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Abstract

We investigate the homogenization of Stefan-type problems with oscil-
lating diffusion coefficients. Both cases of periodic and random (stationary
ergodic) medium are considered. The proof relies on the coincidence of
viscosity solutions and weak solutions (which are the time derivatives of
the solutions of an obstacle problem) for the Stefan problem. This coin-
cidence result is of independent interest.

1 Introduction

Let vp(z) be a non-negative function defined in R™ with compact support 2y =
{vo > 0}. This paper is concerned with one-phase Stefan problems of the form:

vy — Di(aijDjv) =0 n {v>0}
(P) |gv| = F(z,Dv) = aijDjvvi  on  9{v >0},

v(x,0) = vo(x).

The unknown is the function v(z, t), defined for (x,t) € R™ x [0, c0) with values
in RT. The vector v = (v1,..vp,) = v ¢ appearing in the second equation denotes
the spatial normal vector at (z,t) € O{v > 0}, inward with respect to {v > 0}.

The matrix A(z) = (a;;(z)) is assumed to be symmetric, bounded, and
uniformly elliptic. In particular it satisfies

NEP <Y aij(@)6g < AE)* forallz € R” and £ € R” (1.1)
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for some positive constant A and A. Throughout this paper, the initial data will
be assumed to satisfy:

vo € C%'({vg > 0}) and 0{vy > 0} is of class C". (1.2)

One-phase Stefan problems such as (P) typically describe the melting of
a frozen granular medium (at constant zero temperature) in contact with a
liquified region. In this case, v(z,t) denotes the temperature of the water and
the coeflicients a;;(x) describe the thermal diffusivity of the medium. The free
boundary is the set d{v(-,t) > 0}, which models the solid-liquid interface. The
free boundary condition, which could also be written as

vy = F(z, Dz)|Dv| = a;; Djv D;v,

says that the free boundary is moving with (outward) normal velocity F'(x, Dv).
Note that (1.1) yields

ADv| < F(z,Dv) < A|[Dv| on 0{v > 0}.
We refer to [P], [R1] and [Rou] for further discussions about the model.

Even with smooth initial data, the existence of smooth solutions to the Ste-
fan problem is not expected due to free boundary singularities such as merging
of the fingers (or formation of holes in the ice cubes). The short time existence
of classical solutions for (P) was established by Hanzawa [H] when d{vy > 0} is
in C2**, and the existence of weak solutions in H' was proved by Kamenomost-
skaja [Kal, Oleinik [O] and Friedman [F] when vy satisfies (1.2). It was later
observed by Duvaut [Du] (see also Friedman-Kinderlehrer [FK]) that if v(z,t)
is a smooth solution of (P), then u(z,t) = fot v(x, s) ds satisfies the following
parabolic variational inequality:

u(z,t) >0,
(0w — Dji(a;;Dju)) (v —u) > f(v —u) a.e.(z,t) for any v > 0,
u(z,0) =0,

where

vo(z) in Qo
J(@) = { -1 in R\ Q. (1.3)

This parabolic inequality always has a global unique solution w(z,t) when wvg
satisfies (1.2). The corresponding time derivative v = dyu € L*(R"™ x [0,0))
is thus sometime called a weak solution of (P). The regularity of v and that
of its free boundary has been studied by several authors. An important result,
due to Caffarelli-Friedman [CF], says that when a;; = d;; the temperature dyu
is continuous in R™ x [0,00). We refer to Rodrigues [R1] for a more detailed
presentation of the weak formulations of (P).



More recently, the notion of viscosity solution, which was first introduced
by Crandall and Lions in [CL] for Hamilton-Jacobi equations, was developed
in the framework of Hele-Shaw and Stefan problems by one of the author [K1]
(see the next section for the precise definition). This notion of solution directly
deals with the free boundary problem (P) with point-wise, maximum-principle
type arguments. The global existence and uniqueness of viscosity solution is
established in [K1]: here uniqueness result holds with additional regularity as-
sumptions on the initial data (mainly vo € C*({vg > 0}), and 9{vg > 0} in
Cl’l).

As we will see in this paper, each notion of solutions described above holds
its own advantage for the analysis of (P). Thus the natural question is whether
weak and viscosity solutions coincide. Our first main result, Theorem 3.1, states
that the answer is yes whenever the weak solution exists: i.e. when vy satisfies
(1.2).

The second main result of the paper, which is also an application of the first,
is to study the homogenization of the one-phase Stefan problem. Following Ro-
drigues [R2], we assume that the elliptic operator has fast oscillating coefficients:

We define .
Afv := D; (aij (E) Djv) ,

where A(y) = (ai;)(y) is a symmetric matrix satisfying (1.1). We now consider
the following Stefan problem with highly oscillating diffusion coefficients:

(v¥) — A% =0 in  {v°>0}
v
| Dve|

ve(2,0) = vo(x)

(P°) = F*(x, Dv®) := a;;(£)Djvcy;  on  O{v® > 0},

where v = (v1, ..., ) denotes the spatial normal vector to 9{ve(-,t) > 0}. The
object of Sections 4 and 5 is to investigate the behavior of (viscosity or weak)
solutions v® as € goes to 0.

Interesting phenomena arise when we make some assumptions on the coef-
ficients a,;(y) that guarantee some kind of averaging behavior. More precisely,
besides (1.1), we also assume that (a;;(y)) satisfies:

(a) a;j(y) is a Lipschitz continuous function,
(b) @i;(y) has some averaging properties. i.e. one of the following holds:

(
(bl) y — ai;(y) is Z"-periodic
)

(b2) y — a;;(y) is a stationary ergodic random variable over a probability
space (4, F, P).



We recall that a random variable g(x,w) is said to be stationary ergodic if it
satisfies the following two conditions:

1. the distribution of the random variable g(x,-) : A — R is independent of
x (we say that g is stationary). More precisely, we will assume that for
every = € R there exists a measure preserving transformation 7, : A — A
such that:

g(z+ 2" w) = g(z, 7pow) for all 2’ € R" and w € A.
2. the underlying transformation 7, is ergodic, that is if B C A is such that

7B = B for all x € R™, then P(B) =0 or 1.

Our main result states that under assumptions (a)-(b) and (1.2), the solution
(v%) of (P*) converges locally uniformly (almost everywhere in the random case)
to the unique solution v(z,t) of
vy — A% =0 in  {u>0}

Ut .
|Dv|
U(:L', 0) = UO(x)

(PY) FO(Dv) = ¢;;Djvv; on O{v>0}

where (g;;) is a symmetric matrix with constant coefficients (see Section 3 for
explicit formula) and A° is the corresponding elliptic operator:

AO’U = Dz(q,L]DJU)

A similar question was first addressed by J. F. Rodrigues [R2] in the case
of periodic coefficients and for weak solutions of the Stefan problem, that is for
u®(z,t), with bounded support, solving the variational inequality

uf(x,t) >0 in R™ x [0,T],
(O — Di(aij(z/e)Djuf))(v —u®) > f(v —u®) a.e.(z,t) for any v > 0,
uf(z,0) =0,

Here f is defined by (1.3). The homogenization of variational inequalities as
above is often simpler than that of free boundary problems such as (P¢). In
Section 4 we give a generalized proof of Rodrigues’ results that applies to the
random coefficients case, using the notion of I'-convergence and some results of
G. Dal Maso and L. Modica [DM1], [DM2].

The difficultly is then to study the behavior of the free boundary itself as
€ goes to zero. Under the assumption that both u® and u have star-shaped
free boundaries, it was shown in [R2] that the oscillating free boundary 0{u® >
0} converges in L' to the free boundary of the homogenized function 9{u® >
0}. Unfortunately, the variational approach in [R2] does not yield the uniform
convergence of the free boundaries in the homogenization limit, except in some
one-dimensional cases.



In Section 5, we improve the result of [R2] by establishing the uniform con-
vergence of the free boundaries and viscosity solutions for general initial data.
Note that the positive phases of solutions for both problems (P¢) and (P°) may
go through topological changes such as merging of two fingers. Our result states
that the oscillating free boundaries converge uniformly even in the event of such
singularities.

The key point in the proof is the use of our first result, i.e., the fact that
viscosity solutions of (P¢) (and (PY)) are the ”time derivatives” of the solution of
the variational problem (Theorem 3.1). This enables us to combine the strong
stability properties of the solutions of the obstacle problem with point-wise
arguments available for viscosity solutions.

