, t0) > 0;

(ii) min(−∆φ, φt − |Dφ|2)(z0, t0) ≤ 0 if (z0, t0) ∈ Γ(u), u(x0, t0) = 0.

(2) A nonnegative lower semicontinuous function v defined in in Σ̄ is a
viscosity supersolution of (HS) in Σ if for every φ ∈ C 2,1(Σ) such that
v − φ has a local minimum of in Ω(v) ∩ {t ≤ t0} ∩ Σ at (z0, t0),
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(i) − ∆φ(z0, t0) ≥ 0 if (z0, t0) ∈ {v > 0},

(ii) If (z0, t0) ∈ ∂{v > 0}, |Dφ|(z0, t0) 6= 0 and
{φ > 0} ∩ {v > 0} ∩ B(z0, t0) 6= ∅ for any ball B(z0, t0),

then

max(−∆φ, φt − |Dφ|2)(z0, t0) ≥ 0.

(3) u is a viscosity subsolution of (HS) with initial data u0 and fixed boundary
data 1 if

(a) u is a viscosity subsolution in Q̄,

(b) u = u0 at t = 0; u ≤ 1 on ∂K;

(c) Ω(u) ∩ {t = 0} = Ω(u0);

(4) u is a viscosity supersolution of (HS) with initial data u0 and fixed bound-
ary data 1 if v is a viscosity supersolution in Q̄ with v = v0 at t = 0 and
v ≥ 1 on ∂K.

(5) u is a viscosity solution of (HS) if u is a viscosity supersolution and u∗

is a viscosity subsolution of (HS).

Throughout the paper we keep the conditions on u0 and notations in
the introduction. The following theorem (theorem 2.2 in [K1]) plays an
important role in our analysis.

Theorem 1.2 Let u, v be respectively viscosity sub- and supersolutions of
(HS) in Q with initial data u0(x), v0(x) and fixed boundary data 1 on K.
Moreover assume that v > 0 on Γ0(v) for t > 0, i.e. the support of v strictly
expands at t = 0.

(i) If u0 ≺ v0, then u(x, t) ≺ v(x, t) for t > 0.
(ii) If u0 ≤ v0, then

u(x, t) ≤ v(x, t + ε) for ε > 0, t ≥ 0.

(iii) There exists a unique viscosity solution v(x, t) of (HS) in Q with
initial data v0. Moreover the positive set Ωt(v) strictly expands in time,
i.e.,

Γs(v) is a compact subset of Ωt(v) for 0 ≤ s < t.
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We also state the local version of theorem 1.2, whose proof is parallel to
theorem 1.2.

Theorem 1.3 (comparison principle) Let u, v be respectively viscosity
sub- and supersolutions in Σ with initial data u0 ≺ v0 in D. If u ≤ v on
∂D and u < v on ∂D ∩ Ω̄(u) for a ≤ t < b, then u(·, t) ≺ v(·, t) in D for
t ∈ [a, b).

For the rest of our paper we denote u as the unique viscosity solution of
(HS) with fixed boundary data 1 and the initial data u0 satisfying (I). Due
to theorem 1.2, the following properties holds for u:

Lemma 1.4 (i) u is continuous at t = 0.
Moreover u(x, t) = 1 for x ∈ ∂K and u(x, t) = 0 for (x, t) ∈ Γ(u).

(ii) u is superharmonic in Ω(u) and u∗ is subharmonic in Q.
Moreover Ω̄(u) = Ω̄(u∗) and Γ(u) = Γ(u∗).

(iii) u is harmonic in Ω(u). Indeed u(x, t) = ht(x) at each time t > 0,
where

ht(x) = inf{α(x) : −∆α ≥ 0 in Ωt(u); α = 1 on ∂K; α ≥ 0 in Γt(u).}

Proof
1. (i) follows from the definition of u. (ii) follows since due to theorem

1.2 (ii)-(iii)

u(x, t) ≤ u∗(x, t) ≤ u(x, t + ε) for any δ, ε > 0.

