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Abstract

We investigate the homogenization limit of a free boundary prob-
lem with space-dependent free boundary velocities. The problem under
consideration has a well-known obstacle problem transformation, for-
mally obtained by integrating with respect to the time variable. By
making rigorous the link between these two problems, we are able to
derive an explicit formula for the homogenized free boundary velocity,
and we establish the uniform convergence of the free boundaries.

1 Introduction

This paper is devoted to the homogenization of a Hele-Shaw type problem
in periodic and random media.

Let K be a compact subset of Rn with smooth boundary ∂K and let Ω0

be a bounded open set with C2 boundary such that

K ⊂ Ω0.

We are interested in the asymptotic behavior as ε → 0 of the solution vε(x, t)
of the following free boundary problem:

(Pε)


−∆vε = 0 in {vε > 0} \K

vε = 1 on K

vε
t = g(x/ε)|Dvε|2 on ∂{vε > 0}
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satisfying the initial condition vε(x, 0) = v0(x), where v0(x) is a continuous
function, harmonic in Ω0 \K and satisfying

v0(x) = 1 for x ∈ K and v0(x) = 0 for x /∈ Ω0.

Here, vt denotes the partial derivative with respect to the time variable
t, while Dv denotes the spatial derivative with respect to x. Note that if
vε is smooth up to its free boundary ∂{vε > 0}, then the velocity of the
free boundary is given by V = vε

t
|Dvε| and the last condition in (Pε) can be

rewritten as
V = g(x/ε)|Dvε|.

Free boundary problems with velocity law given as in (Pε) describe var-
ious motions in heterogeneous media, including heat transfer and shoreline
movements in oceanography (see [P],[R2], [Rou], and [VSKP]).

The function g : Rn → R is a given continuous function satisfying

0 < λ ≤ g(x) ≤ Λ (1.1)

for two positive constants λ and Λ. In order to observe some kind of aver-
aging behavior as ε goes to zero, we need to make further assumptions on
g. In this paper, we assume that g is stationary ergodic. More precisely,
we consider a probability space (A,F , P ) and we assume that g(x, ω) is a
random variable such that

1. the distribution of the random variable g(x, ·) : A → R is independent
of x (we say that g is stationary). More precisely, we will assume
that for every x ∈ R there exists a measure preserving transformation
τx : A → A such that:

g(x + x′, ω) = g(x, τx′ω) for all x′ ∈ Rn and ω ∈ A.

2. the underlying transformation τx is ergodic, that is if B ⊂ A is such
that τxB = B for all x ∈ Rn, then P (B) = 0 or 1.

As a consequence of those hypotheses, we will deduce that there exists
a constant, denoted by

〈
1
g

〉
, such that∫

Rn

1
g(x/ε)

u(x) dx −→
∫

Rn

〈
1
g

〉
u(x) dx a.e. ω ∈ A

for any function u in L1(Rn).
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This properties, which holds for much more general functions g(x), is all
that we will need for our result to hold. In particular, in the (simpler) case
where g : Rn 7→ R is Zn-periodic, the quantity

〈
1
g

〉
is the average of 1/g(x)

over one cell.

Our main result states that the free boundaries ∂{vε = 0} locally uni-
formly converge to ∂{v = 0}, where v solves of the following homogenized
Hele-Shaw equation:

(P0)


−∆v = 0 in {v > 0} \K

v = 1 on K

vt =
〈

1
g

〉−1
|Dv|2 on ∂{v > 0}

with the same initial condition v(x, 0) = v0(x).

Note that the positive phases of solutions for both problems (P0) and
(P ε) may go through topological changes such as merging of two fingers.
Our result states that the oscillating free boundaries converges uniformly
even in the event of such singularities.

It is interesting to note that the homogenized speed is unique and inde-
pendent of the direction of propagation. The condition (1.1) obviously plays
an important role in this result and is crucial in the analysis. In fact, it is
known that when the velocity is allowed to vanish, very different asymptotic
behaviors are observed. In particular, one of the author proves in [K3] that
if the free boundary condition is replaced by

uε
t = |Duε|(|Duε| − g(x/ε))

then the homogenized speed depends in a non trivial way of Du, and various
phenomena such as pinning and hysteresis take place. Similar phenomena
are also derived for the homogenization of the following free boundary prob-
lem: {

∂tu
ε −∆uε = 0 in {uε > 0}

|∇uε|2 = g(x/ε) on ∂{uε > 0}

(see [CLM1], [CLM2]) and are also strongly related to the fact that the free
boundary may stop moving.

In the case of periodic media, [K1] obtains uniform convergence of the
free boundary via viscosity solution approach, with a rate of convergence
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for the free boundaries (see [K2]). But this approach does not yield the
explicit form of the free boundary velocity. On the other hand the variational
approach, (see section 4.1, and Rodriges [R1] in the case of Stefan problem)
yields the explicit formula for the limiting problem but does not yield the
uniform convergence of the free boundaries unless the limiting boundaries
are smooth.

In this paper we combine these two approaches to obtain our result. The
investigation consists of two parts:

In order to obtain the convergence of positive phases almost everywhere
as well as to derive the formula for the homogenized free boundary velocity
(P0), we rely on an obstacle problem formulation of the Hele-Shaw problem
(Pε). More precisely, it is well-known, since the work of Elliot-Janovsky [EJ]
(also see Gustafsson [G]) that the function

uε(x, t) =
∫ t

0
vε(x, s) ds

is formally solution to

(P̃ε)


−∆uε = − 1

g(x/ε)χRn\Ω0
in {uε > 0}

uε = |Duε| = 0 on ∂{uε > 0}
uε = t on K

which is nothing but the Euler-Lagrange equation for some obstacle problem.
We will prove, in section 3, that the ”time derivative” of the solution uε of
(P̃ε) coincides with the viscosity solution vε of (Pε). Variational arguments
then allow us to prove the uniform convergence of uε to u0, solution of the
obstacle problem corresponding to the Hele-Shaw problem (P0).

Unfortunately, the convergence of vε does not follow from that of uε, and
in order to prove the convergence of vε, solution of (Pε), to v0, solution of
(P0), we need to investigate the behavior of the oscillating free boundaries
∂{uε > 0}. For this, we go back, in the last part of this paper, to the viscosity
solutions method and we use maximum principle-type arguments as well as
stability properties of viscosity solutions, to prove the uniform convergence
of ∂{uε > 0} to ∂{u0 > 0}. The convergence of vε to v0 follows.

We expect that our method applies to the homogenization of Stefan-type
problem (work in progress).