Corresponding results were obtained in [KM] for a quasi-static free boundary
problem, i.e. with the heat operator d; — A replaced by Laplace operator A in
(P) (Hele-Shaw type problems). In that case, however, we strongly relied on
the monotonicity of the solutions in time to establish the results. It turns out
that the Stefan problem that we consider here is significantly more difficult to
treat because of the lack of monotonicity and the presence of a time dependent
operator in the positive phase. We also point out that the elliptic operator
(A®) in (P¢) is more general than the one considered in [KM] (which was the
simple Laplace operator). Adapting some of the arguments presented here, it
would naturally be possible to extend the results of [KM] to more general elliptic
operators.

The paper is organized as follows: In the next section, we recall the defini-
tion of weak solutions and viscosity solutions of the Stefan problem. In Section
3, we prove our first main result which states that both notions lead to the same
solutions. We then (Sections 4 and 5) address the question of the homogeniza-
tion of Stefan problems, i.e. we show the uniform convergence of the solutions
of (P?) to the solutions of (P?).

Notations: For any nonnegative function w(z,t) : R® x [0,00) — R, we
will always denote

Qw) ={w >0}, U(w)={z; w(z,t) >0}

and
I(w) =0Q(w), Ti(w)= 0% (w).

We call Q;(w) and T';(w) respectively the positive phase and the free boundary
of w.



2 Variational and viscosity solutions

In this section, we denote by A = (a;j(z)) a symmetric matrix bounded and
uniformly elliptic (i.e. satisfying (1.1)), and by A the corresponding uniformly
elliptic operator:

Au = Di(aiiju).

We now describe the notions of variational and viscosity solutions for the one-
phase Stefan problem (P).

2.1 Variational formulation

Let v(x,t) be a classical solution of the Stefan problem (P) in R™ x [0,T] with
initial condition
v(x,0) = vo(z),

Choose a bounded open set O C R"™ containing the support of vy. Following
[FK] and [R2] it can be shown that, if O is chosen large enough depending

t
on T, then the function u(x,t) = / v(x, s) ds solves the following variational
0

problem:
Problem 1: Find u € L*(0,T; H'(O)) such that u; € L*(O x [0,T]) and

u(-,t) € K(t)
/O Ou(v —u)dr + /O a;;DiuDj(v —u)dx > /(9 flo—wu)dr VoveK(t)

for a.e. t € (0,T) and satisfying u(x,0) = 0.
Here (and below), we set:
Kt)={ve H(O);v>0}

and

fz) =

vo(z) for z € Qg
-1 for = ¢ Q.

Furthermore, when the coefficients a;; () are Lipschitz continuous this prob-
lem is equivalent to (see [FK]):

Problem 2: Find u € L?(0,T; H*(O)) such that u; € L*(O x [0,T]) and
u(t) € K(t)
(0w — Dj(ai; Diw)) (v —u) > f(v—w) a.e.(z,t) € O x (0,T)
for any v € K(t),
u(z,0) = 0.

(2.1)



The computations that lead to Problem 1 (and 2) can only be performed if
v is a classical solution of the Stefan problem. However, we have the following
result:

Theorem 2.1 ([FK]). If vy satisfies (1.2), then Problem 1 (or 2) has a unique
solution.

We will thus say that if « is solution of Problem 1 (or 2), then u, is a weak (or
variational) solution of the corresponding Stefan problem (P). Weak solutions
naturally agree with classical ones when they are regular enough.

Finally, let us notice that the solution u(x,t) of Theorem 2.1 actually satisfies
u € L*(0,T; W2P(0)) for 1 < p < oo and uy € L*((0,T) x O) and
ur — Au = vo(T) — X, (u)— Q0 (u)
u=|Du|=0 on TI'(u)
u(z,0) = 0.
Remark The constraint set O in Problem and 1 and 2 is introduced to
make sure that the variational solution has bounded support. In fact Lemma 3.6

in section 3 states that u(x,t) is independent of the choice of O, if O includes
a sufficiently large ball.

2.2 Viscosity solution

Another way to define solutions of the Stefan problem is by viscosity solutions.
In the context of Stefan and Hele-Shaw problems, viscosity solutions were first
studied in [K1]. We recall here the definitions and some important facts about
those solutions.

For any non-negative function w(z,t), we define

Wy (x,t) := liminf w(y,s
(2,1) = lminf ‘w(y, s)
and
w*(z,t) ;== limsup w(y,s).
(y,8)—= (1)

Let ¥ C R™ x [0,00) be a space-time domain with smooth boundary, we recall
the following definitions for viscosity sub- and super-solutions of (P) (see [K1]):

Definition 2.2. A nonnegative upper semicontinuous function v(x,t) defined
in X is a viscosity subsolution of (P) if the followings hold:

(a) For all T € (0,00), the set Q(v)N{t <T}NX is bounded.

(b) For every ¢ € C*Y(X) such that v— ¢ has a local mazimum in Q(v) N{t <
to} NX at (xo,to), the following holds:



(i) If v(zo,to) > 0 then (¢pr — Ad)(xo,t0) < 0.
(i) If (xo,t0) € T'(v), |D|(x0,t0) # 0 and (¢pr — Ad)(x0,t0) > 0, then

(¢« — F(x, Dg)| D) (x0, to) < 0. (2.2)

Definition 2.3. A nonnegative lower semicontinuous function v defined in %
is a viscosity supersolution of (P) if for every ¢ € C*>1(X) such that v — ¢ has
a local minimum in XN {t < to} at (x0,t0), the following holds:

() If v(zo,to) > 0 then (¢ — Ad)(xo, o) > 0.
(i) If (zo,to) € T(v), |D|(xg,to) # 0 and (¢r — Ag)(xo,to) < 0, then
(¢ = F(x, Dg)|Dg|) (o, to) > 0.

Let now vg(x) be a given initial condition with support €y and free boundary
Iy = 0Qp and let Q = R™ x (0,00). Then we have the following definitions:

Definition 2.4. The function v(x,t) is a viscosity subsolution of (P) in Q with
initial data vg if

(a) v is a viscosity subsolution of (P) in Q,

(b) v is upper semicontinuous in Q and v(z,0) = vo(z).

(¢) Qv) N {t =0} = Q(uo).

Definition 2.5. The function v(x,t) is a viscosity supersolution of (P) in Q
with initial data vg if

(a) v is a viscosity supersolution in Q,
(b) v is lower semicontinuous in Q and v(z,0) = vo(z).

A viscosity subsolution v of (P) is upper semi-continuous by definition, and
thus can be positive on I'(u). However the following lemma, to be used in
Section 3, states that u cannot have an isolated jump.

Definition 2.6. The function v(x,t) is a viscosity solution of (P) (in Q with
initial data v ) if v is a viscosity supersolution and v* is a viscosity subsolution
of (P) (in Q with initial data vy.)

The existence of viscosity solutions and their properties have been studied
in great details in [K1]. In particular, we have:
Theorem 2.7. Assume that the initial data vo(x) satisfies

vo € C%(Q), To = 0 in C11 and Avg > 0 on Ty. (2.3)

Then (P) admits a unique viscosity solution defined for all time t > 0.



A more general comparison principle will be shown later (Corollary 3.12)
once we prove the coincidence of viscosity solutions with the weak solution
(Theorem 3.1). In this paper, one of the most important features of viscosity

solutions is the fact that they satisfy a comparison principle:

We say that a pair of functions ug,vg : D — [0,00) are (strictly) separated
(denoted by ug < vp) in D C R™ if

(i) {uo >0} N D is compact and
(ii) uo(x) < vo(z) in {up > 0} N D.
Then we have the following theorem:

Theorem 2.8. (Comparison principle) Let vi,ve be respectively viscosity sub-
and supersolutions of (P) in X. If v < vy on the parabolic boundary of ¥, then
vi(+,t) < wva(,t) in X.

Sketch of the proof. The proof is parallel to that of Theorem 1.7 in [K1]. The
difference from the original proof in [K1], which deals with the Hele-Shaw flow, is
twofold. On one hand one has to deal with the dependence of the free boundary
velocity in  and v. A modified proof to deal with this is presented in [K2]. On
the other hand one also has to construct smooth, local barriers which solves the
equation

hi —Ah <0 (or >0)

in its support, with |[Dh| > 0 on 9{h > 0}. We briefly outline how to construct
such barriers in Appendix A. O

Note that the proof in [K1] uses strongly the fact that the initial data are
strictly separated. In section 3 we will show that the comparison principle
actually holds without strict separation of the initial data (see Corollary 3.12).

