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Abstract

In this paper we investigate some free boundary problems with
space-dependent free boundary velocities. Based on maximum principle-
type arguments, we show the uniform convergence of the solutions in
the homogenization limit. The main step is to show the uniqueness of
the limiting free boundary velocity, which turns out to be a continuous
function of the normal direction of the free boundary.

Introduction

Consider a compact set K C IR"™ with smooth boundary 0K. Suppose

that a bounded domain ) contains K and let Q¢ = Q — K and I'g = 9.
Note that 099 = I'g U K. Let ug be the harmonic function in Qg with
up = f >0 on K and zero on I'y. (see Figure 1.)

Let us define e; € IR",i =1, ...,n such that

(0.1) e1 =(1,0,..0),e2 = (0,1,0,..,0),..., and e, = (0,..,0,1).

Figure 1.



Consider a continuous function
g:R"—[1,2], g(x+e)=g(x)fori=1,..n.

In this paper we consider the behavior, as ¢ — 0, of the nonnegative
(viscosity) solutions u¢ > 0 of the following problem

—Auc =0 in {u® > 0},
(P)e
uf — g(£)|Duf* =0  on d{uf > 0}

in @ = (R" — K) x (0,00) with initial data uo and fixed boundary data
f=1on 0K x [0,00). Here Du denotes the spatial derivative of w.

We refer to I'y(u€) := 0{u(-,t) > 0} — OK as the free boundary of u*
at time ¢t and to Q(u) := {u(-,t) > 0} as the positive phase of u¢. Note
that if «€ is smooth up to the free boundary, then the free boundary moves
with normal velocity V' = u§/|Duf|, and hence the second equation in (P),
implies that

V = g(2)|Dul = g(Z)(Du* - (),
where v = v, ;) denotes the outward normal vector at the free boundary
point © € I't(u) with respect to Q(u).

Free boundary problems with space-dependent velocity law as in (P),
describe various motions in heterogeneous media, including heat transfer
[P],[R], contact line dynamics of fluids [G], and shoreline movements in
oceanography [VSKP].

Our main result is that there exists a unique motion law of the free
boundary in the homogenization limit as € — 0. More precisely we will
show that there exists a continuous function r(z) on {x € IR" : |z| = 1}
such that the family of solutions {u} of (P) uniformly converges to u,
where u satisfies

—Au=0 in {u > 0},
(P)
ug —r(v)|Duf> =0 on 0{u > 0}

in @ (Theorem 4.2).

We mention that the method presented in this paper applies to the gen-
eral case of continuous function g with range 0 < a < g < b < oo, and
strictly positive, smooth fixed boundary data f = f(x,t) on K. However
the fact that the positive phase strictly expands (g > 0) is essential in our
proof.



There are vast amount of literature on the subject of homogenization.
For detailed survey on different approaches we refer to Caffarelli, Sougani-
dis and Wang [CSW]. Papanicolaou and Varadhan [PV] and Kozlov [Ko]
were the first to consider the problem of homogenizing linear, uniformly el-
liptic and parabolic operators. The first nonlinear result in the variational
setting was obtained by Dal Maso and Modica [DM]. For fully nonlinear, uni-
formly elliptic and parabolic operators, Evans [E] and Caffarelli [C] derived
convergence results using viscosity solutions, which was first introduced by
Crandall and Lions for studying Hamilton-Jacobi equations (see for example
[CIL)).

For free boundary problems, very few homogenization results are proven
due to the lower-dimensional nature of the interface. For example, the peri-
odicity of g in (P), does not guarantee the interface I't(u) to be periodic in
space. Moreover the restriction of g on the interface and the propagation of
the interface affects each other, which makes the analysis challenging even
if we assume that the interface is smooth.

Recently the uniform convergence of pulsating traveling fronts of the
flame-propagation type free boundary problem

uf — Aut =0 in {u® > 0},
(FP)e
|Duf)? = f(£) on 0{uc > 0}

has been studied by Caffarelli, Lee and Mellet [CLM1], [CLM2]. Here to
avoid analysis on the interface, (F'P), is approximated by the phase-field
model
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(P)s.c u® — Au® = f(Z)=f(
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where (3 is a smooth function whose support is [0,1] with fol 6 =1 and
0 < 0 << e. Existence, uniqueness and regularity properties of the pulsating
traveling fronts of (P)s, shown by Berestycki and Hamel [BH], is essential
in the investigation.

The novelty of our approach is that we directly deal with the presence
of the free boundary in (P), using viscosity solutions. We apply maximum
principle-type arguments and stability property of viscosity solutions, with-
out any regularity estimate or approximation on the solutions of (P),, to
prove the uniform convergence results and properties of solutions in the ho-
mogenization limit. To define the limiting free boundary velocity we apply
the ideas in [CSW], which studies homogenization limits of fully nonlinear



equations in ergodic random media. The main idea in the analysis of [CSW]
is that, to describe the limiting problem, it is enough to decide whether
a given ’test function’ is either a subsolution or a supersolutions of the
problem. The test functions were quadratic polynomials in [CSW] since
the equation under investigation was of second-order, but for our problem,
whose motion law is of first order, the test functions are the linear blow-
up profiles P, ,, which is planar front propagations with given speed r and
normal direction ¢ € IR™ of the propagation (see section 2).