In section 2, we recall the definition of viscosity solutions for the Hele-
Shaw problem (Pε). Section 3 is devoted to making the link between (Pε)
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and (P̃ε) rigorous. The homogenization of the obstacle problem and then of
the Hele-Shaw problem is detailed in section 4.

Remark: For initial positive phase Ω0 with boundary less regular than
C2, all our results, in particular Theorem 2.7 and Theorem 3.1, hold as long
as the positive phase immediately expands at t = 0 with ∂Ω0 = ∂Ω̄0 (the
second condition guarantees that vε(x, t) changes continuously at t = 0.)
Our arguments also hold for smooth fixed boundary data f(x, t) > 0 on K,
instead of 1. Since the main focus of this article is on the homogenization,
we avoid the most general argument on the initial and fixed boundary data.

Notations: For any nonnegative function w(x, t) : IRn × [0,∞) → IR+, let
us define

Ω(w) = {w > 0}, Ωt(w) = {x; w(x, t) > 0}

and
Γ(w) = ∂Ω(w), Γt(w) = ∂Ωt(w).

We call Ωt(u) and Γt(u) respectively the positive phase and the free
boundary of w.

2 Definition of viscosity solutions

In this section, we recall the definition of viscosity solutions for the Hele-
Shaw problems (Pε) and (P0) from [K1].

Consider a space-time domain Σ ⊂ IRn × [0,∞) with smooth boundary.
For a nonnegative function w(x, t), let us define

w∗(x, t) = lim inf
(y,s)→(x,t)

w(y, s)

and
w∗(x, t) = lim sup

(y,s)→(x,t)
w(y, s).

Definition 2.1. A nonnegative upper semicontinuous function v defined in
Σ is a viscosity subsolution of (Pε) if the followings hold:

(a) For each T ∈ (0,∞), the set Ω(v) ∩ {t ≤ T} ∩ Σ is bounded.

(b) For every φ ∈ C2,1(Σ) such that u−φ has a local maximum in Ω(v)∩
{t ≤ t0} ∩ Σ at (x0, t0), the following holds:
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(i) If u(x0, t0) > 0 then −∆φ(x0, t0) ≤ 0.

(ii) If (x0, t0) ∈ Γ(u), |Dφ|(x0, t0) 6= 0 and −∆ϕ(x0, t0) > 0, then

(φt − g(x0/ε)|Dφ|2)(x0, t0) ≤ 0.

Definition 2.2. A nonnegative lower semicontinuous function v defined in
Σ is a viscosity supersolution of (Pε) if for every φ ∈ C2,1(Σ) such that v−φ
has a local minimum in Σ ∩ {t ≤ t0} at (x0, t0), the following holds:

(i) If v(x0, t0) > 0 then −∆φ(x0, t0) ≥ 0.

(ii) If (x0, t0) ∈ Γ(v), |Dφ|(x0, t0) 6= 0 and −∆ϕ(x0, t0) < 0, then

(φt − g(x0/ε)|Dφ|2)(x0, t0) ≥ 0.

Let K, Ω0,Γ0, v0 be as given in the introduction and let Q = (IRn−K)×
(0,∞).

Definition 2.3. v is a viscosity subsolution of (Pε) in Q with initial data
v0 if

(a) v is a viscosity subsolution of (Pε) in Q,

(b) v is upper semicontinuous in Q̄, v = v0 at t = 0 and v ≤ 1 on ∂K.

(c) Ω(v) ∩ {t = 0} = Ω(v0).

Definition 2.4. v is a viscosity supersolution of (Pε) in Q with initial data
v0 if

(a) v is a viscosity supersolution in Q,

(b) v is lower semicontinuous in Q̄, v = v0 at t = 0 and v ≥ 1 on ∂K.

Definition 2.5. v is a viscosity solution of (Pε) (in Q with boundary data
v0) if v is a viscosity supersolution and v∗ is a viscosity subsolution of (P )
(in Q with boundary data v0.)

Viscosity solutions for (P0) are defined similarly, replacing g(x
ε ) by <

1
g >−1 in Definitions 2.1 and 2.2.

We conclude this section by stating the standard comparison principle
for viscosity solutions:

We say that a pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated
(denoted by u0 ≺ v0) in D ⊂ IRn if
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(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii)
u0(x) < v0(x) in supp(u0) ∩ D̄.

We then have the following theorem which plays a central role in our
analysis.

Theorem 2.6. (Comparison principle, Theorem 1.7, [K1]) Let h1, h2 be
respectively viscosity sub- and supersolutions of (Pε) or (P0) in Σ. If h1 ≺ h2

on the parabolic boundary of Σ, then h1(·, t) ≺ h2(·, t) in Σ.

Theorem 2.7. (Comparison principle for the limit equation) Suppose u
and v are respectively sub- and supersolutions of (Pε) or (P0) in (IRn−K)×
[0,∞). If Γ0(u) or Γ0(v) is C2 and u ≤ v for t = 0 and x ∈ K, then u ≤ v∗

and u∗ ≤ v in (IRn −K)× [0,∞).

Proof. Suppose Γ0(v) is C2. Since v0 is harmonic, by Hopf’s principle we
obtain |Dv0| > 0 on Γ0(v). Hence Γ(v) strictly expands at t = 0 and thus
u(x, t) ≺ v(x, t + ε) on the parabolic boundary of Σ = (IRn −K) × [ε,∞).
Thus Theorem 2.6 yields that u(x, t) ≺ v(x, t+ ε), and sending ε → 0 yields
the first conclusion. Note that we also have u(x, t− ε) ≺ v(x, t), which gives
the second conclusion.

3 Uniting the notions

The purpose of this section is to make rigorous the connection between the
Hele-Shaw problem (Pε) and the obstacle problem (P̃ε). Throughout this
section, we suppose that g : Ω → R is a continuous function satisfying

0 < λ ≤ g(x) ≤ Λ for all x ∈ Ω.

We denote by a(·, ·) the Dirichlet inner product on H1(Ω) and by 〈·, ·〉
the scalar product in L2(Ω):

a(u, v) =
∫

Ω
Du ·Dv dx

〈u, v〉 =
∫

Ω
u v dx.

For all t > 0, we denote by u(·, t) the solution of the following variational
inequality (obstacle problem): u ∈ Kt

a(u, v − u) ≥
〈
− 1

g(x)χRn\Ω0
, v − u

〉
for all v ∈ Kt,

(3.1)
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where
Kt = {v ∈ H1

0 (Rn) ; v(x) ≥ 0 in Rn, v = t on K}.