3 Uniting notions of weak and viscosity solu-
tions

Now we establish the fact that variational solutions (given by Theorem 2.1) are
indeed viscosity solutions of the Stefan problem (P). More precisely, we prove:

Theorem 3.1. Assume that vg satisfies (1.2). Let u(x,t) be the unique solution
of (2.1) in O x [0,T] and let v(z,t) be the solution of

{ v—Av=0 in Qu) (3.1)

v=0 on T'(u),



with initial data
v(x,0) = vo(z).
Then the followings hold:
(i) v(x,t) is a viscosity solution of (P) in O x [0, T] with initial data v(x,0) =

vo ().
(i) u(zx,t) :/0 v(z, s)ds.

Before presenting the proof of Theorem 3.1, it is necessary to recall the main
properties of u.

3.1 Properties of the variational solutions

The existence of a unique solution to (2.1) is given by Theorem 2.1 (see [FK],
[R2]). Furthermore, we have

uw € L0, T, H*P(0)) for 1 <p< o0 (3.2)

up € L=(O x (0,T))

and u satisfies

uy — Au > f, u>0
(3.3)
u(ug — Au— f) =0 ae. in O x (0,00)
With minor adaptations from [FK] (see also [R2]), we can also state:
Proposition 3.2.
The unique solution u of (2.1) satisfies
0<u <C ae Ox(0,T) (3.4)

where C' is a constant depending on f, A and A. In particular, u is Lipschitz
with respect to t and C* with respect to x for all a € (0,1).

Furthermore if 0 <t < s < T then u satisfies u(-,t) < u(-,s) and so:

Qo C Qs(u) C U (u).

Lemma 3.3. Suppose xp € Q4 (u) and assume that B,.(xo) N Qo = O for some
r. Then there exists a constant C, depending only on n, X\ and A, such that

sup u(w,tg) > Or?.
z€Br (o)

10



Proof. The proof is classical and makes use of the barrier h(x) constructed in
Appendix A. We first assume that xo € Q (u) (the result then follows by
continuity of u). Let Q,(wo,t0) = B,(x0) X [to — 72, 0] and define

1 1
w(z,t) = u(z,t) — %h(x —x9) + 5(75 — to).
It is readily seen that {w > 0} N Q. (z0,%0) C {u > 0} N Qr(z0,%0) and since
Ou — Au = —1in {u > 0} \ Qo, we have

Ow—Aw =0 in {w> 0} NQ.(xo,10).

Since w(xg, tp) > 0, the maximum of w in @, (xg, tp) is nonnegative and is thus
reached in {w > 0} N 9,Qr(x0,to) (0, denotes the parabolic boundary).
Using the quadratic growth of h, we easily deduce that

sup u(x,t) > Cr?
Qr(zo,t0)

and the fact that u is nondecreasing with respect to ¢ yields the result. O

Lemma 3.4. Let 0 < s < t. Then Q4 (u) lies within a C(t — s)*/%-neighborhood
of Qs (u):
Qt(u) C Qé(u) + Bc(t75)1/2'

In particular
O¢(u) C Qo+ Beypse for allt > 0.

Proof. Let zo be a point in Q;(u) at distance § of Qg(u). Then Bs(xg) NQp = 0
so Lemma 3.3 implies
sup u(-,t) > C6%
Bjs (o)
Since u(z,t) — u(x,s) < C(t — s) for all = (u is Lipschitz in time by Proposi-
tion 3.2), and u(-,s) = 0 in Bs(xg), we deduce § < C(t — s)'/2 which yields the
result. O

Lemma 3.5 (Comparison principle). Let 3 be a smooth domain in R™ x [0, 00).
Suppose that ui(x,t) and uz(z,t) solve (2.1) with vi(z) and vi(z) replacing
vo(x). If ’Ué < v% in X and uy < ug in the parabolic boundary of %, then
u < ug N X.

Proof. Let w = uz — uy and assume that w(z,t) has a negative minimum at
(%o, t0). Since w > 0 on the parabolic boundary of ¥, we have (z¢, tg) ¢ 0pX.
Moreover 0 < ua(xq,to) < u1(zg,to) and so dyuy — Aug = f1 at (zg,t9). We
deduce
Ow — Aw > fo — f1 >0 at (xo,to)

and the strong maximum principle for parabolic equations gives a contradiction.
O

11



The next lemma claims that the support of u(:,t) remains bounded at all
times:

Lemma 3.6. For all T > 0, there exists M = M(T) depending only on T and
the initial data such that the solution u(x,t) of (2.1) in O x [0,T] satisfies

{u(,t) >0} C Bpm(0)  forall0<t<T
(as long as By (0) C O).
Proof. See Appendix A for the proof. O

In particular, above lemma says that if O is big enough, the choice of O is
irrelevant in our problem.

Lastly we will need the following particular case of stability result for parabolic
variational inequality:

Lemma 3.7. If v (z) and its support converge to vo(z) and Qo in L™, then
the solutions un(x,t) of (2.1) with v instead of vo, converge uniformly to the
solution u(z,t) of (2.1).

Proof. It follows easily from the stability result in Appendix B. O

3.2 Proof of Theorem 3.1

We are now ready to prove our main result. But first, v needs a precise definition.

Since u is continuous, and thanks to Lemma 3.6, the domain Q(u) is a
bounded open set of R™ x RT. The existence of a solution to (3.1) when Q(u)
is not smooth is then provided by Perron’s method as follows (see [GL]):

v =sup{w|w; — Aw <0 in Q(u), w <0 on I'(w), w(x,0) <wvo(z)}. (3.5)

Classical potential theory assures that v is continuous in Q(u) and that v, —
Av = 0 in the classical sense. Note that it is not true in general that v
attains continuously its boundary value - in particular, it may happen that
M SUpP(; 4) s (20,£) V(T 1) > 0 for some (wo,t0) € I'(u).

We also should check that v satisfies the initial condition. This actually
follows rather easily from Lemma 3.4:

Lemma 3.8. The function v(x,t) satisfies the following initial condition:
v(z,0) = v™(2,0) = vo(x) for all z € R" (3.6)

and
{u>0}N{t=0}=0.

Proof.

12



1. Let w(z,t) be the classical solution of w; — Aw = 0 in Qg x (0,00) with
w(x,t) =0 for x € 9Qp and w(x,0) = vo(z). Then we have v(z,t) > w(x,t) in
Qp x (0,00) and so

liII(l) v(x, s) > vo(x),

hence v*(z,0) > v(z,0) > 0.

2. Let now w, denote the classical solution of (9; — A)w = 0 in (Qo + Bar1/2) X
(0, 7) which vanishes on 9(€y + Bg,1/2) and such that w(z,0) = vo(z). Then
Lemma 3.4 implies that

v(z,t) < w(x,t) for all t < 7.
This gives

lim v(z,s) < w,(x,0)

s—0

and it is readily seen that w;(z,0) = vo(x). It follows that

lim v(zx,s) < wv(x),

s—0

and the continuity of vy yields
v(x,0) < v*(x,0) < v(x).
3. Finally, Proposition 3.2 gives Q¢ C Q:(u) for all t > 0 and so
Qo c {u>0}n{t=0}
and the last equality in Lemma 3.8 follows from Lemma 3.4. O

In the sequel, we extend v(x,t) by 0 outside Q(u). Since the function w = 0
satisfies all the conditions in (3.5), we must have v(z,t) > 0 in R™ x R* so
v(z,t) is lower semicontinuous in R™ x RT (recall that it may happen that
M SUDP (1) (20,£) V(T 1) > 0 for some (x0,%0) € I'(u)). Moreover, we have:

Lemma 3.9. The solution v of (3.1) is strictly positive in Q(u) and satisfies
{v>0}=Qu) and Qu) C {v* >0} C Qu).
In particular, v satisfies 0{v > 0} = 9{v* > 0} = I'(u).

Proof. Assume that v(xg,to) = 0 for some (xg,t9) € Q(u). Then, the strong
maximum principle implies that v = 0 in the set S(xq,to) of all the points in
Q(u) which can be connected to (zg,t9) by a polygonal line contained in Q(u)
along which ¢ is increasing.

The claim is then

(S(IQ, to) N {t = O}) N QO 7é (Z), (37)

which leads to a contradiction thanks to (3.6).