As mentioned before, the presence of the free boundary is the central
difficulty in applying the idea introduced in [CSW].

Note that the linear blow-up of the solutions of (FP). leads to the sta-
tionary problem

—Aut = 0in {u* >0} |Duf? = f(Z) on ofu’ > 0},

which does not have a unique solution (see the numerical experiment in
[CLM2] where, with linear blow-up, the free boundary of (F'P). jumps from
one state to another). In our problem the linear blow-up preserves the
speed of free boundary propagation, which suggests more stability. In fact
the continuity of the limiting free boundary condition with respect to the
normal direction does not hold in the limit of (F'P). (see Appendix 2 of
[CLM2].)

Below we give the outline of the paper.

In section 1 we introduce the notion of viscosity solutions for (P), ex-
tended from [K1], and their properties.

In section 2, we define and study properties of maximal sub- and minimal
supersolutions of (P). for given obstacle P, ,. An obstacle P, , is a 'subsolu-
tion’ for the limit problem if the maximal subsolution below P, , converges
to the obstacle as e — 0, and similarly an obstacle P, , is a ’supersolution’
for the limit problem if the minimal supersolution above P, , converges to
the obstacle in the limit. The goal is to find a unique obstacle P, , which
serves for both sub- and supersolution of the limit problem, for each given
normal direction q.

In section 3, we prove that this is indeed possible. In other words, we
show that, for given normal unit vector ¢ € IR", there is a unique speed
r = r(gq) such that both the maximal sub- and minimal supersolution of
(P). with obstacle P,, converge to P,, as ¢ — 0. This r(q) will be our
candidate for the function r given in the free boundary motion law in (P).
We also prove that 7(g) is continuous with respect to the normal direction ¢
of the obstacle. The flatness of the free boundary of the maximal sub- and



minimal supersolution (Lemma 2.9), with a 'good’ obstacle, is central to
the analysis. To prove the uniqueness of r(gq), for rational normal directions
we use the periodicity of interface of the global solutions (see the proof of
Lemma 3.2 and Proposition 3.4), and for non-rational normal vectors we use
the fact that rotations by irrational angels generate a dense image on the
circle (see the proof of Lemma 3.8).

In section 4, it is shown that r(q) obtained in section 3 indeed yields the
limiting free boundary motion law V' = r(v)|Du| in (P). The uniform con-
vergence of {u¢} then follows from the comparison principle (Theorem 1.7)
for (P).

Section 5 is on the homogenization of Stefan-type problem (P2), which
replaces the Laplace operator in (P). with the heat operator. We observe
that the linear blow-up of the heat operator generates the Laplace operator,
which suggests that the limiting free boundary motion law for (P2). may
be the same as in the case of (P).. This is indeed what we prove in this
section.

Acknowledgements: The author thanks Takis Souganidis for suggesting
investigation of free boundary motions with space-dependent velocity, which
motivated this paper. The author is also grateful to Luis Caffarelli for his
inspiring lectures on nonlinear homogenization at University of Texas-Austin
when the author was a student.

1 Viscosity solutions

Let g be a continuous function
g(z,y) : R" x {y € R": |[y| =1} — [1,2]
with the property
g(x +e,y) =g(x,y) fori=1,..,n,
where ¢; € IR™,i =1,...,n is given in (0.1).

We consider the free boundary problem

—Au=0 in {u > 0},
(P)e
up — g(£,v)|Du* =0  on o{u > 0}

where v = v, is the outward spatial normal vector at (z,t) € d{u > 0}
with respect to {u > 0}, as given in the introduction.



Note that g(z,y) = g(z) in (P). defined in the introduction and g(x,y) =
7(y) in the limit problem (P) defined in section 4. In this section we prove
existence and uniqueness results for the generalized problem (]5)E to apply
the results to both (P). and (P).

We extend the notion of viscosity solutions of Hele-Shaw problem (g = 1
in (P).) introduced in [K1]. Roughly speaking viscosity sub and supersolu-
tions are defined by comparison with local (smooth) super and subsolutions.
In particular classical solutions of (P), are also viscosity sub and supersolu-
tions of (P)..

Consider a domain D C IR™ and an interval I C IR. For a nonnegative
real valued function u(z,t) defined for (z,t) € D x I, define

Qu) ={(z,t) € D x I :u(x,t) >0}, U(u)={x € D :u(x,t) > 0};
D(u) =0Qu) — (D x I), T(u)=0(u)—9oD.

Let @Q and K be as given in the introduction and let ¥ be a cylindrical
domain D X (a,b) C IR™ x IR, where D is an open subset of IR".

Definition 1.1. A nonnegative upper semicontinuous function u defined in
Y is a viscosity subsolution of (P). if

(a) for each a <T < b the set Q(u) N {t <T} N is bounded; and

(b) for every ¢ € C*Y(X) such that u — ¢ has a local mazimum in Q(u) N
{t <to}NY at (zg,ty) then

(1)  —Ag¢(xo,t0) <0 if u(zo,tg) > 0.

(i) if (zo,to) € I'(w),[Vo|(xo,to) # 0 and
—Ago(l'o,t()) > 0,

xr
(60 = 9(=2.»)| Do) (0, t0) < 0.
where v = —%(mo,to).

Note that because u is only upper semicontinuous there may be points
of I'(u) at which w is positive.