Then u(·, t) solves (at least formally):
−∆u = −1

gχRn\Ω0
in Ωt(u)

u = |Du| = 0 on Γt(u)

u = t on K

(3.2)

The goal of this section is to establish the following result:

Theorem 3.1. Let u(x, t) be the unique solution of (3.1), and for all t > 0,
let v(·, t) the solution of

∆v = 0 in Ωt(u) \K

v = 1 on K

v = 0 on ∂Γt(u),

(3.3)

(see the proof for the exact definition of v when ∂Γt(u) is not smooth). Then
v(x, t) is a viscosity solution of the following Hele-Shaw type problem:

∆v = 0 in {v > 0} \K

v = 1 on K

vt = g(x)|Dv|2 on ∂{v > 0}
(3.4)

with the initial condition v(x, 0) = v0(x) (we recall that v0 is the continuous
function satisfying v0(x) = 1 in K, v0(x) = 0 in Ω \ Ω0 and ∆v0 = 0 in
Ω0 \K).

Furthermore, v is equal to the left hand side time derivative of u:

v(x, t) = ∂−t u(x, t).

Before turning to the proof of this theorem, we summarize in the next
proposition the main properties of the solution of the obstacle problem (3.1).
We refer to Caffarelli [C1],[C2] and Rodrigues [R2] for details on the proof
(see also Blank [B]):

Proposition 3.2. Assume that K ⊂ Ω0 ⊂ B1(0) and that ∂K is C1,1. Then
the following holds:
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(i) For all t > 0, (3.1) has a unique solution u(·, t) in H1
0 (Rn). For all T > 0,

there exists R(T ) such that

Ωt(u) ⊂ BR(0) for all t ∈ (0, T )

and there exists a constant C depending only on λ, n and p such that

||u(·, t)||W 2,p(Rn\K) ≤ Ct for all t ≥ 0

for all 1 < p < ∞.
The function x 7→ u(x, t) thus lies in C1,1−n/p(Ω \K) for all p < ∞. In

particular, there exists a constant C (depending only on Ω, K and n) such
that

|u(x, t)− u(y, t)| ≤ Ct |x− y| (3.5)

for every x and y in Ω \K and for every t ≥ 0.

(ii) The function u(x, t) is nonnegative in Ω and satisfies

−∆u = − 1
g(x)

(χΩt(u) − χΩ0) in Rn \K

for all t ≥ 0.

(iii) If 0 < t1 < t2, then

0 ≤ u(x, t1) ≤ u(x, t2) ≤ u(x, t1) + t2 − t1 for all x ∈ Rn.

In particular the function t 7→ u(x, t) is Lipschitz continuous:

|u(x, t1)− u(x, t2)| ≤ |t1 − t2| (3.6)

for all x ∈ Rn.

We also need the following lemmas:

Lemma 3.3.

(i) Let x0 ∈ Ωt(u) and assume that Br(x0) ∈ Rn \ Ω0 for some r > 0. Then
there exists C1 > 0 depending only on Λ such that

sup
Br(x0)

u(·, t) ≥ C1r
2
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(ii) Let x0 ∈ Γt(u), then there exists C2 > 0 depending only on λ such that

sup
Br(x0)

u(·, t) ≤ C2t r.

Proof. 1. We first assume that x0 ∈ Ωt(u). Note that u(·, t) satusfies

∆u ≥ 1
g(x)

≥ 1
Λ

in {u > 0} \ Ω0,

and so
∆u ≥ 1

Λ
in {u > 0} ∩Br(x0).

Hence w(x) := u(x, t)− 1
2Λ(x−x0)2 is subharmonic in {w > 0}∩Br(x0).

Since w(x0) > 0, the set {w > 0} is not empty and thus the maximum of w
in Br(x0) is nonnegative and is reached on the boundary ∂Br(x0). It follows
that

sup
Br(x0)

w = sup
∂Br(x0)

u(·, t)− 1
2Λ

r2 ≥ 0,

which gives (i) when x0 ∈ Ωt(u). By density, the result holds for all x0 ∈
Ωt(u).

2. Proposition 3.2 (i) yields that u are uniformly Lipschitz in space with
Lipschitz constant C2t. Since u(x0, t0) = 0, we deduce (ii).

We deduce the following result:

Lemma 3.4. For all t > 0, Ωt(u) satisfies:

Ωt(u) ⊂ Ω0 + BCt1/2 . (3.7)

Proof. Let x0 be a point in Ωt(u) at distance δ of Ω0. Then Bδ(x0)∩Ω0 = ∅
so Lemma 3.3 implies

sup
Bδ(x0)

u(·, t) ≥ Cδ2

Since u(x, t) ≤ Ct for all x, we deduce δ ≤ Ct1/2 which yields (3.7).

If we consider the function w(x, t) = u(x, t)−u(x, s) for some t > s > 0,
we obtain similarly the following result:

Lemma 3.5. For all t > s > 0, Ωt(u) satisfies:

Ωt(u) ⊂ Ωs(u) + BC(t−s)1/2 .
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Now we are ready to prove our main theorem.

Proof of Theorem 3.1:
1. The function v(x, t) is actually defined as follows: For every t, v(·, t)

is the supremum of all lower semicontinuous functions w(x) for which there
exists some s < t such that

−∆w ≤ 0 in Ωs(u), v = 1 on K and supp v ⊂ Ωs(u)

It is rather easy to check that the function v(x, t) itself is then lower
semicontinuous (i.e. lim inf(y,s)→(x,t) v(y, s) ≥ v(x, t)), and since the function
constant equal to 1 is a supersolution for (3.3), we have v ≤ 1 and v = v∗ = 1
on K.

Furthermore, u(·, s)/s is a subharmonic in Ωs(u) and equal to 1 on K,
and so by definition of v, we have

v(x, t) ≥ u(x, s)/s for all s < t.

By continuity of u with respect to t, we deduce v(x, t) ≥ u(x, t)/t and so
v(x, t) > 0 for all x ∈ Ωt(u). Since v is lower semi-continuous, we have v = 0
on Γt(u), and so

{v(·, t) > 0} = Ωt(u), ∂{v(·, t) > 0} = Γt(u). (3.8)

Finally, Lemma (3.5) yields d(Ωt(u),Ωs(u)) → 0 as s → t, and so
v∗(·, t) = 0 outside of Ω̄t(u). We deduce

∂{v∗(·, t) > 0} = Γt(u)

(Note that v∗ may be positive on Γt(u) at singular points).