2. Let h(x, t) = ht(x) be defined as above for t ≥ 0. It can be checked
that h(·, t) is positive and harmonic in Ωt(u) (see Chapter 1.3 of [T] for
example.) From definition of h it follows that h(x, t) ≤ u(x, t). On the other
hand by theorem 1.2 u∗(x, t− ε) ≤ u(x, t) for t > ε, and thus u∗(x, t− ε) = 0
on Γt(u). Thus again by definition of h we obtain u∗(x, t − ε) ≤ h(x, t) for
any small ε > 0. Now it follows from the lower semicontinuity of u that

u(x, t) ≤ lim
ε→0

u∗(x, t − ε) ≤ h(x, t) for t > 0,

which leads to h = u for t ≥ 0. 2
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2 Lipschitz continuity of the free boundary

Since Ω0 is bounded, we may assume that Ω0 ⊂ DR0
for some R0 > 0.

In this section we would like to show that the free boundary Γ(u) becomes
Lipschitz continuous in space and time once it is out of DR0

. First we state
the following lemma, which can be proven by a reflection argument and
by Theorem 1.2. For detailed proof we refer to [AC], Proposition 2.1 and
Lemma 2.2 where a parallel result is proven for u: a solution of (PME).

Lemma 2.1 For |x0|, |x1| > R0 with (x1, t) ∈ Ω̄(u)∩Q the following holds:

If cos(x1 − x0, x0) ≥ R0/|x0| then u∗(x1, t) < u(x0, t + δ) for δ > 0.

Let us define

(2.0) T0 = t(u0) = inf{t > 0 : Ωt(u) ⊃ D̄R0
} > 0.

By comparing u with a radially symmetric solution of (HS) with initial
data less than u0, one can easily show that T0 < ∞.

Theorem 2.2 For T0 < t ≤ t ≤ t̄ < ∞ the free boundary Γ(u) is repre-
sentable in spherical coordinates of the form

r = g(θ, t)

where g is Lipschitz continuous in θ and t. Moreover g(·, t) is uniformly
Lipschitz continuous with Lipschitz constant L in θ for t ≥ t with L → 0 as
t → ∞.

Proof
1. First we show that Γt(u) is starshaped and Lipschitz continuous at

each time t > t > T0. For T > T0, it follows from Lemma 2.1 that

u∗(x, T ) < u(
x

1 + ε
, T + δ) for x ∈ ΓT (u∗).

for any δ > 0 and small 0 < ε < ε(T ). Also

u∗(x, T ) < 1 = u(x/(1 + ε), T + δ) on {x : |x| = 1 + ε}.

Then the maximum principle for harmonic functions yields

u∗(x, T ) ≺ u(x/(1 + ε), T + δ) in |x| ≥ 1 + ε.
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2. Since

w(x, t) = u(
x

1 + ε
,
t − T

1 + ε
+ T + δ)

is a viscosity supersolution of (HS) in {x : |x| ≥ 1 + ε} × [T,∞) with
w = 1 ≥ u on {x : |x| = 1 + ε}, we have

(2.1) u∗(x, t) ≺ w(x, t) for {x : |x| ≥ 1 + ε} ∩ {t ≥ T}.

For given ε > 0 and α > 0, we can choose δ = αε/(1 + ε) such that
(t − T )/(1 + ε) + T + δ = t at t = T + α and thus due to (2.1) it follows

(2.2) u∗(x, T + α) ≺ u(x/(1 + ε), T + α) for any ε, α > 0.

In particular (2.2) implies that for t > T0 our solution u(·, t) is decreasing
in radial directions and thus Γt(u) is representable by spherical coordinates
r = g(θ, t) = g(θ, t) > R0.

3. Due to Lemma 2.1 for any direction p ∈ IRn such that cos(p, x) ≥
R0/|x| we have

u∗(x + εp, t) < u(x, t + δ) for ε > 0

if |(x + εp)|, |x| > R0 and (x + εp, t) ∈ Ω̄(u).
Hence for x ∈ Γt(u),T0 < t ≤ t there exists ε0 > 0 such that for 0 ≤ ε <

ε0 and δ > 0

(2.3) u∗(x + εp, t − δ) < u(x, t) if (x + εp, t − δ) ∈ Ω(u).

This implies that u(x+ εp, t− δ) = 0 for above ε, p, δ given in (2.3) and thus
u(x + εp, t) = 0 by the lower semicontinuity of u.