13



To prove (3.7), note that if it does not hold then S(zo,to) N (Qo % (0,%9)) =0
(for if (z1,t1) € S with x; € Qo C Qi (u), then (x1,t) € S for all t € (0,t1)).
Therefore it follows that

(8t - A)U § 0 in S(:Co,to).

Furthermore, 9S(xg,to) C {u =0} and so u = 0 on 9S(xg, ty). The weak max-
imum principle (applied to u) thus yields u = 0 in S(xo, tg), which contradicts
the fact that (zo,%0) € {u > 0}. O

The next lemma allows us to approximate the initial data vo(z) in such
a way that the approximating solution satisfies Avg > 0 near the initial free
boundary.
Lemma 3.10.
Suppose vg satisfies (1.2). Then there exists a monotone decreasing sequence
vy () such that
(a) vo < v§ inR",

(b) vy and its support converge to vy and its support

(c) vy satisfies Avly > 0 near T'(vl) and the corresponding solutions v™(z,t)
of (3.1) satisfies:

vo(x) < (L4 0(ho))v™(x,t)  for 0 <t < hy,
where §(hg) and ho depend on n and satisfy 6(hg) — 0 as hg — 0.

Similarly, there exists a sequence vjj such that vy < vo and v satisfies (b) and
(c) above.

Proof.
1. Define 1
Q5 ={y : dly, ) < —}.

Let K be a small ball K C Qo, ¢o be a small positive number. Let wg (x,t)
solve
Awg = ¢ in Q) — K,

n _ : 11
wg = min(s;, 3v0) on 0K,

wy =0 on 082f.
A solution to this problem exists and is strictly positive if ¢ is sufficiently small
(co depends on n).
Then v§ := max(wg, (1 4+ <)vg) is a continuous function with support €f

and such that v§ = w{ near the boundary of 2. It is readily seen that (a) and
(b) hold.
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Let now u™ solve (2.1) with v{ instead of vy, and let v™ be the corresponding
solution of (3.1) (with u™ and v§ replacing u and vg). The function v™(x,t) is
greater than the solution w™(z,t) of the following boundary problem:

(O — Aw™ =0  in Qf x [0,00)
w™(z,t) =0 for x € 00y

w™(x,0) = v (x) for z € Q.

Hence in order to prove the (c) holds, it is enough to prove that for 0 <t < hg
we have

vo(x) < (14 6(ho))w™(z,t), with §(hg) — 0 as hg — 0.

This inequality follows easily after noticing that in a small O(%)—neighborhood
of 9Qf, we have Aw"(x,0) = ¢p > 0 and so the function w"(x,t) is increasing
with respect to ¢ for small ¢. Away from 0€)j, the function w” is strictly positive
and continuous in time, so the inequality holds.

2. To prove the existence of vj, consider an increasing sequence of domain fzg
slightly smaller than Qg (for example consider

0f = {y € Q0+ dly,To) > =)

Define vj to be a sequence of continuous functions supported in fzg with vff < v
and uniformly converging to vy - for example one can take v} = (1 — %)UQ in
58/2 and let v be the solution of Aw = c¢¢ > 0 in (NZS — 63/2, with appropriate
boundary data.

Proceeding as in Step 1, it is now straightforward to check that (c¢) holds. O

We now proceed with the proof of Theorem 3.1:

Proof of Theorem 3.1. Recall that the function v(z,t) is lower semicontinuous
and vanishes on T'(u). It satisfies Q(v) = Q(u) and Q(u) C Q(v*) C Q(u) (note
that v* may be positive on I'(u) if the free boundary has a sharp cusp), and it
solves

v —Av=0 in Q(u).

Moreover, it is readily seen from (3.5) that v is a supremum of subsolutions of
wy — Aw = 0 in R™ x (0,7) (take max(0,w) instead of w in (3.5)). We thus
have:

v —Av <0 and vf — Av* <0 inR" x(0,7).
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The claim is that v* is a viscosity subsolution of (P). Similar arguments
would yield that v is a supersolution of (P) thus showing the first part of The-
orem 3.1.

Proof of the claim comes in two steps:

e First, we assume that vo(z) is such that for some positive constant hy and
for 0 <t < hg we have

{ Avy > 0 in a neighborhood of T'(vg) (3.8)

vo(x) < (14 0(ho))v(z,t) for t < hg, with §(hg) — 0 as hg — 0.

This condition implies that v is ” almost monotone” near the free boundary.
This will enable the comparison between the finite time difference of u and
v (recall that the eventual goal is to prove v = u;). This is crucial in the
proof of (3.10) below.

e In the second part of the proof, Lemma 3.10 will be used to show that the
result holds without condition (3.8).

Step 1: when v, satisfies (3.8).
1. First note that (3.8) implies that for any hg, there exists ¢ such that
Oy —A)((1+dtv(z,t+7)=0Q+0)v(z,t+7) > vy

in Q(u) N{0 < t+4+ 7 < hg}. Classical comparison principle applied to u(x,t)
and (14 9)tv(x,t +7) in Qu) N {0 < t < h}, thus yields:

u(z,h) < (1+6)hv(z,h+ 1) for 0 <7 <hg—h. (3.9)

We now claim that for 0 < h < hg, t > h and 0 < 7 < hg — h the following

holds:

u(z,t) —u(x,t — h)

h

(recall that 6 > 0 and 6 — 0 as hg — 0).
When ¢ = h, (3.10) follows from (3.9) (and the fact that u(x,0) = 0). When

t > h it follows from the definition of v and the maximum principle, since u,, is

a smooth function satisfying

uy, (z,t) == <A+d)v(x,t+71) (3.10)

1
(0 = A)(up,) = =X ()2 (w) S0

with support in Q(u) and u; = 0 on I'(u).
2. Let X be a parabolic neighborhood of (xg, tp) and assume that there is a 9271
function ¢(x,t) such that v* — ¢ has a local maximum zero at (zg,tg) € Q(v)

with tp > 0 in ¥ N Q(v). We are going to show that ¢ satisfies the conditions
(i) or (ii) in Definition 2.2.
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If (x0,%0) € Qv), then vy — Av* < 0 and so (¢ — A¢)(xo,to) < 0. If
(x0,%0) € I'(v) and v*(xo,to) > 0 then ¢ is strictly positive in a neighborhood
of (xo,t0), and thus v* — ¢ has a local maximum in a neighborhood of (xg, to)
(note that the maximum is not just in 2(v)). Since vy — Av* < 0in R™ x (0,T),
it follows that (¢ — A¢p)(xo,t0) < 0.

Thus it remains to check that if (zg, tg) € I'(v) with v*(zo, to) = ¢(xo,to) =0
and

|D|(wo,t0) # 0, (¢t — Ad)(wo,t0) > 0,
then (2.2) holds.

3. Suppose that
[¢r — F(z, Do) Do|](x0,t0) > 0.

We define X1 := B, (zg, tg) X [to — T, to] with r small enough so that ¥; C ¥ and
%1 NQy = (. The goal is to construct a radially symmetric (in space) smooth
function ¢(z,t) in X1, which satisfies

)

) |Dp| >0 and ¢ — Ap > 0in 1 N {p > 0},
(c) @1 — F(x,Dp)|Dp| > 0 in $1 N Q(v),

)

The construction of such a function ¢ is based on a Taylor expansion of ¢ near
(x0,t0). For more details, refer to [KM] where a similar argument can be found
in the proof of Theorem 3.1.

Note that Q(v) = Q(u) does not jump in time (Lemma 3.4), and so it is
possible to perturb ¢ such that (a)-(c) holds together with

(d”) (wo,to) € Int{p = 0},
i.e., Q(v*) has crossed Q(y) from below in ¥ before t = .

4. Fix h > 0 such that h < r and h < hg. We introduce the function

w(z,t) = /tth o(z, s)ds

defined in 3;. Conditions (b) and (c) above guarantee that ¢ is a supersolution
of the Stefan problem (P) in ¥, and since p is smooth the classical computation
gives that w is a supersolution of the corresponding variational inequality. More
precisely w satisfies

(wt - Aw)('vt) > X (w) — Qi p (w)

in ¥ (see Section2.1).