2. Since v is the largest subharmonic function, we have

−∆v(·, t) = 0 in Ωt(u)

Furthermore, v(·, t) can be given as the supremum of a sequence of harmonic
functions in a sequence of smooth, smaller domains converging to Ωt(u) with
zero boundary data. Such a function will be subharmonic in Rn, and so

−∆v(·, t) ≤ 0 in IRn \K

In particular, we have −∆v∗(·, t) ≤ 0 in IRn \K.
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We are now going to show that v∗ is a viscosity subsolution of (3.4).
Similar arguments would prove that v is a viscosity supersolution of (3.4).

3. Suppose that φ(x, t) is a C2,1 function such that v∗ − φ has a local
maximum (equal to zero) in at (x0, t0) ∈ Ω(u) in a parabolic neighborhood
Σ ∩ {v > 0} of (x0, t0). Since we already know that −∆v∗ ≤ 0 in IRn −K,
it is readily seen that if (x0, t0) ∈ Ωt(u), then −∆φ(x0, t0) ≤ 0.

It follows that in order to show that v∗ is a viscosity subsolution (see
definition 2.1), we only have to check that the conditions are satisfied when
(x0, t0) ∈ Γt(u) and |Dφ|(x0, t0) 6= 0.

Furthermore, if v∗(x0, t0) > 0 then φ > 0 in a small neighborhood
N = Bn+1

r (x0, t0) and thus v∗ − φ has a local maximum in N . Since v∗

is subharmonic we easily deduce that −∆φ(x0, t0) ≤ 0.
We may therefore assume that

v∗(x0, t0) = φ(x0, t0) = 0 and v(x, t) ≤ φ(x, t) in Σ := Br(x0)× [t0 − τ, t0],

and supposing that

min
(
−∆φ(x0, t0),

[
φt − g(x)|Dφ|2

]
(x0, t0)

)
> 0, (3.9)

we want to derive a contradiction.

Note that since φ is smooth, we can always assume that (3.9) holds in
Σ by taking r and τ sufficiently small and thus

−∆φ > 0 and φt − g(x)|Dφ|2 > 0 in Σ.

4. Next, we want to construct a radially symmetric smooth function
ϕ(x, t) which is still larger than v∗ in Br(x0) and satisfies ϕ(x0, t0) = 0 and

−∆ϕ ≥ 0 and ϕt − g(x)|Dϕ|2 > 0 in Σ ∩ {ϕ > 0}. (3.10)

To do this first observe that, since φ is C2,1 and |Dφ|(x0, t0) 6= 0, the
zero set Γ(φ) of φ is C2,1 near (x0, t0). Therefore there exists y0 ∈ Rn and a
small radius r(t) such that the ball Br(t)(y0) is tangent to Γt(φ) from outside
and

r′(t) = − φt

|Dφ|
.
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For small ε > 0 and δ > 0, we define ϕ(·, t) a radially symmetric function
satisfying

−∆ϕ = −∆φ in B(1+ε)r(t)(y0)−Br(t)(y0),

ϕ = 0 on ∂Br(t)(y0),

ϕ = max∂B(1+ε)r(t)(y0)(1 + δ)φ on ∂B(1+ε)r(t)(y0).

It is readily seen that ϕ > φ in B(1+ε)r(t)(y0)−Br(t)(y0).

Let z0 = x0 + εrη and η is the outward unit normal vector of Br(t)(y0)
at x0 (z0 ∈ ∂B(1+ε)r(t)(y0) and η = Dφ

|Dφ|(x0, t0)). Since φ is C2,1 and
|Dφ|(x0, t0) 6= 0, the level sets of φ are C2,1 graphs near x0 with its normal
vector continuous in space and time. In particular, we have

φ(z0, t0) = |Dφ|(x0, t0)|εr +O(ε2r2)

and

φ(z, t0) = |Dφ|(x0, t0)|η · (z − z0) +O(ε2r2)
≤ |Dφ|(x0, t0)|εr +O(ε2r2)

for all z ∈ ∂B(1+ε)r(t0)(y0). We deduce:

ϕ(x, t0) = (1 + δ)|Dφ|(x0, t0)|εr +O(ε2r2) for all x ∈ ∂B(1+ε)r(t0)(y0)

and so

∇ϕ(x, t0) = (1 + δ)|Dφ|(x0, t0)|+O(εr) for all x ∈ ∂Br(t0)(y0)

Therefore if r(t), ε, δ and τ are sufficiently small then |Dϕ| is very close
to |Dφ|(x0, t0) on ∂Br(t)(y0)× [t0 − τ, t0], and so (3.10) holds.

Since v∗ is subharmonic, we have v∗ ≤ (1 + δ)−1ϕ by the maximum
principle for harmonic functions.

5. We introduce the function

ω(x, t) =
∫ t

t0−τ
ϕ(x, s)ds

defined for (x, t) ∈ Σ. Since ϕ is smooth, (3.10) yields by a classical compu-
tation (see [G]):

−∆ω(·, t) > − 1
g(x)

in (Ωt(ω)− Ωt0(ω)) ∩ Σ

ω = |Dω| = 0 on Γt(ω) ∩ Σ

−∆ω(·, t) = 0 on Ωt0(ω) ∩ Σ.
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In other words, ω is a supersolution of the obstacle problem starting at
t = t0 − τ with initial domain Ωt0(φ) and fixed boundary Br(x0).

6. In order to conclude, we need the semigroup property of the obstacle
problem solution. Let ũ be the solution of the obstacle problem starting at
t = t0−τ with initial domain Ωt0−τ (u), fixed boundary K and ũ = (t−t0+τ)
on K. We claim that ũ(x, t) = u(x, t)− u(x, t0 − τ) and

Ωt(ũ) = Ωt(u) for t > t0 − τ.

This is because the function w(x, t) = u(x, t) − u(x, t0 − τ) satisfies, for all
t ∈ (t0 − τ, t0),

ũ = t− t0 + τ on K, Ωt(ũ) = Ωt(u)

and
−∆ũ = −1

g
(χΩt(u) − χΩt0−τ (u)) in Rn \K

(the last equality follows from Proposition 3.2 (ii)).
Now we compare ũ and ω. Note that ũ(·, t) ≤ (t − t0 + τ)v(·, t), since

ũ is subharmonic with boundary data t − t0 + τ on K and zero on Γt(u).
Therefore in Σ

ũ(x, t) ≤ (t− t0 + τ)v(x, t) ≤ (1 + δ)
∫ t

t0−τ
ϕ(x, s)ds + O(τ2)

Since ϕ > 0 on ∂Br(x0), by choosing sufficiently small τ we have

ũ(x, t) ≤
∫ t

t0−τ
ϕ(x, s) on ∂Br(x0).