Definition 1.2. A nonnegative lower semicontinuous function v defined in
Y is a viscosity supersolution of (P). if for every ¢ € C*'(X) such that
v — ¢ has a local minimum in XN {t < to} at (zo,to), then

(4) — Ag(wo,t9) >0 if v(zo,t9) > 0,

(i) if (wo,t0) € T(v), [V@|(xo,t0) # 0 and
—Ap(zo,t9) <0,

then
x
(61 = 9(=2,v)IVeI*) (0, t0) = 0.
where v = —%(I'Q,to).

Definition 1.3. u is a viscosity subsolution of (P). with initial data uy and
fized boundary data f > 0 if

(a) w is a viscosity subsolution in Q,

(b) u is upper semicontinuous in Q, u=1ug att =0 and u < f on OK.

(c) Qu)N{t =0} = Qup).

Definition 1.4. u is a viscosity supersolution of (P). with initial data ug
and fixed boundary data f if u is a viscosity supersolution in Q, lower semi-
continuous in Q with u =wug att =0 and u > f on 0K.

For a nonnegative real valued function u(z,t) in a cylindrical domain
D x (a,b) we define

u*(x,t) == lim sup u(§, s).
(&,8)eDx (a,b)—(z,t)

and
Uy (X, 1) 1= lim inf u(&, s).
( ) (&,8)eDx (a,b)—(z,t) (E )
Definition 1.5. u is a viscosity solution of (P) (with boundary data ug

and f ) if w is a viscosity supersolution and u* is a viscosity subsolution of
(P)e (with boundary data ug and f.)

Definition 1.6. We say that a pair of functions ug,vo : D — [0,00) are
(strictly) separated (denoted by ug < vo) in D C IR™ if



(i) the support of ug, supp(ug) = {up > 0} restricted in D is compact and
(ii) in supp(uo) N D the functions are strictly ordered:
up(z) < vo(x).

Theorem 1.7. (Compafison principle) Let u,v be respectively viscosity sub-
and supersolutions of (P)e in D x (0,T) C Q with u(-,0) < v(-,t) in D. If
u=<vondD for0<t<T, then u(-,t) <v(-,t) in D fort e |[0,T).

The proof is parallel to the proof of Theorem 2.2 in [K1]. We only sketch
the outline of the proof below.

Sketch of the proof

1. For r,0 > 0 and 0 < h << r, define the sup-convolution of u

Z(x,t) = (1+0)  sup  u(y,s)
()= (@.t)|<r

and the inf-convolution of v

Wt = =0 o Ern @)
in D x [r,r/h),D :={x:x € D,d(x,dD) >r}.

By upper semi-continuity of uw—v, Z(-,7) < W{(-,r) for sufficiently small
r,0 > 0. Moreover a parallel argument as in the proof of Lemma 1.3 in [K1]
yields that if r << de, Z and W are respectively sub- and supersolutions of
(P)e.

2. By our hypothesis and the upper semi-continuity of v — v, 2 < W
on D and Z < W on 9D N Q(Z) for sufficiently small § and 7. If our
theorem is not true for u and v, then Z crosses W from below at Py :=
(z0,t0) € D x [r, T]. Due to the maximum principle of harmonic functions,
Py e T'(Z)NT(W). Note that by definition 2(Z) and Q(W') has respectively
an interior ball By and exterior ball By at Py of radius r in space-time (see
Figure 2.)

3. Let us call H the tangent hyperplane to the interior ball of Z at Py.
Since Z < W for t <ty and Py € I'(Z) N T'(W), it follows that

Blﬂ{tﬁto}CQ(Z)ﬂQ(W); Bgﬂ{tﬁto}C{Z:O}ﬂ{WZO}

with Bl N Bg N {t < to} = {P()}
Moreover, since Z and W respectively satisfies the free boundary motion
law

2 (2t) < g(%,z/)]DZ](a;,t) < 2|DZ|(x,t) on I'(Z)



Figure 2.

and

w%(m,t) > g(z/e,v)|DW|(z,t) + h > |DW|(z,t) + h on T'(W),

the arguments of Lemma 2.5 in [K1] applies for Z to yield that H is neither
vertical nor horizontal. In particular By N {t = to} and By N {t = to} share
the same normal vector v, outward with respect to By, at Fy.

Formally speaking, it follows that

Z

D7 (Po) < g(wo/e,v0)|DZ|(Fy) < g(xo/€,10)| DW|(Foy) <

W(p()) - h7
where the second inequality follows since Z(-,to) < W (-, %) in a neighbor-
hood of zyg. Above inequality says that the free boundary speed of Z is
strictly less than that of W at Py, contradicting the fact that I'(Z) touches
(W) from below at Py.

(For rigorous argument one can construct barrier functions based on the
exterior and interior ball properties of Z and W at P,. For details see the
proof of Theorem 2.2 in [K1].)

(]

For z € IR", we denote B,(x) := {y € R" : |y — x| < r}. For simplicity,
in this paper we will consider solutions with fixed boundary data f = 1 and
the fixed boundary 0K = 0B1(0). Let ug, Qo and I'y as in the introduction.

Theorem 1.8. (a) If Int(Qg) = Qo and if Q(ug) immediately expands, in
other words if T'o C int Qi (u) for t > 0 and for any viscosity solution
u of (P)e with initial data ug, then there is a unique viscosity solution
u of (P). with initial data ug.