17



Let @(xz,t) = u(z,t — h) — u(z,t — 2h) and let dy be the small constant in
the construction of . Due to (3.10) for ¢ € [ty — 7, to] the function @ satisfies

u(z,t) < (1+do)hv(x,7) for 7 €[t — h,t]
provided 0 < h < ho/2 (with hg small enough). Consequently
@ <w ondBy(xg) X [to —1,1t0].
Proposition 3.2 yields (%) = Q:—p(u) and so @ satisfies, in 31,
e — Al = =X ()~ Qan ()

= TXu(@)=Qn (@)

Hence the comparison principle for the obstacle problem (Lemma 3.5) gives
% < w in ¥;. In particular

Qi_p(u) = Q(a) C Q(w) = Q(p) in Byr(zo)

for to —r <t < tg. Since h is arbitrary, this contradicts the fact that Q(v)
crosses () in Xy.

This completes the proof of the fact that v* is a subsolution of (P). A similar
argument would prove that v is a supersolution of (P) thus showing that the
first part of Theorem 3.1 when condition (3.8) holds.

5. Now we prove that (ii) holds: the time integral of viscosity solution of (P)
solves the obstacle problem (2.1). This completes the proof of Theorem 3.1 for
initial data satisfying (3.8).

Lemma 3.11. Let v be a viscosity solution of (P) with initial data vo, and let
u be the unique solution of (2.1). If vg satisfies (3.8), then

[ et = [ sy =t

In particular if u is differentiable with respect to t, then uy = v = v*.
Proof. Equation (3.10) yields, for all ¢ > h:

u(z,t) —u(x,t — h)
h

< (14 d)v(z,t), withd(h)—0ash — 0.
Hence

(1+490) /htv(x,s)ds > %/tt u(z, s)ds — %/Oh u(x, s)ds.

—h

Sending h to 0, keeping in mind that u(z,0) = 0 and w is continuous, we deduce
t
/ v(x, s)ds > u(z,t).
0
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Observe that

u(z,t + h) — u(z,t)

(1+49) N

> v(x, t), with §(h) - 0as h — 0. (3.11)

As a matter of fact, this will be a consequence of the maximum principle if we
can show that it holds at ¢ = 0. So we have to check that (1+8)u(x+h) > hvg(x)
for small h, but this follows from the fact that tvg(z)/(1+ 0) is a subsolution of
(2.1) for small time, since

(0r — A)(tvg(z)) = vo(z) — tAvg(x) < (14 6)vo(x)

for small times (using the fact that Avg > 0 near 9{vg > 0}, see (3.8)).
Proceeding as before, it is now easy to check that (3.11) yield

/Ot v*(x, s)ds < u(z,t)

and we conclude after noticing that v < v*. O

Step 2: General initial data.

For general vy that do not satisfy (3.8), using Lemma 3.10, one can still
construct a decreasing sequence v} satisfying (3.8) for some § > 0 and h > 0
and

1
v0<v§§vo+E, suppvgﬂsuppvo as k — oo,

(where the convergence of the support holds with respect to the Hausdorff dis-
tance).

The proof in step 1 then applies and the conclusions of Theorem 3.1 thus
hold for the function wvy(z,t), solution of (3.1) with w = ug, where uy solves
(2.1) with v¥ instead of vy.

Let now v be the solution of (3.1) (with w this time) and define

v(z,t) := lim inf vk (y, s
v e=0(y,s)—(z,t)| £ <e (6, 9)

and

v(z,t) := lim sup v (Y, ).
-l d<e

Clearly v, > v, and thus (recalling that v is lower semicontinuous):
v > and v* <.

Standard stability properties of viscosity solutions imply that 7 is a subso-
lution of (P) and v is a supersolution of (P). Furthermore, proceeding as in the
proof of Lemma 3.8, we can show that

ﬁ(', 0) = -
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A parallel argument, using a sequence of smaller initial data w§ < vg con-
verging to vy and the corresponding solutions u of the obstacle problem, gen-
erates another viscosity sub- and supersolution @ and w of (P) with initial data
vo. Note that in this case w < w < v*.

Now we would like to show that v = w using the uniqueness of the obstacle
solution and Lemma 3.11.

Lemma 3.11 implies

t t
U :/ ve(z,8)ds and 4y :/ wg(z, s)ds
0 0

and Lemma 3.7 gives that both uy and @y, converge locally uniformly to u (where
u solves the obstacle problem (2.1) with initial condition vo(x)).

The comparison principle for viscosity solution of the Stefan problem (The-
orem 2.8) implies T < v and wy < w for every k. Therefore

/Ot v(x, s)ds < /Ot vg(x, 8)ds = ug(z,t)

and . .
gz, t) = / wi(x, 8)ds < / w(z, s)ds.
0 0

Taking the limit £ — oo yields

/1t v(z, s)ds < u(z,t) < [ w(x,s)ds < | w(x,s)ds. (3.12)
0 0 0

Since w < v < w, it follows that v(-,t) = v(+,t
every t > 0. In particular

=
I
<

—

- t) = w(-, t) for almost

¢
/ v(z, s)ds = u(z,t) for all z and t.
0

Let us finish by showing that v is a viscosity solution of (P). Recall that by
definition v is continuous in Q(v). Therefore from the previous argument and
due to the lower semi-continuity of v one sees that v < v in Q(v) (and thus in
O x (0,T)). Similarly, we obtain v* < w in Q(v), but v* may be positive on
I'(v). However, by construction of v

v*(x,t) = lim sup v(y, s).
(y,8) = (2,1),(y,5)€Q(v)

As a result v* < w on I'(v) and
v =w and wv=uy, (3.13)

and in particular v is a viscosity solution of (P). O
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To conclude this section, we note that (3.13) actually yields a general com-
parison principle and uniqueness result:

Corollary 3.12 (General comparison principle). Let v and w be respectively a
viscosity sub- and supersolution of (P) with continuous initial data ug < wg. In
addition suppose that wo (or ug )satisfies (1.2). Then

uy <w  and  u<w* in R" x [0, 00).

Proof.

1. Suppose wq satisfies (1.2). Define v by (3.1), which solves (2.1) with wg
replaced by wg. Also define vy and wy as in step 2 of the proof of Theorem 3.1
but using the initial data wy. By Theorem 2.8, u < vy for any k and thus

Uy <V =0, (3.14)

and
u<v

Moreover, thanks to equality (3.12), v(-,t) = (-, t) for almost every ¢, and thus
u(-,t) <o(-,t) for almost all t € R. (3.15)
2. We now want to show that (3.15) implies
u < v, (3.16)
Let (zo,t9) € R™ x (0,00) and ¢, be an increasing sequence such that
ty <to, limty=to, wu(-tx) <w(,tx) forallk

(such a sequence exists in view of (3.15)). By definition of v*, for all § > 0,
there exists r > 0 such that if |tx — to| < r then

v(x, tg) < v*(xo,to) +6 for all z € By(xo)
and therefore

ag:= sup u(z,tr) <v*(zo,to) + 0 (3.17)
JCEBT(;CO)

for all k such that |ty — to| < r. Finally, define

M
h(@,t) = ax + 0 + —7 (B(z —20)* +1 — 1),
It is easy to see that for 8 small enough (9; — A)h > 0 and

h(z,ti) > o > u(z, ty) for z € B,(x)
h(l’,t) >ap+Mp for z € aBT(ﬂCo), te (tk,to)
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and so h(z,t) > u(x,t) on the parabolic boundary of B, (xo) X (tg,to) if M is
large enough (we can take M3 = ||u||po (rnx (0,00)))- By definition of subsolu-
tions (using the fact that A > 0)

M
u(l‘o,to) < h(l‘o,to) =ar+0-+ ﬁ(to — tk),

and so (3.17) implies

M
U(:L'o,to) < ’U*(l‘o,to) + 20 + T—2(t0 — tk).

Since this inequality holds as soon as |t — to| < r with M independent on ¢,
we deduce

U(:L'o,to) < ’U*(l‘o,to) +6

and letting § go to zero, (3.16) follows.

3. Similarly, we have wy < w for all k£ and thus, due to (3.13),
w=w, >w, andw">w=7v"

Moreover, due to the equality (3.12), v(-,¢t) = w(:,t) for almost every ¢, and
proceeding as above it follows that

w>v and w* >v". (3.18)

Corollary 3.12 now is a consequence of (3.14), (3.16) and (3.18). O

As a consequence of this comparison principle the following uniqueness result
holds:

Corollary 3.13. Let vy satisfy (1.2). Then there exists a unique viscosity
solution v of (P). Moreover v is given by the formula (5.1).