In other words at each point x ∈ Γt(u) there is θ0 = θ(|x|) = cos−1(R0/|x|)
such that

u(x, t) = 0 for y ∈ W (θ0, x/|x|;x), |x − y| < ε0.

On the other hand by similar argument it can be easily seen that

u(z, t) > 0 for z ∈ W (θ0,−x/|x|;x), |x − z| < ε0.

This leads to the Lipschitz continuity g with respect to θ. Observe that
the Lipschitz constant of g(·, t) only depends on θ0, which can be chosen as

θ0 = θ(t) = cos−1[R0/r(t)],
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where r(t) = inf{|x| : x ∈ Γt(u), t = t} > R0. Since r(t) → ∞ as t → ∞,
it follows that θ0 → π/2 as t∞.

4. It remains to show that g is Lipschitz locally in time. We observe that
due to (2.1), If (x0, t0) ∈ Γ(u), t0 > T0 then u((1+ε)x, (1+ε)(t−T0)+T0) = 0
for ε > 0. This leads to the local Lipschitz continuity of f in time, i.e.,

|g(θ, t) − g(θ, t0)|

|t − t0|
≤

g(θ, t0)

t0 − T0
if T0 < t.

2

Due to the Lipschitz continuity of the free boundary, we are now able to
show the following properties of u:

Proposition 2.3 (i) u(x, t) is continuous for t > T0:
(ii) If |x0|, |x1| > R0 and cos(x1 − x0, x0) ≥ R0/|x0| then

u(x1, t) ≤ u(x0, t) for δ > 0.

(iii) for T > T0, 0 < ε < ε0(R0) and |x| ≥ R0

(2.4) u(x, t) ≤ u(x/(1 + ε), (t − T )/(1 + ε) + T ) for t > T.

Proof
1. (ii) follows from (i) and Lemma 2.1.
2. By Lemma 1.3 (iii), at each t > 0

u(x, t) = inf{α(x) : −∆α ≥ 0 in Ωt(u);α ≥ 1 on ∂K;α ≥ 0 on Γt(u).}

For t > T0, since Γt(u) is Lipschitz continuous, Perron’s method (see
Chapter 1.3 of [T] for example) yields that u(·, t) is continuous in Ωt(u) and
harmonic in Ωt(u) with u = 1 on ∂K and u = 0 on Γt(u).

3. To prove continuity of u in time, let us pick (x, t0) ∈ Ω(u) such that
t0 > T0. due to theorem 1.3 (ii) u∗(x, t0 − δ) ≤ u(x, t0) for any δ > 0. On
the other hand from (2.2) we have u∗((1 + ε)x, t0 − δ) ≤ u(x, t0 − δ) for any
ε > 0 and 0 < δ < t0 − T0. Hence due to theorem 1.2 (ii)

u∗((1 + ε)x, (1 + ε)(t − t0 + δ) + t0 − δ) ≤ u(x, t) for t ≥ t0 − δ.

Now evaluating above inequality at t = t0 − ε/(1 + ε)δ, we obtain

u((1 + ε)x, t0) ≤ u(x, t0 −
ε

1 + ε
δ.)
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Since ε, δ are arbitrary, we conclude that

u(x, t) = lim
ε→0

u((1 + ε)x, t0) ≤ lim
ε→0

u(x, t0 − ε).

Thus u(x, t) = limε→0 u(x, t − ε) and from similar argument it follows
that

u(x, t) = lim
ε→0

u(x, t + ε).

Thus u is continuous in time and now (iii) follows from (2.1).
2

Lemma 2.4 There exist A,B, ε0 > 0 depending on u0 such that

(2.5) uε(x, t) =
1 + Aε

(1 + ε)2
u((1 + ε)x, (1 + Aε)t + Bε) ≥ u(x, t)

for 0 < ε < ε0.

Proof.
It is easy to check that uε is a supersolutions of (HS). Therefore due to

theorem 1.2, we only have to show that there is A,B > 0 such that

1 + Aε

(1 + ε)2
u((1 + ε)x,Bε) ≥ u(x, 0).