(b) w is increasing in t, u(-,t) is harmonic in Qy(u), u*(-,t) is harmonic
in Q(u*), and I'(u*) =T'(u).

Proof. 1. Since Q(ug) immediately expands, for any ¢ > 0 and for any two
viscosity solutions u; and ug of (P). with initial data u,

ui(z,0) < (1 + d)ua(z,d) at t = 0.
By Theorem 1.7,
ui(z,t) < (14 O)ug(z, (1 + )t + 0) for t > 0.

We now send 6 — 0 to obtain u] < ug, and similarly 5 < uq, and thus
u1 = ug, yielding uniqueness. For existence, let us consider W: the viscosity
solution of (P). with g = 2, with initial data ug and fixed boundary data
1 on OK - such solution exists and is unique due to [K1]. Note that ¥ is a

supersolution of (P)., for any g(x,v) with g € [1,2]. If we let

U :=sup{z : z is a subsolution of (P)¢,z =1 on 0K, Ty(z) =Ty, and z < U},

Then arguing as in Theorem 4.7 in [K1] will yield that U, is in fact a
viscosity solution of (P), with boundary data I'g and 1 on K. We mention
that the continuity of g is necessary to prove that U, is a supersolution.

2. For (b) parallel arguments as in the proof of Lemma 1.9 of [K2]
applies. In particular

u(-,t) =inf{a(z) : —Aa>01in Qi (u) — K,a=10on 0K, > 0 on I'y(u).}

and

u*(-,t) =sup{f(z) : —AL<0in U(uv*)—K,f=1in 0K, > 0 in I'y(u").}
U

_ For later use we show that the free boundary of a viscosity solution u of
(P)¢ in @ with boundary data ug and f =1 on 0K does not jump in time.

Lemma 1.9. I'(u) does not jump in time, in the sense that for any point
xo € Ty (u*) (zo € Ty, (u)) there exists a sequence of points (xy,ty,) € I'(u*)
((xn, tn) € T'(w)) such that t, < to(tn > to), (Tn,tn) — (zo,%0).
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Proof. We only prove the lemma for u*. Suppose the lemma is not true.
Then for some z¢ € I'y,(u*) there exists 7 > 0 such that Bo,(z¢) C {u*(-,t) =
0} for t < tg. For 7 > 0 construct a function ¢ in Be,(z9) X [to — T, to] such
that

—A¢(-,t) =0 in  Bar(w0) — By (wo);

¢ = Suszr(mo)x[to—T,t] u* <1 on 6B2r(ac0) X [t — to, t],

o(t) =0 in Br(t) (o),

where r(t) := (1 — 771 (t — to +7)/2)r.

If we choose 7 > 0 sufficiently small, ¢ is a supersolution of (15)6 and it
follows from Theorem 1.7 that I'(u*) does not reach z¢ by time t = ¢y, a
contradiction. O

2 Defining the limiting velocity

In this section we follow ideas from [CSW] to define the limiting free bound-

ary velocity of the solutions of (P). as € — 0. Roughly speaking, the limiting

free boundary velocity is defined by classifying planar propagations into sub-

and supersolutions, depending on how close the sub- and supersolutions of

(P). placed below or above the obstacle approaches the obstacle in the limit.
For given nonzero vector ¢ € IR" and r € IR", we denote

Po(z,t):=(rt—q-x)y, lg,(t)={ze€R":rt=x-q}

Note that the free boundary of Py ,, T'«(P,,) = l4(t), propagates with
normal velocity r/|g| with its outward normal direction ¢, and with
14 (0) = {w: q- 2 = 0O}.

In e; — e, plane, consider a vector u = e, + V/3e1. Let [ to be the
line which is parallel to p and passes through 3e;. Rotate [ with respect
to e,-axis and Let D to be the region bounded by the rotated image and
{z:—-1<=z-e, <6.} (see Figure 3.) For any nonzero vector ¢ € IR", let us
define D(q) := ¥(D), where VU is a rotation in IR"™ which maps e, to ¢/|q|.

Definition 2.1. Let Q1 := D(q) x [0,1].
Ueqr = (sup{u : a subsolution of (P)¢ in Q1, with u < Py ,})*

Ue.q, := (Inf{v : a supersolution of (P)¢ in Q1 with u> Py, })«

=64,

11



D(q)

>/ Ww(ey)
]

Figure 3.

Remark The reason for defining rather complicated domain D(q) rather
than B1(0) is to guarantee that the free boundary of ., and wu..,, does

not detach from P, , as it gets away from the lateral boundary of D(q) too
fast. (see Corollary 2.4).

Lemma 2.2. (a) For any a > 0,
Ue;aqr(T,t) = Qllgq o2, (T, at).

and
Ue;aq,r (1'? t) = aﬂe;q,a*%(l‘7 (Zt)

(b) For r > 2|q|?, P,, is a supersolution of (P)e. Forr < |q|?, Py, is a
subsolution of (P)..

Proof. (a) follows from the scaling properties of (P).. (b) is due to our
hypothesis: 1 < g < 2. O

Due to Lemma 2.2 we are able to restrict the investigation of properties
of U¢,q, and u,., . to the case |g| =1 and 7 € [1,2].