Hence by comparison principle for obstacle problem, we obtain ũ stays
below ω in Σ. In fact by a perturbation argument we can show that ũ stays
strictly below w which yields the desired contradiction.

We deduce that φ must satisfy

min(−∆φ, φt − g(x)|Dφ|2)(x0, t0) ≤ 0,

which proves that v∗ is a subsolution of the Hele-Shaw problem (3.4).

7. We now need to check that v and v∗ satisfy the initial condition.
First, we have:
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Lemma 3.6. For all t > 0, Ωt(u) satisfies:

Ω0 ⊂ Ωt(u) for all t > 0.

Furthermore
{u > 0} ∩ {t = 0} = Ω0.

Proof. 1. First, it is readily seen that Ω0 ⊂ Ωt(u) for all t > 0. As a matter
of fact, we have ∆u(·, t) = 0 in Ω0 and u(·, t) ≥ 0 in Ω0 for all t > 0. If
u(x0, t) = 0 for some x0 ∈ Ω0, the strong maximum principle yields u = 0
in Ω0 which contradicts the fact that u = t on ∂K.

We thus have u(x, t) > 0 for all x ∈ Ω0.

2. Next, we see that if x0 ∈ ∂Ω0 is such that u(x0, t0) = 0, then Hopf’s
Lemma implies |Du(x0, t0)| 6= 0. However, since u is in C1,α with respect x
and has a local minimum at x0, we have Du(x0, t0) = 0 hence a contradic-
tion. The first inclusion follows.

3. This implies in particular that

Ω0 ⊂ {u > 0} ∩ {t = 0},

and the last equality now follows from Lemma 3.4.

Next, we have:

Corollary 3.7. The function v(x, t) satisfies the following initial condition:

v(x, 0) = v∗(x, 0) = v0(x) for all x ∈ Rn.

Proof. By definition of v(x, 0), we have v(x, 0) = v0(x). So we only have to
check that lims→0+ v(x, s) = v0(x). Lemma 3.6 yields v(x, t) ≥ v0(x) for all
t > 0, and so

lim
s→0+

v(x, s) ≥ v0(x).

Next, Equation (3.7) implies that

lim
s→0+

v(x, s) ≤ wt(x)

for all t > 0, where wt is the harmonic function in Ω0+BCt1/2 which vanishes
on ∂(Ω0 + BCt1/2). Since ∂Ω0 is smooth, it is readily seen that wt −→ v0 as
t → 0+ and so

lim
s→0+

v(x, s) ≤ v0(x).
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Note that the same proof implies that if ∂Ωt(u) is smooth for some t,
then v is continuous at t.

8. It now only remains to show the last assertion in Theorem 3.1. For
that purpose, we introduce the following function

v−h (x, t) =
u(x, t)− u(x, t− h)

h

and we are going to show that limh→0 v−h (x, t) = v(x, t) for all t and x.
It is readily seen that {v−h > 0} = Ω(u) and so supp v−h (·, s) = Ωs(u).

Furthermore, we have v−h = 1 on K and −∆v−h = − 1
hgχΩt\Ωt−h

≤ 0 in
Rn \K. It follows from the definition of v that

v−h (x, s) ≤ v(x, t) for all s < t.

By continuity of v−h with respect to t, we deduce

v−h (x, t) ≤ v(x, t) for all x. (3.11)

Next, we have the following lemma:

Lemma 3.8. The function v−h is monotone decreasing with respect to h. In
particular, there exists a function v− such that

v−h (x, t) −→ v−(x, t) as h → 0 for all x and t.

Proof. Let 0 < h1 < h2. In Rn \ Ωt(u), we have v−h1
= v−h2

= 0. In
Ωt(u) \ Ωt−h1(u), we have v−h1

= u/h1 and v−h2
= u/h2 and thus v−h1

≥ v−h2
.

In Ωt−h1 \K, we have ∆v−h1
= 0 ≤ ∆v−h2

and since v−h1
= v−h2

= 1 on K, we
have v−h1

≥ v−h2
in Ωt−h1 . We deduce

v−h1
≥ v−h2

in Ω

which gives the result.

Finally, the following lemma completes the proof of Theorem 3.1:

Lemma 3.9.
v−(x, t) = v(x, t) for all (x, t).
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Proof. Equation (3.11) implies v− ≤ v so we only have to show the other
inequality. We fix (x0, t0) ∈ Ω(u) and ε > 0. By definition of v, there exists
a function w(x) with support in Ωs(u) (for some s < t), subharmonic in
Ωs(u) \K, equal to 1 in K and such that

w(x0, t0) ≥ v(x0, t0)− ε.

For any h < t−s, we have v−h (·, t0) positive and harmonic in Ωt−h(u) ⊃ Ωs(u)
and equal to 1 in K. We deduce v−h (·, t0) ≥ w and so

v−h (x0, t0) ≥ v(x0, t0)− ε.

Together with the pointwise convergence of v−h , this implies

v−(x0, t0) ≥ v(x0, t0)− ε.

Since this holds for all ε > 0 and for all (x0, t0), the lemma follows.

4 Homogenization

In this section, we assume that g(y, ω) is a stationary ergodic random vari-
able satisfying

0 ≤ λ ≤ g(y, ω) ≤ Λ.

For any ε > 0 and all t ∈ (0, T ), we define uε(·, t) the solution of
uε ∈ Kt

a(uε, v − uε) ≥ 〈− 1
g(x/ε)χΩ\Ω0

, v − uε〉 for all v ∈ Kt

(4.1)

where
Kt = {v ∈ H1

0 (Ω) , v(x) ≥ 0 in Ω, v = t on K}.
Using Theorem 3.1, we then define for each ε > 0 the function vε(x, t),

viscosity solution of the following Hele-Shaw problem:
−∆vε = 0 in {vε > 0} \K

vε = 1 on K

vε
t = g(x/ε, ω)|Dvε|2 on ∂{vε > 0} ∩ Ω

(4.2)

In this section, we first investigate the asymptotic behavior of uε as ε
goes to zero, and use that result to derive the equation satisfied by limε→0 vε.
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4.1 Homogenization of the obstacle problem

We begin with the homogenization of the obstacle problem. First we need
the following lemma:

Lemma 4.1. There exists a constant denoted by
〈

1
g

〉
such that

lim
R→∞

1
|BR(x0)|

∫
BR(x0)

1
g(y, ω)

dy =
〈

1
g

〉
a.s.

for any x0. Furthermore, if Ω is any bounded subset of Rn, and if uε is a
sequence of functions such that uε converges to u strongly in L2(Ω), then

lim
ε→0

∫
Ω

1
g(x/ε, ω)

uε(x) dx =
∫

Ω

〈
1
g

〉
u(x) dx a.s.