Remark 3.14. When a;; = §;; (i.e. for the classical Stefan problem) Caffarelli
and Friedman [CF] show that u; is continuous in space and time. In particular
ug = 0 on I'(w). In this case the proof of Theorem 8.1 could be simplified and
we would have v = uz. By change of coordinates, the continuity of v could
be also established when the coefficients (a;;) are constant. In particular the
homogenized solution u®(x,t) in next section has continuous time derivative
v0(z,1).
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4 Homogenization of the variational problem

The last two sections of this paper are devoted to the homogenization of the
Stefan problem (P¢). In this section the investigation is on the homogenization
of the variational problem corresponding to (P¢). The main focus of the analysis
will be on the random case (hypothesis (b2)), since the periodic case is a little
bit easier and was already studied by Rodrigues in [R2].

More precisely, we assume that the coefficients a;;(y, w) satisfies hypotheses
(a) and (b2) stated in the introduction, and we consider u®(z, t,w) solution of the
parabolic variational inequality associated to the Stefan problem with oscillating
coefficients: For a.e. w € Q, let u® € L%(0,T; HY(0)) with d,u® € L?(O x [0, T))
be the unique solution of

us (1) € K(t)

(4.1)
/atue(v —uf)dr 4+ a(uf, v —uf) > /f(v —uf)dr, Vv e K(t)
o

for a.a. t € (0,T), with u*(z,0) = 0.
Recall that
K(t) = {v € Hy(0); v =0},

| volx)  forz e
J(@) = { -1 for « ¢ Qo,

Finally we introduce the bilinear form

aa(u,v):/ a;j(z/e)Diu Djvdx.
o

The goal in this section is to prove the uniform convergence of u®(z,t,w),
solution of the variational inequality (4.1) to the solution u"(z,t) of some ho-
mogenized variational problem.

The homogenization of variational inequalities, of elliptic or parabolic type,
is a classical problem which has been addressed in numerous papers, in particu-
lar in the periodic case. The main references for the homogenization of elliptic
variational inequalities in the case of random coefficients are the papers of G.
Dal Maso and L. Modica [DM1]-[DM2]. Their results relies on the notion of I'-
convergence and makes use of the subadditive ergodic theorem of M. A. Akcoglu
and U. Krengel [AK] to show the existence of an homogenized functional inde-
pendent of w. Since the authors could not find a reference that addresses the
case of the parabolic inequality in the random case, for the sake of completeness
a detailed proof will be given for the results we need, using [DM1]-[DM2] and
the notion of T' convergence (see the monograph of G. Dal Maso [Da] for an
introduction to I'-convergence).

23



Theorem 4.1. Let (a;j(z,w))i; be a given symmetric matriz satisfying (1.1)
and assume that the coefficients a;j(x,w) satisfy hypotheses (a) and (b2).

For e > 0, let u® be the unique solution of (4.1). Then u®(z,t,w) converges
uniformly with respect to (z,t) and for all w € Q to u®(z,t) solution of

ul(t) € K(t)

/0tu0(v — ) dz + (0,0 — ) > /f(v — ) de Vo€ K(t) (4.2)
o

with u®(x,0) = 0, and where a®(u,v) is a bilinear form defined later on.

Naturally, a similar result holds in the periodic case (hypothesis (b1)) (see
[R2] for details). Note that (4.2) is exactly the obstacle problem associate to
the homogenized Stefan problem (PY).

We define the following functional:
Fe(v) :i=a(v,v) = / a;j(z/e,w)DivD;v dx for v € H*(O).
o

The homogenization of functionals such as _#. under the hypothesis of station-
ary ergodicity has been studied, in particular by G. Dal Maso and L. Modica
[DM1], [DM2]. It relies on the notion of I'-convergence introduced by De Giorgi.
We take the following definition of I'(X )-convergence (Dal Maso [Dal):

Definition 4.2. Let X be a topological space. A sequence of functionals F, is
said to T'(X)-converge to F if the following conditions are satisfied:

(i) For every u € X and for every (up) converging to u in X, it is
F(u) < liin i(r)lf Fy,(up)
(i) For every u € X there exists a sequence (up) converging to u in X, such that
F(u) = }1111% Fh(uh)

The key result is the following theorem:

Theorem 4.3 (G. Dal Maso, L. Modica [DM1]-[DM2]). The functionals 7.
['(L?)-converge P-almost everywhere as € — 0 to a functional o, where 7y
s a quadratic functional independent of w of the form

/Q(u) = /qijDiuDju
where the coefficients q;; are constant and satisfies

NgP? < Z%‘j&ﬁj < Ng?

©j
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In the periodic case, it is well known that the homogenized coefficients g¢;;
are defined by (see [BLP]):

5= [ au)D W) - DI W)~ 5] dy = al = v’ )
Y
where the x? are Y-periodic function defined via the following cell problem:

a(xi — i, ) = 0 for all ¢ Y-periodic.

In the random case, we refer to G. Papanicolaou and S.R.S. Varadhan [PV]
for a corresponding formula.

Note that _#. is only well defined for v € H L. In the proposition above, we
thus implicitly defined (following Dal Maso [Dal)

Fe(u) =00 for u e L*\ H.
Furthermore, if we denote

/O(u):{ Fe(u), if u e H}(O)

€ 400, otherwise.
Then ([Da], Theorem 21.1):
Corollary 4.4. The sequence of functionals /50 I'-converges to /00 in L*(0).

From now on, Q C Q will denote the subset of the probability set such that
P(Q) =1and _#. I'-converge to _#; for all w € Q.

In order to prove this result, a couple of intermediate Lemmas are necessary:

Lemma 4.5. Lett > 0. For allw € K(t) there exists a sequence w® of functions
in K(t) that converges to w in L*(O)-strong (and H'(O)-weak), and such that

Solw) = lim _7(w)

Proof. If w € K(t), then we have in particular that w € Hg. Therefore Corollary
4.4 implies that there exists a sequence w® that converges to w in L?(QO)-strong

and such that
Solw) = F9w) = lim _#O(uf).

Since w € HE(0), #P(w) < oo and so _Z2(w®) < oo for & small enough. This
implies in particular that w® € H}(O), so w® = 0on 00 and £ (w®) = £ (w®)
(Note that the ellipticity of a;; implies that w® converges H' weak).

Next, one needs to check if it is possible to choose w® > 0. For that purpose,
let us set

w° = wi +ws > 0.
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Then Vw® = Vwe xyweso — VW xwe<o and therefore

/a(wa): /e(wa) — /o(w) as e — 0.
Finally, we have

E

w° —w® = 2wt = |w

| —w® — |Jw| —w, in L?(O)-strong.

But |w| —w = 0 a.e. since w > 0, and so @° converges to w strongly in L? (and
weakly in H1). O

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Throughout the proof, w € Q will remain fixed.

1. Classical parabolic estimates give that u® is bounded in L2(0,7;H') N
L>(0,T,L?) and Osu® is bounded in L2(0,7T,L?). In particular, u® is in a
compact set of L°(0,T, L?). Furthermore, minor adaptations from [FK] (see
also [R2]) give

0< o <C a.e. O x (0,T),

Consider a subsequence u® that converges to 4 in L>(0,7T,L?). We can
always assume that d;u® converges to d;u in L*°((0,T) x O)-weak™®, and pro-
ceeding as in [R2], one can verify that «® is bounded in C*%/2 and therefore
that the convergence of u® to @ is uniform in x and t.

2. Next, note that (4.1) is equivalent to
(O, v —uf) + 5 Fe(v) 2 5 Fe(u) + (fv —uf) Vo eK(t) w3
4.3
us(t) € K(t)

(and a similar equivalence holds for (4.2)). As a matter of fact, it is readily seen
that (4.1) and the fact that a(u,v —u) < 1 _#.(v) — & _Z.(u) for any functions
u, v implies (4.3). On the other hand, taking v = u® + 6(w — «) in (4.3) (v
belongs to K for any w € K if § < 1) and passing to the limit 6 — 0 implies
(4.1).