Next we investigate the behavior of ¢, and u.,, near the lateral
boundary of D(q) x [0,1]. For this we need to construct barriers U, and
Uq,r to compare respectively with u,.,, and g .

In e; — e, plane, for each 0 < ¢ <1 consider a line I(¢) which is parallel
to the vector e; + v/3e, and passes through —e; + te,,. Now rotate

l(tyNn{z ey <0}

with respect to e,-axis to obtain a hyper-surface L(t) in IR". Let L be the
region whose boundary is L(t) and contains —e,,. For a unit vector ¢ € IR"
let us define £(q) = ®(L) where ® is the rotation map in IR" such that
®(ey,) = q (see Figure 4).

12
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Figure 4.

For 0 < t < 1 define Uq(-,t) to be the harmonic function in the region
L(q) N D(q) with boundary data zero on dL(q) N D(q) and P, on the rest
of the boundary.

To define U,, we replace L(t) with L(t), where L is the reflected image
of L with respect to e,-axis.

Now for given unit vector ¢ in IR"™ and r € [1,2] we define

(z,1t), Ugr(x,t):=Uy(z,rt).

)

Qq,r(‘rv t) = Qq

Lemma 2.3. For a unit vector ¢ € IR" and r € [1,2], U, is a supersolution
and Uy, is a subsolution of (P)e.

Proof. By comparing U, (-,t) with planar harmonic functions at each t €
[0,1] it follows that on its free boundary |DU,| < 5. Hence the normal
velocity V of I'(U,, ) satisfies

V=r>12>2/DU,,|

and thus U, ,. is a supersolution of (P)e.

(We mention that this is the only place that D(q) with skewed lateral
boundaries was needed, to show that |[DU,| < 1/2 by comparison with
planar harmonic functions.)

Similarly we can show that |[DU,| > 2 on I'(U,). Hence

V =r <2<|DU,,| on T(U,,),

and U, is a subsolution of (P)..

13



Corollary 2.4. For a unit vector ¢ € R"™ and r € [1,2],

UQﬂ“ S uf%‘lﬂ“? ue;q,r S Qq,r'

Lemma 2.5. For any unit vector ¢ € R"™ and r € [1,2],

(a) Ueqr is a subsolution of (P)e with tic.q,r < Py, in Q1 and lieq, = Py,

on the parabolic boundary of Q1. Moreover Ueqr 15 a solution of (P)e
away from I'(teqr) Nlgr.

(b) Ueygr 15 a supersolution of (P)e with Ueq, > Py in Q1 and u
on the parabolic boundary of Q1. Moreover u.,
away from T(uc.q,) N lgr-

€;q,T = P‘]ﬂ”
is a solution of (P),

Proof. 1. We only prove the lemma for #.q .

2. Uegq, is a subsolution of (P). due to its definition and the stabil-
ity property of viscosity solutions. teq, = Py, on 0D(q) x [0,1] due to
Corollary 2.4.

3. It remains to prove that (tegq, )« is a supersolution in ); away from
lg,r- Due to the definition w4, is harmonic in its positive phase. Thus if
our assertion is not true, then there exist a smooth function ¢ which touches
(Te:q,r )« from below at (o, ) € I'(Geqr) VUL, »)NQ1, with [D|(zo,t0) # 0
and

. x
min(¢; — g(—)| Do, ~Ad)(zo, to) < 0.
By continuity of g, for sufficiently small ,~,r > 0, the function
O(x,t) = (¢ + 6 —y(|lz — wol> + [t — tol*))+

is a subsolution of (P), with ® < P, , in B,(xg) X [to — 7,to + r]. Observe
that, due to Lemma 1.9, for any §,7 > 0 ® > ¢4, in Be(xo) X [0, 1), where
¢ is a small constant depending on 6, .

Choose d > 0 small enough such that ® < @, outside B, j5(z0) X [to —
r,to + r]. Now the function

max(teq,, ®) in By (xg) X [to — r,t0 + 7],
U=

Ue,q,r otherwise

is a strictly bigger subsolution of (P), than @eq, and less than P, , in @1,
yielding a contradiction. O
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The following corollary provides, in particular, estimates for the free
boundary velocity of ¢, and .., . in e-scale.

Corollary 2.6. (a) For any given unit vector ¢ € IR"™ and for any a € [0, 1],
there is a vector n € IR"™ such that ag+n € €Z", n-q > 1|n| and € < |n| < 3e.
For this n and for r € [1,2] the following is true:

1
af;‘lﬂ"(‘r + aq + m, t+ ar_l + ZT_IE) S ae;qm(x, t)

and
Qe;qﬂ‘(l‘ +aq+n,t+ ar_l + 6T_1€) > ﬁe;q,r(x7 t) in Ql-

(b) Forn as given in (a) for a =0, we have
Ueygr(z —mt + 67’_16) > Ueyq,r(T,1)
and

1 _ .
Qe;qﬂ”(m —nt+ ZT 16) < Ee;q,r('x?t) mn Ql-

Proof. 1. (a) is due to Corollary 2.4, Lemma 2.5 and the definition of G,

and u., .