For simplicity, let us assume that Ω0 contains D4 and let

c = inf{|Du0(x)|/4|x| : x ∈ Γ0}

(Note that c > 0 due to condition (I).) Then w(x, t) = u0((1 + ct)−1x) is a
viscosity subsolution of (HS) in the domain {x : |x| ≥ 1+ ct}× [0, 1/c], since
w(·, t) is harmonic in Ωt(w) and

wt ≤ c|x||Du0| < (1 + ct)−2|Du0|
2 = |Dw|2 on Γt(w) × [0, 1/c].

Therefore w2(x, t) = c2w(x, c2t), c2 > 0 is also a subsolution of (HS). Now
if we choose c2 such that c2 < u0(x) on |x| = 2, then w2 ≤ u on |x| = 2
for 0 ≤ t ≤ C = (cc2)

−1. By Theorem 1.2 then w2 ≤ u in the domain
{x : |x| ≥ 2} × (0, C). In particular, if x ∈ Ω0 and |x| ≥ 2 then

(1 + C−1t)x ∈ Ωt(u) for 0 ≤ t ≤ C.

On the other hand if |x| ≤ 2 then
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(1 + C−1t)|x| ≤ 2|x| ∈ D4 ⊂ Ω0 ⊂ Ωt(u) for 0 ≤ t ≤ C.

In other words if we let B = C then u(x, 0) > 0 implies that u((1+ε)x,Bε) >
0 for small ε > 0. Thus if we choose A big enough such that

u0(x) <
1 + Aε

(1 + ε)2
u0((1 + ε)x) on |x| = 1 for small ε > 0,

then we can conclude. (Such A can be chosen, for example, as the
maximum of 2|Du0| on |x| = 1.)

2

Remark
Heuristically speaking, differentiating (2.4) and (2.5) with respect to ε

at ε = 0 yields that for t > T0

(2.6)
x · ν(x, t)

At + B
≤

ut

|Du|
≤

x · ν(x, t)

t − T0
on Γ(u),

where ν = −Du/|Du|. Since formally V = ut/|Du| = |Du| on Γ(u), (2.6) is
expected to yield bounds for |Du| on Γ(u) for t > T0. In the next section we
use barrier arguments based on the geometry (Lipschitz continuity) of Γt to
obtain the expected bounds on |Du|.

3 Gradient Estimates

First we prove the nondegeneracy of |Du| near Γ(u). We start with the
following lemma.

Lemma 3.1 Let (x0, t0) ∈ Γ(u) and T0 < t ≤ t0 < t̄ < ∞. Then there exist
positive constants h0, C1, C2 depending only on t, t̄ such that

sup{u(x, t) : |x − x0| < h, 0 ≤ t − t0 ≤ C2h} > C1h for 0 < h < h0.

Proof.
1. Let x1 = (1 + h

|x0|
)x0. By theorem 2.2 for small h > 0 there is L > 1

depending only on t such that u(·, t0) = 0 in Dh/L(x1) (see Figure 2.)
2. Consider ω(x) such that
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−∆ω = 0 in Σ := Dh(x1) − Dh/L(x1);

ω = 0 on ∂Dh/L(x1);

ω = C1h on ∂Dh(x1).

Notice that ω(x) = ω(r), where r = |x − x1| and |ωr| = C > 0 on
∂Dh/L(x1) where C is a constant depending only on L and C1. (In fact
C = k(n)C1 for fixed L, where k is a constant depending on the dimension
n.) Then v(x, t) = (1 + Ct)−1ω((1 + 8C L

h t)r) is a supersolution of (HS) in

Σ2 = Σ × (0, C2h], C2 = 1/8CL.

In fact on the free boundary (1 + 8C L
h t) = h

Lr−1 and

vt =
8CLr/h

1 + Ct
ωr, |Dv| =

1 + 8CLt/h

1 + Ct
ωr.

Therefore we have

vt − |Dv|2 ≥ C(8r3 − (h/L)3) ≥ 0 if r ≥
h

2L
,

which is true for 0 ≤ t ≤ h
8CL .