Remark 4.2. In the case where g(y) is a Zn-periodic function, we have〈
1
g

〉
=

∫
[0,1]n

1
g(y)

dy

We then deduce the following proposition:

Proposition 4.3. The sequence uε converges uniformly with respect to x ∈
Rn and t ∈ [0, T ] to u0(t, x) solution of the following obstacle problem: u0 ∈ Kt

a(u0, v − u0) ≥ 〈−
〈

1
g

〉
χRn\Ω0

, v − u0〉 for all v ∈ Kt

(4.3)

Proof of Lemma 4.1: The existence of
〈

1
g

〉
is a direct consequence of the

subadditive ergodic theorem. We also deduce

lim
ε→0

∫
G

1
g(x/ε, ω)

dx =
〈

1
g

〉
|G| a.s.,

and the density of piecewise continuous functions in L2 easily yields

lim
ε→0

∫
Ω

1
g(x/ε, ω)

u(x) dx =
∫

Ω

〈
1
g

〉
u(x) dx a.s.,

for all u ∈ L2(Ω).
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Next, we write∫
Ω

1
g(x/ε, ω)

uε(x) dx =
∫

Ω

1
g(x/ε, ω)

u(x) dx +
∫

Ω

1
g(x/ε, ω)

(uε − u(x)) dx.

For any δ > 0, there exists ε0 such that for any ε < ε0, we have∣∣∣∣∫
Ω

1
g(x/ε, ω)

(uε − u(x)) dx

∣∣∣∣ ≤ Λ|Ω|1/2||uε − u||L2(Ω) ≤ δ.

We deduce that

lim
ε→0

∫
Ω

1
g(x/ε, ω)

uε(x) dx =
∫

Ω

〈
1
g

〉
u(x) dx +O(δ)

and since this holds for any δ > 0, the Lemma follows.

Proof of proposition 4.3. Inequalities (3.5) and (3.6) in Proposition 3.2 yield:

|uε(x, t)− uε(y, s)| ≤ CT (|x− y|+ |t− s|)

for all x, y in Ω and t, s in [0, T ]. Moreover, we have |uε(x, t)| ≤ T and
supp uε ⊂ BR(T ) for all t ∈ [0, T ]. So Ascoli’s Theorem yields the uniform
convergence, up to a subsequence, of uε to some continuous function u0(x, t).

In particular, for all t ≥ 0, we have uε(·, t) → u0(·, t) uniformly with
respect to x. Furthermore, (4.3) yields∫

|Duε|2 dx +
1
Λ

∫
χΩ\Ω0

uε dx ≤ 1
λ

∫
v dx +

∫
Dv ·Duε dx

≤ 1
λ

∫
v dx +

1
2

∫
|Dv|2 dx

+
1
2

∫
|Duε|2 dx

for all v ∈ Kt, and so
||uε(·, t)||H1(Rn) ≤ C(t).

It follows that

uε(·, t) −→ u0(·, t) H1(Rn)-weak and L2(Rn)-strong.

which in turn implies that

lim inf
ε→0

a(uε, uε) ≥ a(u0, u0)
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and
lim
ε→0

a(uε, v) = a(u, v)

for all v ∈ H1(Ω).
Taking the limit ε → 0 in (4.1) (using Lemma 4.1 and the fact that

supp uε ⊂ BR(T )), we deduce that u0 solves (4.3). Finally the uniqueness
of the solution of (4.3) (Proposition 3.2 (i)) implies that the whole sequence
uε converges to u0.

Our next task is to show uniform convergence of the free boundaries
Γ(uε) to Γ(u0), with respect to Hausdorff distance. The difficulties in show-
ing this are due to the lack of estimates on the infimum of uε in Lemma 3.3,
which makes it difficult to prevent formation of new zero set in the limit
ε → 0. In the next section we will use maximum-principle type arguments
for the time derivatives of uε (that is the solution of the Hele-Shaw equation
(Pε), vε) to show the convergence of the boundaries.

4.2 Homogenization of the Hele-Shaw problem: uniform con-
vergence of the free boundary

We now denote by vε the solution of
∆vε = 0 in Ωt(uε) \K

vε = 1 on K

vε = 0 on ∂Γt(uε).

(4.4)

defined as in Theorem 3.1 (Theorem 3.1 implies that vε is a viscosity solution
of (Pε)). Taking the limit ε → 0, we can define

v∗(x, t) := lim sup
(y,s),ε→(x,t),0

vε(y, s)

v∗(x, t) := lim inf
(y,s),ε→(x,t),0

vε(y, s).

We also introduce v0(x, t), solution of
∆v0 = 0 in Ωt(u0) \K

v0 = 1 on K

v0 = 0 on ∂Γt(u0),

(4.5)
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(Note that v0 is a viscosity solution of (P0) thanks to Theorem 3.1), and

(v0)∗(x, t) := lim sup
(y,s)→(x,t)

v0(y, s)

(v0)∗(x, t) := lim inf
(y,s)→(x,t)

v0(y, s).

We have (v0)∗ ≤ v0 ≤ (v0)∗ and the lower-semicontinuity of v0 implies
(v0)∗ ≥ v0. We deduce:

(v0)∗ = v0 ≤ (v0)∗ (4.6)

where v0 is a supersolution of (P0) and (v0)∗ is a subsolution.
The goal of this section is to prove the following result:

Theorem 4.4. {Γ(vε))}ε locally uniformly converges to {Γ(v0)} with respect
to the Hausdorff distance. Moreover

v∗ = v0 and v∗ = (v0)∗.

This implies in particular that v∗ is a supersolution of (P0) and v∗ is a
subsolution. In general we do not have v0 = (v0)∗. However, we have the
following result:

Corollary 4.5. If v0 is continuous, then v0 = (v0)∗ and vε converges locally
uniformly to v0. If Γ(v0) is continuous in time, then for any t > 0 {Γt(vε)}ε

locally uniformly converges to {Γt(v0)}.

Remark:
1. We have

Ω(vε) = Ω(uε), Γ(vε) = Γ(uε),

and
Ω(v0) = Ω(u0), Γ(v0) = Γ(u0).

2. Even with Lipschitz continuity of u0 in time (Proposition 3.2), one can-
not show that Γ(u0) is continuous in time with respect to the Hausdorff
distance. The main difficulty is the same as mentioned at the end of sec-
tion 3.1. Intuitively, what may occur is two fingers of Ω(u0) contacts each
other at time t = t0 with its contact set C, which is part of Γt0(u

0), having
positive n − 1 dimensional Hausdorff measure. Then at the next moment
C instantly disappears and we have a discontinuity of Γ(u0) and v0 at t = t0.