2. By barrier argument one can check that
Uesqyr (@ + 1,417 €) > Py, (2,0) in D(g) N {z - g < 2€}.

the first inequality in (b) follows from above inequality, Corollary 2.4, Lemma 2.5
and Theorem 1.7. The second inequality can be checked similarly. O

For a unit vector ¢ € IR" and r € [1,2], define

1
Acigr = Dilligqr) Nlgr(1) N §D(Q)
and

1
' (Ueg ) Nlgr(1) N §D(q)
Also define

7(q) = sup{r : Aeqr # 0 for € < ¢y with some ¢y > 0} € [1,2]
and

r(q) =inf{r: A . # 0 for e < ey with some ¢y > 0} € [1,2].

€q,T

Throughout the paper we will call u = ajey + ...ane, a lattice vector if
a; € Z, and p a rational vector if a; € Q.
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Lemma 2.7. If Py € Qy (tie;q,r) N 3D(q), then

rt rt _
(2P — 2 =) s S+ e e g > 031 Dlg) C Qg (zegr).

Note that 2Py — rtgq € lqﬂn(to) if Py € lqﬂn(to).

Proof. We compare

a:+7’t0q+2u t—l-t())
2 T2

U (T,t) 1= 20eq,r(
and
U2 (l'a t) = a260;q,7“(x7 t)

in Q1. Since u; is a subsolution of (P)ae, with uy < P,, in @1, by definition
of us we have u; < ug in Q1 and the conclusion follows. O

Below we state the corresponding lemma for 4. The proof is parallel to
the above lemma.
Lemma 2.8. If Py is in Qyy(Ue,q,), then
Py + rtoqg + H
{ 2

The following lemma plays an important role in the rest of the paper.

1
srtoq + p € €L, g p = 030 5D(q) C Qe (e yaig,r)-

Lemma 2.9. Fiz a unit vector ¢ € IR" and r € [1,2].
(a) Suppose d(T'(Uc.,);lqr) < 1/100. Then there exists a dimensional
constant M > 0 such that, for any o € Ty, (Ue,q.r),

zo + rtoq

(2.1) (Tt (te/3;q,0) N %D(Q)qu(to)) > d( 5 slgr(to)) — %e,

In particular if A,jg.q, 15 nonempty then
d(w,lq,(t)) < Me for x € T'y(uc,,),0 <t < 1.

(b) Suppose d(I'(Ge,qr),lqr) < 1/100. Then there exists a dimensional
constant M > 0 such that, for any o € Tty (teqr) N 3D(q),

M
(2'2) d(rto (a26;q,r)’lq,r(t0)) > d(2130 — rtoq, lq,r(to)) - 75

In particular if Ase.q, is nonempty then

1
d(z,lgr(t)) < Me for x € I'y(tegq,r) N §D(q),0 <t<1.
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Proof. 1. We only prove (a), a parallel argument holds for (b). Observe
that once (2.1) is proved the second assertion in (a) follows, for ¢ = 1 from
(2.1) and for 0 <t < 1 from Corollary 2.6.

2. For simplicity we drop ¢, r in the notation of w..,, in the proof.

3. Let 2o to be the furthest point of I'y,(u.) from I, ,(tp) in D(g). We
may assume that

(2.3) d(l’o,lq,r(to)) 2 ME,

since otherwise the lemma is proved. By our hypothesis, there exists

(2.4) uc(+,to) = 0 in Bge(zo + 6€q).

Due to (2.4) and Lemma 1.9, (u,)*(-,%0) = 0 in Bs.(zo + 6eq). We claim
that there exists a dimensional constant ¢y such that

(2.5) sup  u.(y,to) > coe.
{ly—zo[<de}

Due to Corollary 2.6,
ge(-,to - 166) =0in BQE(I'O).

For sufficiently small ¢y > 0, consider the function ¢(z,t) defined in
Y = Bye(wg) X [to — 16¢,tg) such that

—Ap(,t)  in Bae(zo) — Bpe(@0);
© = € on  0Byc(xg) X [to — 16€,to];

(,0(',15) =0 in Br(t)e(l'O)y

where r(t) = 2 — {=(t — to + 16¢), is a supersolution of (P)..

Observe that u, is a viscosity solution of (P). in ¥ due to (2.3) and
Lemma 2.5. If (2.5) is not true, then we apply Theorem 1.7 to ¢ and (u.)*
in Bye(xo) X [to — 16€,tg), to show that I'(u,.) cannot reach zy by time tg, a
contradiction. Thus there exists yg € Byc(zo) such that u,(yo,t9) > coe. By
lower semi-continuity of u, there is a small spatial ball Bs(yo) where u, > 0.

4. We next claim that there exists a dimensional constant M > 0 such
that

u.(-,to +3Me) > 0 in Bsc(xp).
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If § > 7e we are done. If not, by Harnack inequality for harmonic functions
and by the fact that w, is increasing in time, there exists a dimensional
constant ¢; > 0 such that

Ee(Wt) > c1€ in Br(y()) for t > tg

if Bar(yo) € Qe(ue)-
Thus if we choose a sufficiently large dimensional constant M > 0, then
a radially symmetric harmonic function ¢(-,t) in the ring domain

1
BM*H—J(Z/O) - §BM*1t+5(ZJO)

with fixed boundary data cie on the inner ring and zero on the outer ring
is a subsolution of (P). in

1
= (R" - §BM*1H—6(Z/0)) x [0, 3Me]

with ¢(z,t) < u.(x,t+ ty) on the parabolic boundary of X.
5. It follows that at wu.(-,t9 + 3Me) > 0 in Bsc(xo). By Lemma 2.7 it
follows that u /9., (-,t0 +3Me) > 0 in the set

xo + 1toq

[y d(y. palto +3Me)) < (™=

alp,q(tl))},

proving the lemma.
O

For the next section, where we consider limits of the solutions of (P),
here we prove that u.., . (i) is non-degenerate’ on their free boundaries.