3. Now if we assume that u(x, t) ≤ C1h in Σ2, then u ≤ v on the
parabolic boundary of Σ2 and thus u ≤ v in Σ2. Therefore the point (x1, t0+

h
8CL ) belongs to the interior of the set {u = 0}. But this contradicts Lemma
2.4 if we take C1 such that

|x1 − x0|

|t1 − t0|
= |4C1L| ≤

α

At0 + B
,
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where A,B is as in Lemma 2.4 and

α = α(t̄) = inf{|x| : x ∈ Γt} > R0.

2

Lemma 3.2 If T0 < t < t1 < t̄ and g(x1/|x1|, t1) − |x1| = h with 0 < h ≤
(|x1| − R0)/2 then we have

u(x1, t1) ≥ C3h,

where C3 only depend on the initial data u0 and t, t̄.

Proof.
1. We recall that for T > T0 and for any ε > 0

w(x, t) = u(x/(1 + ε), (t − T )/(1 + ε) + T ) ≥ u(x, t).

Let us take T = T0 + (t1 − T0)/2. Then

(3.1) if u(x1, t1) ≤ ch then u((1 + ε)x1, (1 + ε)(t1 − T ) + T ) ≤ ch.

2. Now assume that g(x1/|x1|, t1) − |x1| = M1h, where M1 > 0 is to be
decided. Let ν = x1/|x1| and x0 = g( x1

|x1|
, t1)ν ∈ Γt1(u). From Lemma 3.1

(3.2) sup
|x−x0|≤h,0≤t−t1≤C1h

u(x, t) > C2h,

where Ci = Ci(t, t̄).
We recall that in {|x| > R0} × {t ≥ t} there is a cone of directions

K(θt, ν) along which u(·, t1) is decreasing (see the remark after Proposition
2.3.) Hence there is M2 = M2(t) > 0 such that if we take M1 = M2 then
Dh(x0) belongs to W (θt, ν;x1). We choose M1 a bit larger than M2, that
is, we set

M1 = M2 +
C1

t − T0
sup{|x| : x ∈ Γt̄(u)}

so that Dh(x0) belongs to the cone W (θt, ν; (1 + ε)x1) for 0 ≤ ε ≤ β, where
β = C1

t1−T0
h. (see figure 3.)

3. Due to (3.1) if u(x1, t1) < C2h then u((1 + ε)x1, t1 + ε(t1 −T )) < C2h
for h small and 0 ≤ ε ≤ β. Due to the fact that u(x, t) ≤ u(y, t) for
x ∈ W (θt, ν; y) for |x|, |y| > R0, it follows that u(x, t) < C2h in the cylinder
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D(x0, h) × [t1, t1 + C1h]. This contradicts (3.2) and thus we can conclude
by taking C3 = C2/M1.

2

Next we proceed to obtain an upper bound for |Du| near Γ(u).

Lemma 3.3 Let g( x1

|x1|
, t0) − |x1| = h with 0 ≤ h ≤ |x1| − R0/2 and

T0 < t ≤ t0 ≤ t̄. Then there are constants L depending on t, n and
M = M(L, t, t̄, u0, n) such that

inf{u(x, t1) : |x − x1| < h/L} ≤ Mh.

Proof 1. Let x0 = x1 + hν ∈ Γt0(u), where ν = x1

|x1|
. Due to theorem

2.2, there is a constant L = L(t) > 0 such that D2h/L(x1) ∈ Ωt0 . Consider
a harmonic function ω(x) in D2h/L(x1) − Dh/L(x1) such that











ω(x) = 0 on ∂D2h/L(x1),

ω(x) = Mh on ∂Dh/L(x1),

where M > 0 is a constant chosen so that |Dω| = M3(1 + M3)/L on
∂D2h/L(x1), where M3 > 0 is to be decided. Note that ω(x) = ω(r), r =
|x − x1| and M only depends on M3 and n.

Let us extend ω outside D2h/L(x1) by zero and let

v(x, t) = ω((1 +
M3

h
(t − t0))

−1(r −
h

L
) +

h

L
).

Then at t = t0 + h, r − h
L = (1 + M3)

h
L on Γt(v) and thus v satisfies
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vt − |Dv|2 =
M3/h

(1 + M3

h (t − t0))2
(r −

h

L
)|ωr| −

|ωr|
2

(1 + M3

h (t − t0))2

≤ c · (
M3

h
(r −

h

L
) − M3(1 + M3)/L) ≤ 0 on Γt(v), t0 ≤ t ≤ t0 + h.