3. If K and Ω0 are star-shaped with respect to a point in K, then it is
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known that v0 is continuous with respect to x and t, and Corollary 4.5
applies.

The proof of Theorem 4.4 will involve a series of Lemmas. We start with
a simple result, which will be useful in the sequel:

Lemma 4.6. Suppose (xk, tk) ∈ {uεk = 0} and (xk, tk, εk) → (x0, t0, 0).
Then the following holds:

(i) (x0, t0) ∈ {u0 = 0}.

(ii) If xk ∈ Γtk(uεk) then x0 ∈ Γt0(u
0).

Proof. (i) The uniform convergence of uε to u gives lim uεk(xk, tk) = u0(x0, t0),
hence the result.

(ii) Since xk ∈ Γtk(uεk), Lemma 3.3 (ii) yields that for all r, there exists
yk ∈ Br(xk) such that

uεk(yk, tk) > cr2.

Up to a subsequence, we can assume that yk → y0 ∈ Br(x0) and the uniform
convergence of uε yields

u0(y0, t0) > cr2.

So Br(x0) ∩ Ωt0(u
0) 6= ∅ for all r > 0, hence x0 ∈ Γt0(u

0).

Lemma 4.7.
(v0)∗(·, s) ≤ v0(·, t) for all s < t.

In particular,
((v0)∗)∗ ≤ v0

Proof. Corollary 3.7 yields

(v0)∗(x, 0) = v0(x, 0) = v0(x) for all x,

Theorem 2.7 then yields the result.

The next lemma states that the free boundary may not jump in time:

Lemma 4.8. For any (x0, t0) ∈ Γ((v0)∗), there exists a sequence (xk, tk) ∈
Γ(v0) with tk ≤ t0 converging to (x0, t0).
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Proof. 1. Suppose that the lemma does not hold. Then, there exists r > 0
(we can assume r ≤ 1) such that

Br(x0)× [t0 − r, r0] ⊂ {v0 = 0} or Br(x0)× [t0 − r, r0] ⊂ {v0 > 0}.

The second possibility clearly implies that (v0)∗ > 0 in Br(x0)×(t0−r, t0+r)
which is impossible. We thus have Br(x0) × [t0 − r, r0] ⊂ {v0 = 0} and
Lemma 4.7 implies

(v0)∗(x, t0 − τ) = 0 for x ∈ Br(x0) and τ ∈ (0, r).

2. Let h(x) = h(|x − x0|) be a harmonic function in Br(x0) − Br/2(x0)
with boundary data 1 on ∂Br(x0) and zero on ∂Br/2(x0). Let

φ(x, t) = h((1 + M(t− t0 + τ))|x− x0|)

where M = Cr−1 and τ = M−1r = C−1r2. If the constant C is chosen large
enough, then φ is a supersolution of (P0) for t ∈ [t0−τ, t0]. We now compare
(v0)∗ and h in Br(x0) × [t0 − τ, t0] (we recall that (v0)∗ is a subsolution of
(P0)). We have (v0)∗(x, t0 − τ) = 0 ≤ φ(x, t0 − τ) in Br(x0), so using
Theorem 2.7 and the fact that v0 ≤ 1, we deduce:

Br/4(x0) ⊂ {(v0)∗(·, t0) = 0},

a contradiction.

We deduce the following result:

Corollary 4.9.
Γ((v0)∗) = Γ(v0)

Proof. 1. Lemma 4.8 and 4.6 yield

Γ((v0)∗) ⊂ Γ(v0).

2. Assume now that (x0, t0) ∈ Γ(v0). Since (v0)∗ ≥ v0 it is readily seen
that (x0, t0) ∈ {(v0)∗ > 0}. Furthermore, if there exists r such that

Br(x0)× (t0 − r, t0 + r) ⊂ {(v0)∗ > 0}

then Lemma 4.7 implies v0 > 0 in Br(x0)× (t0−r, t0 +r), which contradicts
(x0, t0) ∈ Γ(v0). Hence (x0, t0) ∈ Γ((v0)∗).
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Lemma 4.10. The following inclusion holds:

{v0 > 0} ⊂ {v∗ > 0}.

In particular
v∗ ≥ v0.

Proof. We recall that vε(x, t) ≥ 1
t u

ε(x, t) for all x and t > 0. The uniform
convergence of uε to u0 thus implies:

v∗(x, t) ≥ 1
t
u0(x, t)

and so
{v0 > 0} = {u0 > 0} ⊂ {v∗ > 0}

Since v∗ is superharmonic in {v∗ > 0}, we deduce v∗ ≥ v0.

Lemma 4.10 also implies that v0 ≤ v∗ ≤ v∗ and so

(v0)∗ ≤ v∗. (4.7)

We now want to show the following proposition:

Proposition 4.11. v∗ is a subsolution of (P0).

For that purpose, we first need a couple of technical lemmas:

Lemma 4.12. Suppose (x0, t0) ∈ Ω(vε). There exists a constant C1 inde-
pendent of ε and r such that Br(x0) ∩ Ω0 = ∅, we have:

sup
Br(x0)

vε(·, t0) ≥
C1 r2

t0
.

Proof. Since vε(·, t0) ≥ uε(·, t0)/t0 (uε is subharmonic in Ωt(uε)), the result
follows from Lemma 3.3.

Lemma 4.13.

(i) For any (x0, t0) ∈ {v∗ = 0}, there exists (xk, tk) ∈ {vεk = 0} such that
(xk, tk, εk) → (x0, t0, 0) as k →∞. In particular (x0, t0) ∈ {v0 = 0}.
(ii) For any (x0, t0) ∈ Γ(v∗), there exists (xk, tk) ∈ Γ(vεk) such that (xk, tk, εk) →
(x0, t0, 0) as k →∞. In particular (x0, t0) ∈ Γ(v0).
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Proof. We only prove (ii), the proof of (i) being slightly simpler.
1. Let (x0, t0) ∈ Γ(v∗), and assume that the result does not hold. Then

there exists r > 0 such that, for all ε ≤ ε0, either

Br(x0)× [t0 − r, t0 + r] ⊂ Ω(vε)

or
Br(x0)× [t0 − r, t0 + r] ⊂ {vε = 0}.