Lemma 2.10. (a) Suppose 1 < r < 2. Then there exists a dimensional
constant ¢ = c¢(n) such that for any 0 < h < d and for any (xo,tg) €
[ (ite.r) 0 (3P(9) x [0,1]),

sup ﬁs;q,r(yatO) > Chz/(d + h)
{lzo—yl<h}
where d = d(lgr(to), zo).

(b) Suppose r(q) < r < 2. Then there exists a dimensional constant
¢ = c(n) such that for h < Me where M is given as in Lemma 2.9 and for
any ($07t0) € F(ﬁe;qm) n (%D(Q) X [O’ 1])7 we have

sup  u.,,(y,to) > ch?/Me.

{lzo—yl<h}
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Proof. We first prove the lemma for #.4,. Due to the definition of d, for
h < d,
ﬁg;qyr(-,to — (d + h)) =0in Bh(x()).

If (a) is not true with sufficiently small ¢ > 0, then a barrier argument with
a radially symmetric function, as in the proof of Lemma 2.9, yields that

ae;q,r('atO) =0in Bh/Q(wO)y

which is a contradiction.
To prove (b), first suppose that d(B},/2(z0), l,r(to)) > 0. Since r(q) <,
L(Uegr) N (3D(q) x [0,1]) is within Me-distance of l,, due to Lemma 2.9.

Thus
Ee;q,r('ato - (M€ + h)) =0in Bh(xO)‘

Suppose for some 0 < h < d, U, < % in By (zo). If ¢ is sufficiently small,
again a barrier argument with a radially symmetric supersolution of (P),,
using the fact that u.., , is a solution in By, /5 (w0, to) leads to a contradiction.
If d(zo, 14, (to)) < h/2 then the lemma holds due to the fact that u.., ,.(-,t0) >
qu(’v t()).
O

3 Uniqueness of the limiting velocity

Let us define

gy (2, ) := (limsup g, ,.)*
n—oo
where 4., .(7,t) := Nl¢/p,q,(x/n,t/n). Let us also define
U r = (hfi}igéf Uciqr)s

where ug., (,1) 1= N - (T/0, /1)

Lemma 3.1. (a) ugy, ,(u2,,) is a sub(super)solution of (P)., less (bigger)

than P, ,, with initial data P, ,(x,0) in IR™ x [0, 00).

(b) Forr <7(q)
Ugrg (T + p, ) = Uy (1)
for any lattice vector p orthogonal to q.
(The same equality holds for holds for r > r(q).)

gé;q?'r.
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(c) for any lattice vector u,
Uy (@ + et e q) <ag,,(z,t)

and
Qs%,r(i’?‘i'W»tﬂLT €p-q) > _e,q, (2,t).

(d) Forr <7(q), a2 , has ’almost flat’ free boundary:

€,q,T

d(Ty(a car D lgr(t)) < Me for 0 <t <1.

(The same inequality for ugy, . holds if 1 > r(q).)

Proof. 1. We will only prove the lemma for ugy, .

2. Note that u” Car 18 the maximal subsolution Wthh is smaller than P,
in @, :=nD(q) x [0,n] with boundary data equal to P,, on the parabolic
boundary of Q. Therefore iy, , is decreasing in n. Moreover ug, .(-,t) >
Py (x,0) for t > 0, and therefore we conclude that ugy ,.(x,0) = Py .(0).
Since r < 7(q), by Lemma 2.7 there exists a dimensional constant M > 0
such that

(3.1) d(w,lqr(t)) < Me for any x € T'y(tg., )

for sufficiently large n. It then follows from (3.1) and Lemma 2.10 and for
any ('CC()?tO) € F( Eqr)

h2
3.2 sup a_ >c ,
( ) B (x0) Me+h
where ¢ is a dimensional constant. Thus
(3.3) Q(ag, ) = limsup Q(ag, ).

e—0

Now standard viscosity solutions argument will prove that ugy , is a viscosity
subsolution of (P)e.
3. Suppose p € Z™ with p- g = 0. Observe that, for any n > N > €|y,

Uy (@ + e t) < @y (,t) <Al Yz +ep,t) in Qn,
Hence taking n — oo it follows that

a?ﬁ;,r('x + e, ) - quT(SE,t).

4. (c) follows from the fact that, for any p € Z™ and N > |u|,
—n+N
Ul (v +ept + 17 Yep - q) < a (T, 1).
5. (d) follows from (3.1) and (3.3). O
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Lemma 3.2. 7#(q) < r(q) for any rational unit vector ¢ € IR™.