Hence v is a supersolution of (HS) in (IRn−Dh/L(x1))×(t0 + t0 +h]. 2. Now
assume that u > Mh on Dh/L(x1). Since u is increasing in time, v(x, t0) =
ω(x) ≺ u(x, t0) in IRn−Dh/L(x1) and v = Mh < u on ∂Dh/L(x1)×[t0, t0+h].
Hence by Theorem 1.2 (i), it follows that v ≺ u in (IRn−Dh/L(x1))×[t0, t0+
h] and thus

(3.3) (x1+(2+M3)
h

L
ν, t0+h) = (x0+(2+M3−L)

h

L
ν, t0+h) ∈ Ω̄(v) ⊂ Ω(u).

3. On the other hand, due to Proposition 2.3 for any ε > 0 we have
u((1 + ε)x0, t0 + ε(t0 − T0)) = 0. Now this and (3.3) leads to a contradiction
if we choose ε = h/t0 − T0 and M3 = L − 2 + Lα/|t − T0|, where

α = α(t̄) = sup{|x| : x ∈ Γt̄(u)}.

2

Lemma 3.4 For T0 < t ≤ t1 ≤ t̄ there is h0 = h(t) > 0 satisfying the
following:

if g(x1/|x1|, t1) − |x1| = h with 0 < h < h0 then we have

u(x1, t1) ≤ M ′h,

for M ′ = M ′(t, t̄, u0, n) > 0.

Proof
1. Take h0 = h0(t) > 0 such that |x| > R0+3h0 on Γt(u). Let ν = x1/|x1|

and let x0 = x1 + hν ∈ Γt1(u). We recall that, due to proposition 2.3,
there is a cone of directions W (θt,−ν;x1) along which u(·, t1) is increasing
in the domain {|x| > R0} × (t,∞). We choose L = L(t) > 2 such that
D2h/L(x2) ∈ W (θt,−ν;x1) where x2 = x1−hν (see Figure 4.) By the choice
of h0, D2h/L(x2) ⊂ {|x| > R0}. Observe that lemma 3.3 holds with this
choice of L.
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Figure 4.

2. Assume u(x1, t1) > M ′h, where M ′ = M(L) is given as in Lemma 3.3
with the choice of L in step 1. Then it follows that u(·, t1) ≥ u(x1, t1) > M ′h
in D2h/L(x2). This contradicts lemma 3.3 since g( x2

|x2|
, t1) − |x2| = 2h.

2

Now we are ready to prove the main theorem:

Theorem 3.5 Let u0(x) to satisfy (I) and let u be a viscosity solution of
(HS) with initial data u0 and fixed boundary data 1 on K. Then Γ(u) is
Lipschitz continuous in space and time for t > T0, where T0 is given in
(2.0). Moreover there is a neighborhood N of Γ(u) in each strip of the form
T0 < t ≤ t ≤ t̄ and constants C1, C2 > 0 depending only on t, t̄, u0 and n
such that

C1 ≤
ut

|Du|
, |Du(x, t)| ≤ C2,

if (x, t) ∈ Ω(u) ∈ N .

Proof
We only have to obtain the bounds for |Du|. From theorem 2.2 and

properties of harmonic functions in a Lipschitz domain (see Lemma 4 of
[C1]), for t ≥ t > T0 there are positive constants c1, c2 depending on t such
that

0 < c1|Du|(x0 − hν, t) ≤ u(x0 − hν, t)/h ≤ c2|Du|(x0 − hν, t)

where x0 ∈ Γt(u) and ν = x0

|x0|
. Now lemma 3.3 and 3.4 leads to the conclu-

sion.
2

Based on above theorem the following result is proved in section 6 of
[K2]:
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Corollary 3.6 Let u0, u be given as in theorem 3.5. Then after t > T u
is a classical solution. More precisely u and Γ(u) ∩ {t > T} are analytic in
space and time and u satisfies the free boundary condition V = |Du| in the
classical sense.
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