3. Let now v € K(t). Due to Lemma 4.5, there exists a sequence of functions
v in K(t) that converges to v in L%(O)-strong and such that

lim 7.(%) = fo(v)
Using (4.3) with v = v® and passing to the limit & — 0, we deduce
(O, v — 1) + & _Zo(v) > L Zo(a) + (f,v—1u) YoeK(®?)
alt) € K(t),
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for a.a. t € (0,T), which is equivalent to (4.2). The uniqueness of u° implies
@ = u® and gives that the whole sequence u° converges to u’. O

Finally, recall (see [Da]) that the I'-convergence of the functional #. im-
plies the G-convergence of the corresponding elliptic operator. More precisely,
let A% and A° denote the elliptic operators respectively corresponding to the
functionals #. and _#y:

A (u) = Di(a;j(z/e,w)Dju)  A%u) = Di(qi; Dju).
Proposition 4.6. For any a > 0, let u® € H' be the solution of
AU + aul = f
in B, with u® = g on 0B,., and let v € H' be the solution of
A’u+ou=f

in By, with w =g on 0B,. Then u®(x,w) converges to u(x) strongly in L2, and
uniformly in x, for all w € Q.

The following proposition now follows from Proposition 4.6 and Trotter-
Kato’s formula:

Proposition 4.7. Let u® € L?(0,7, H'(B,)) be a solution of
0tu5+.,45 € _ f

in B, x (0,7) with boundary condition u® = g on the parabolic boundary OB, X
(0,7) U B, x {0}. Then, u¢(z,t,w) converges uniformly in x and t to u®(w,t)
solution of

6tU;0+.AO 0 :f

in By x (0,7).

5 Homogenization of the Stefan problem

In this last section, the proof of the homogenization result is completed by
showing the uniform convergence of the solution of (P¢) to the solution of (P?).

Let u®(x,t) solve of (4.1) and let v®(x,t) be the corresponding solution of
(P#) given by Theorem 3.1. Now define u®(x,t) as the limit of u®(z,t) given by
Theorem 4.1, and let v°(z,t) solve

0 — A%° =0 in Q(u)
v0(z,0) = v ().
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Thanks to Theorem 3.1, the function v°(x,t) then solves the Stefan free bound-
ary problem (P°) with initial data vo(z). Recall that A° is the elliptic operator
corresponding to the functional _#, defined by Theorem 4.3:

.AO’LL = Di(qiiju).
In particular, Remark 3.14 yields

Lemma 5.1. The function v°(z,t) = (0;u®)(z,t) is continuous with respect to

(z,t).
The goal of this section is to prove:

Theorem 5.2. Suppose vy satisfies (1.2). Then the solution v¢(z,t) of (P°)
locally uniformly converges to the solution v°(z,t) of (PY). Moreover T'(v¢)
locally uniformly converges to I'(v°) with respect to the Hausdorff distance.

In order to prove the main theorem, let us define
*
v*(x,t) ;= limsupv®(z,t) ;= limsup ©v°(y,s)
(y,8),e—(x,1),0

and

ve(x, t) == lim*inf ve(x,t) == (y,sl)i,rgnj&f,t),ove(y’ z).

To obtain the uniform convergence of v¢, it suffices to show that

v, = v =Y.

The following proposition summarizes the properties of A° that we will need:

Proposition 5.3.
(a) The operator A° is uniformly elliptic with constant coefficient.
(b) If w® satisfies
w; —A*w* =0 inX%, (5.1)

then the functions
w* = 1im*sup w®  and  wy = 1im* inf w®
are respectively subsolution and supersolution of
wy — Aw=0 inX. (5.2)

Proof. The first part follows from Theorem 4.3. The second part will be a
consequence of Proposition 4.7: As a matter of fact, if w* is not a subsolution
of (5.2), then there exists a function ¢(x,¢) which touches w* from above in a
parabolic neighborhood Q,(zg,to) := B, (o) x (to—12,t) of a point (xg,ty) € B
and satisfying

Pt — .AOQD >0 in Q7-(I0, to)
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By considering a smooth perturbation of ¢ instead of ¢, we may assume
o(z,t) —w*(z,t) >§  for (z,t) € 9,Qr (0, to) (5.3)
and
oz, t) < w*(xg,tg) — 0 for (z,t) € Bs(xo,t0) X (to — 0,t0) (5.4)

for some small § > 0.
We now define ¢° solution of

(,0? _ AEQDE = — AO(,D >0 in Qr(IOatO)

with ¢° = ¢ on the parabolic boundary of @, (z¢,tp). Proposition 4.7 then
yields that ¢° uniformly converges to ¢ as € — 0.
Finally, (5.3) implies

o (x,t) > w(z,t)  on 9,Qr (o, to)

for € small enough (we recall that w* is the limsup) and (5.4) yields that for a
small € > 0 there exist (z1,t1) € Q(x0,to) such that

@E(Il,tl) < we(:cl,tl).

Since w® and ¢ are respectively solution and supersolution of (5.1), we get a
contradiction. O

In order to prove the main theorem, we need several lemmas which describe
the relationship between v¢, v* and v°.

Lemma 5.4. Suppose (zy,tr) € {u®* = 0} and (xg,tg, ) — (xo,t0,0). Then
uo(xo, to) =0.
In particular if zy € Ty, (us*) then xq € Ty, (u®).
Proof. The uniform convergence and the continuity of u® easily give the first
part.

If moreover xp € T, (u*) for all k, then the non-degeneracy estimate
(Lemma 3.3) gives, for any small r > 0, the existence of y; € B,(zy) such

that
u* (Y, tr) > er?.

Up to a subsequence, we can now assume that yx — yo € B,(x0) and the
uniform convergence and continuity of u® yields

uo(yo,to) > er?.

It follows that B,.(zg) N Qy, (u®) # O for all r > 0, hence zg € Ty, (u?). O
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Lemma 5.5. The function v.(x,t) satisfies
Q(v°) € Q(vs).
In particular v, > 0.

Proof.

1. Suppose (zo,t9) € Q(vY). Since v°(x,t) is continuous, it follows that ¥ :=
By (z0) X [to — 7, to] C Q(°) = Q(u®) for some r > 0 and so u® > 0 in ¥. Since
u® locally uniformly converges to u, it follows that ¥ C Q(uf) = Q(v®) for
small € > 0.

2. Recall that we have fg v (z, s)ds = u®(z,t), and thus

/t ' v (z, s)ds = u®(x,tg) — u®(x,tg — 7). (5.5)

o—"r

Suppose now that v*(zg,t9) = 0. Since ¥ lies in Q(v°), v° is a nonnegative
solution of the uniformly parabolic equation v — A*v® = 0 in 3. Therefore,
the parabolic Harnack inequality (see Doob [Do] and Moser [M]) implies that
ve(x,s) — 0 uniformly in ¥ as ¢ — 0. Equality (5.5) therefore yields u(x,to) =
u(z,to —r) in Br(xo), which contradicts Proposition 3.2. Thus (zg, ) must be
in Q(v*). O

Lemma 5.6.

(i) For any (zo,to) € T(v°), there exists a sequence e — 0 and (wk,ty) €
T'(v°*) such that (x,tk,ex) — (20, to,0).

(ii) T'(v*) is a subset of I'(v°).
Proof.

1. We first prove (i). Suppose the result does not hold. Then there exists
(zo,t0) € T(v°) and r > 0 such that, for all € > 0,

Y = Br(x0) X [to — ryto + 7] C Q(v°) (5.6)

or
¥ c {v* =0}.

In the later case, ¥ C {u® = 0} for alle > 0 and so X C {u® =0} = {+° =0}
which is impossible. Thus one may assume that (5.6) holds.

By Lemma 3.4, there exists m > 0 such that

Br/4(x0) N Qt0—2m'r2 (UO) 7é 0
so there exists yo € B, /4(xo) such that

02 (yo, to — 2mr?) = ¢y > 0.

30



Since v° < v* (by Lemma 5.5), it follows that there exists a sequence (ys, sk, €x)
which converges to (yo,to — 2mr?,0) and such that

U (yk, Sk) > o /2.
Due to (5.6) and the parabolic Harnack inequality, we thus get
v > ¢ in X = B, ja(yo) X [to — mr®, o]

for sufficiently large k& and where ¢; is independent of € > 0.
Using the fact that fot v (-, 8)ds = u®, we deduce that

u® > cymr? in By j2(y0) x {to}
and the uniform convergence of u° yields
B7‘/4(1’0) c BT/2(y0) c Qto (UO)’

thus contradicting the hypothesis.

2. Now to prove (ii), suppose (x¢,t9) € I'(v*). Since v° < v* by Lemma 5.5,
(zo,t0) lies in {v0 = 0} = {v” = 0} (recall that v is continuous).