In the second case, we would deduce v∗(x, t) = 0 for all x ∈ Br/2(x0) and
t ∈ [t0 − r/2, t0 + r/2], which contradicts x0 ∈ Γt0(v

∗). So we can assume
that Br(x0)× [t0 − r, t0 + r] ⊂ Ω(vε).

2. We have Br(x0) ⊂ Ωt(vε) and so Lemma 4.12 and Harnack’s inequal-
ity for harmonic functions, yield that there exists c1 depending on c0 and n
such that

vε(x, t) ≥ c1r
2

t
for all x ∈ Br/2(x0) and t ∈ [t0 − r, t0 + r].

This contradicts the fact that (x0, t0) ∈ Γ(v∗).

3. Lemma 4.6 and the fact that {vε = 0} = {uε = 0} implies (x0, t0) ∈
{v0 = 0}.

Lemma 4.14. If (x0, t0) ∈ Γ(v∗), then there exists (yk, tk) ∈ Γ((v0)∗) con-
verging to (x0, t0).

Proof. Lemma 4.13 (ii) implies Γ(v∗) ⊂ Γ(v0) and so (x0, t0) ∈ Γ(v0). As-
sume now that the result does not hold. Then there exists some small r and
τ such that either

(v0)∗ = 0 in Br(x0)× [t0 − τ, t0 + τ ],

or
(v0)∗ > 0 in Br(x0)× [t0 − τ, t0 + τ ].

In the first case, we get a contradiction from the fact that (v0)∗ ≥ v0 (by
definition of (v0)∗), and so v0 = 0 in Br(x0)× [t0 − τ, t0 + τ ]. In the second
case, the contradiction is given by Lemma 4.7 which gives

0 < (v0)∗(·, s) ≤ v0(·, t) for all s < t

and so v0 > 0 in Br(x0)× (t0 − τ, t0 + τ).
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Proof of Proposition 4.11:
1. We recall that (v0)∗ is a subsolution of the limiting problem. Since

we already know that v∗ is subharmonic in its positive phase, we only need
to check for the behavior of v∗ on its free boundary Γ(v∗). We recall (see
step 2 in the proof of Theorem 3.1) that vε, and thus v∗, is subharmonic in
Rn \K.

Let φ be a smooth function in C2,1 such that

v∗ ≤ φ+ = max(φ, 0) in Σ := Br(x0)× (t0 − τ, t0],

v∗(x0, t0) = φ(x0, t0) and (x0, t0) ∈ Γ(v∗).

If v∗(x0, t0) > 0, since v∗ is subharmonic, we get −∆φ(x0, t0) ≤ 0, so we can
assume v∗(x0, t0) = 0 and |Dφ|(x0, t0) 6= 0. We need to prove that

min(−∆φ, φt − 〈1/g〉−1|Dφ|2)(x0, t0) ≤ 0.

2. After adding δ(x−x0)4 if necessary, we may assume that v∗−φ has a
strict maximum at (x0, t0) in Ω(v∗)∩Σ. Using (4.7), we see that (v0)∗ ≤ φ+

in Σ. For ε > 0, we perturb φ by

ϕε(x, t) = φ(x, t)− ε(t− t0 + δ)

where δ = min(τ, r2/2). Then φ < ϕ on the parabolic boundary of ∂Br(x0)×
[t0 − δ, t0] and φ(x0, t0) = ϕ(x0, t0)− εδ.

Finally, Lemma 4.14 implies that (v0)∗ crosses ϕ+ from below at (xε, tε)
in Σ ∩ {t ≤ tε} for any ε > 0. It follows that

min(−∆ϕε, ϕε
t − 〈1/g〉−1|Dϕε|2)(xε, tε)) ≤ 0.

3. Since ϕε converges to φ and v∗ − φ has a strict maximum at (x0, t0)
in Ω̄(v∗) ∩ Σ, we have (xε, tε) → (x0, t0), and thus we can conclude.

Proof of Theorem 4.4:
1. Since Γ0 = ∂Ω0 is smooth, a barrier argument as in the proof of Corol-
lary 3.7 yields:

v∗(x, 0) = v0(x).

Since v∗ is a subsolution for (P0) (Proposition 4.11) and v0 is a supersolution
(Theorem 3.1), Theorem 2.7 gives

v∗ ≤ (v0)∗.
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Together with Lemma 4.10, it leads to

v0 ≤ v∗ ≤ v∗ ≤ (v0)∗.

In particular, we have v∗ ≤ (v0)∗ and so v∗ ≤ ((v0)∗)∗. Together with
Lemma 4.7 (which gives ((v0)∗)∗ ≤ v0), we deduce v∗ ≤ v0 and so

v∗ = v0.

Finally, since v∗ ≥ v0, we have v∗ ≥ (v0)∗ and so

v∗ = (v0)∗.

In particular, Lemma 4.7 yields:

Γ(v∗) = Γ(v∗) = Γ(v0) = Γ((v0)∗).

2. We now have to prove the uniform convergence of the free boundaries.
We recall that the sets Γ(v0) ∩ {0 ≤ t ≤ T} and Γ(vε) ∩ {0 ≤ t ≤ T} are
compact since the positive phases of v0 and vε are uniformly bounded locally
in time.

Let (x0, t0) ∈ Γ(v0) = Γ(v∗), for some t0 ≤ T , and assume that there
exists a sequence εk → 0 such that either vεk > 0 or vεk ≡ 0 in Br(x0) ×
(t0− r, t0 + r) for some small r > 0. In the first case, we get a contradiction
by arguing as in Lemma 4.13. In the second case, we deduce v∗ = 0 in
Br(x0)× (t0− r, t0 + r) and so v0 ≡ 0, a contradiction with (x0, t0) ∈ Γ(v0).

This proves that for any δ > 0, there exists ε0 (depending on (x0, t0)
such that

d((x0, t0),Γ(vε)) ≤ δ if ε < ε0.

3. Similarly, if we have a sequence (xε, tε) such that (xε, tε) ∈ Γ(vε)∩{t ≤
T}, then Lemma 4.6 (ii) and the fact that the sets Γ(v0)∩ {0 ≤ t ≤ T} and
Γ(vε) ∩ {0 ≤ t ≤ T} are compact imply that for any δ > 0 there exists ε0

such that
d(Γ(v0), (xε, tε)) ≤ δ if ε < ε0.

4. Finally, since the sets Γ(v0) ∩ {0 ≤ t ≤ T} and Γ(vε) ∩ {0 ≤ t ≤ T}
are compact we can prove that the constant ε0 given in the two inequalities
above only depend on δ and T . It follows that Γ(vε) converges locally
uniformly to Γ(v0) with respect to the Hausdorff distance.
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