Suppose now that (zg, ) lies in the interior of {v° = 0} = {u® = 0}. If there
exists (zc,t.) € Q(uf) which converges to (z9, %), then Lemma 3.3 applied to
uf yields a contradiction. Therefore there exists > 0 such that

B, (z0) X [to —7,to + 7] C {u® =0} = {v° = 0} for sufficiently small € > 0.

It follows that v* = 0 in B,(x) X
Therefore (xg, o) must belong to I'(v

o — r,to + r], yielding a contradiction.
and the lemma follows. O

[t
%)
Proposition 5.7. The function v* is a subsolution of the limiting problem (Pp).

Proof. Recall that (v°)* = v is a subsolution of the limiting problem.

1. Since v° is a subsolution of (5.2) in Q(v®), arguments as in the proof of
Proposition 5.3 leads to conclude that v* is a subsolution of (5.2) in Q(v*).

It remains to check for the behavior of v* on its free boundary I'(v*). Let ¢
be a smooth function in C** such that

v* < ¢p =max(¢,0) in X := Br(zg) X (to — 7, to],

’U*(CL'o,to) = gf)(l‘o,to) with (Zo,to) S F(’U*)
The claim is that

min((9¢¢ — A°¢) (o, to), (¢r — FO(D¢)|Do|)(o,t0)) < 0.
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2. If v* (o, to) > 0 and since v* is a subsolution of (5.2), [0;¢ —.A°¢](z0, o) < 0.
Thus we may assume that v*(xg,to) = 0 and |D¢|(xo, o) # 0.

Lemma 5.5 yields v < v, < v* and so v° < ¢4 in ¥ and v°(xg,t9) =
¢+ (20,t0) = 0. Moreover, Lemma 5.6 (ii) implies that (xg,tp) € I'(v°). Since

v? is a subsolution of (F), it follows that

min((9y¢ — A°9) (0, to), (¢ — F°(D¢)|D¢|)(2o, to)) < 0

which proves the claim, and thus completes the proof. O

Proof of Theorem 5.2.

1. Arguing as in the proof of Lemma 3.8, we obtain
v*(z,0) = vo(x).

Since v* is a subsolution and v° is a supersolution of (P), Corollary 3.12
yields
v*(x,t) < 0°(x,1).

Since v° < w,, we obtain v, = v* = 0. In particular I'(v") = T'(v*) and v¢
locally uniformly converges to v°.

2. It remains to show the uniform convergence of the free boundaries. Suppose
(wo,t0) € T'(v°). Since we know now that v locally uniformly converges to v°,

arguing as in the proof of Lemma 5.6 (i) with the whole sequence ¢ yields that
d((zo,to), I'(v®)) < if € < gp.

On the other hand if (z¢,t.) € I'(v®) with tc < T, then Lemma 5.4 and the
compactness of the sets T'(v9)N{0 < ¢ < T} and T'(v°) N {0 < ¢t < T} yield that
for any § > 0 there exists g > 0 such that

d(T(0%), (wc,t.)) < 0 if £ < &o.

The two inequalities above yields the local uniform convergence of I'(v°) to
I'(v°) with respect to the Hausdorff distance. O

A Construction of barriers

In this appendix, we detail the construction of barriers that are used in various
proofs in the paper. The aim is to construct a solution of Ah = n supported in
a unit ball (when A = A, this is given by 22/2). For that, we need to find h
such that

Yjaij(2)0z;h = for 1 < <n.
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This equality can also be written (in matrix form) as A - Dh = z, (with A =
(ai;)). Since A is positive definite,

Dh=A"1z.

It is now readily seen that this equation has a unique solution for any given
value of h(0). Furthermore, note that h(z) has quadratic growth rate:

|z
h(z) — h(0) :/O v A r)dr € [(A)2Alz]2, (\)~2AJz)?] (A1)

where v = |f3—| The second inequality follows since

AMA2<AA WP <v- AW < AATW)2 < (V) 2A
for any unit vector v € R".

Note also that the level sets of h are strictly convex since D*h = A1 is
positive definite.

Suppose now that B("t1 is a space-time ball which touches (0,0) on its
boundary, away from top and bottom portion of the ball.
By considering functions of the form

o(x,t) = (an(t —to) — ah(z — zo) + b) 4,

where a,b are constants, and by dilation, one can generate local barriers which

solves
por—Av =0 in S :={p > 0},

|Do|(z0,t0) = ¢ at (0,0),

88 is C%! with (0,0) € S

S c Bt or § C (B(+)e

Using this family of barriers, one can now proceed as in the proof of Theorem
2.2 in [K1] to establish the comparison principle (Theorem 2.8) for the viscosity
solutions of (P).

Proof of Lemma 3.6.

1. The proof relies on the construction of barrier and the comparison principle
for the obstacle problem.
For this purpose we define

p(a,t) = (f() — h(z) + )4,
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where b is large enough such that vo(z) < (—h(z)+b)+ and f(¢) is an increasing
function of ¢ satisfying

f(0)=0, f'(t) = Asup{|Dh|*(z) : h(z) = f(t) + b}

Clearly, if such a function f(t) can be constructed, then ¢(x,t) is a classical
supersolution of (P), and so the solution u (2.1) will be below fot o(z, s)ds.
Lemma 3.6 then follows with

M(T)=sup{z: h(z) <b+ f(T)} < 0.

2. Tt remains to check that f(t) exists. Due to (A.1), we have
x| < h(z) < Clz)?
Hence if h(z) = f(t) + b, then |z|?> ~ f(t) + b and thus
|Dh(x)|* = A7 a|* < C(f(t) + 1),
where C' depends on A and A. Therefore f must solve
ft)=C(f(t) +b), f(0) =0
which leads to f(t) = b(e®t —1). O

B Further results on the parabolic obstacle prob-
lem

Let O be a bounded open subset of R and let K = {v € H}(O); v > 0}. We
consider the variational inequality

ue L*(0,T,H*(0)), wuy € L*(0,T;L*(0))
(ug — Au)(v —u) > f(v—u) forallvek (B.1)
u(t) e K, w(z,0)=0
where A is a uniformly elliptic operator and
vo(x) in §)
fa@) = { 01( ) O,

We show here the comparison principle and stability results that are used in
this paper.

Lemma B.1 (Comparison principle). Let f1 < fo and denote by u1 and us the
corresponding solution of (B.1). Then uy < ug in O x (0,00).
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Proof. The proof follows from [FK]. We recall it here for the sake of complete-
ness: Integrating (B.1) yields, for any v € HY(O x (0,T)) satisfying v > 0 and
U('7 0) =0,

// a;jDjusDi(v — ug) + Orua (v — ug) dr dt > / fo (v —wu2)dadt

and if we take v = max(u1, uz2), we get

// a;jDjusD;(ur — ug) + Ous (w1 — ug) de dt > // fo (ug —ug) da dt
B B

where B = {u; > up}. Denoting & = (u1 — U)X {uy>u,} € H' (D), we can also
write:

// ai; DjuaDi& + Opup § dr dt > / fa&dxdt

Next, we note that u; > us > 0 in B and so dyu; — Aui = f1 in B. We deduce

—//aiijulDingatul{d:cdt:—//flfd:cdt.

Adding those last two equations and using the definition of £, we deduce

7//aiij§Di£dlL'dt*/%gQ(Z,T) dx > *//(f1 — fo)édu dt

Since £ > 0 and f1 — fo <0, it follows that £ =0 a.e., i.e. |B| =0. O

Lemma B.2 (Stability). Let fi and fa be two functions and denote by uy and
ug the corresponding solution of (B.1). Then

[[ur —uzl[re < Cl|f1 = fallpner-

Proof. Let wy (respectively ws) be the solution of (B.1) associated with g1 =
min(f1, f2) (respectively g2 = max(fi, f2)). The previous Lemma implies

wy < up < ws fori=1,2,
so it suffices to prove that the lemma holds for w; and wy. Let ® be solution of
(I)t — A(I) =392 — g1

in Ox(0,T) with ®(x,0) = 0 and ®(x,t) = 0 on JO. The function ws = wy +P
satisfies
dws — Aws > go.

This inequality is enough to carry through the argument of the previous lemma
with u1 = we and us = ws. It follows that

wy < we <wyp + P
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Finally, classical estimate for parabolic equation with bounded measurable co-
efficients (see, for instance Aronson [A]) yields

sup @ < C(O)|lg2 — g1l
Ox(0,T)

Ln

which completes the proof. O
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