Proof. Suppose 7(q) — r(q) = o > 0. Choose r3 = r(q) + 0/3 and rqy =
r(q) +20/3 = 7(q) — 0/3. Consider small positive constants 0 < 0 << 7,
v < 0/20 and a lattice vector n such that |n| < 2, ¢-n < —1/2. Define

Ur(w,t) := sup uy(z,t)
d((y,s),(z,t))<be
where
uy(z,t) == (1— v)ﬂ;‘jlm(gg, (1 —0/20)t)
and
U I'7t = lnf u x7t
(o) (d((,5), (1)) <be 2(2,1)
where

ua(a, 1) = 4%y, (2 + e, (1 + 0/20)0)

Observe that U; and Us are respectively sub- and supersolution of (P),
in IR"™ x [0, 1] if ¢ is chosen small enough with respect to o and the continuity
mode of g.

We compare U; and Us in Q1. By the choice of d,v,0 we have Uy <
P,, <Ujyontheset {x:z -qg=—1} x[0,7v/0].

Note that I, ,,(1—/20) Propagates faster than I, 4s/20) by more than
0/10. Moreover by definition and Lemma 3.1 (d) I'(U;) and T'(Us) are
respectively within (M + 2+ 0)e < 2Me-distance of I, ,, and I ,.

Since the free boundaries cannot jump in time (Lemma 1.9) I'(Usz) will
contact T'(Uy) for the first time in Q1 at a point (zg,to), to € (0,40Me/o).
Let us choose v = 40Me and € < m so that

Uy <Uson{x:x-q=—1} x]0,to].

Due to the periodicity of u; and ug (Lemma 3.1) and the maximum principle
of harmonic functions, it follows that U; < Us in D(q) x [0,%0]. Since ¢ is
rational, by Lemma 3.1 (b) there are other first contact points in the interior
of D(q). Now one can argue as in the proof of Theorem 2.2 of [K1] to derive
a contradiction. O

The argument in the proof of Lemma 3.2, while simple, does not apply
to the cases with non-rational vectors ¢ € IR"™ due to the loss of periodicity
of u; and us on the free boundary. Hence we will apply a more careful
argument, based on the property of rational and irrational numbers, for the
general proof.
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Lemma 3.3. Suppose ni,ns > 1 are integers, prime to each other. Then
there exist integers 0 < k1 < no, 0 < ko < ny such that

|k1n1 — k2n2| =1.
Proof. Let nq < ng. If our claim is not true, then the set
S = {0 <k < 12,0 < ko < mny: king —k‘QTLQ}

are all apart by at least 2. Since ni and no are prime to each other, the
elements in .S are all distinct and thus

|S| = ning and S C I := [—ning + n2,ning — nqj,

where I contains 2ning—ni1—no+1 < 2ni1ne—1 integers. Since the elements
of S are all apart by 2, a contradiction follows. O

We will next prove that, for a rational unit vector g, if r is bigger than
7(g) then for sufficiently small € the free boundary of @, , falls behind {,,
by a positive distance after a positive amount of time. The estimate on this
distance, the amount of time after which the free boundary falls behind, and
the size of € obtained in the following lemma is essential to the analysis later
in the section.

Proposition 3.4. Suppose q is a unit vector in IR",

_ 2 Gn
qg=m(e1 + N, e+ ...+ Nne")’

where 1/n < |m| <1 and ag, Ny are relatively prime integers and a;, N; € Z
with 0 < a;/N; <1 fori=2,...,n. Let N = maxNj.

Suppose r = rg + C(n)y < 2rg,ro := 7(q) where C(n) is a sufficiently
large dimensional constant. If 1/N < ~? then for 0 < e < ¢y = %,

d(L(Tesq,r), lgr(t) N By1y4(0)) > Meg

for @ <t <1, where M is the dimensional constant given in Lemma 2.9.

Proof. 1. Without loss of generality we may assume that N = Ny. Let us
denote
a; .
7 = e; — Eel,z =2,...,n.
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B e

/ £
El< N

Figure 5.

Note that {n;}i=2,.. ., is a basis for the hyperplane {z : z - ¢ = 0} and
ni - n3] < 3lmillnj -

By the previous lemma there exist integers ki, ko € [—N, N] such that
for any ¢ € IR

q-(cn2 — (kres + kaeq)) = m(kiag /N — ko) = —m/N < 7.

On the other hand N7 is a lattice vector in ey — e plane. Hence for
any integer k there exists a lattice vector £ in eq — e; plane such that

(3-4) 0<[l<N, q-&=—km/N

(see Figure 5.)
We choose k such that

(k—1)m/N <~y <km/N, ie. km/N € (v,27).

2. Next consider the domain O := II N [0,2Mep/v], where M is the
constant given in Lemma 2.9 and

N
mt, 0<t<2Meo/v}.

I = {(x,t) : |2| <1/2+
Observe that O C Q1. Let us define uy := g, Where g, is the maximal
subsolution below P, ., defined the same as 1e.q,, in the domain O instead
of @1. A parallel argument as in Lemma 2.3 yields that vy = P,, on the
parabolic boundary of O. Note that 4, < uy since O C Q1. Moreover

using the definition of u; one can check that (u;) expands in time and
(3.6) ui(z,s) < Cuy(z,t) for 0 < s <t <2Meg/y and z € By 4(0).

for a dimensional constant C' > 0 (note that u; may not increase in time
since the lateral boundary of IT changes in time.)
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It follows from (3.4), the definition of II, uy, and Theorem 1.7 that

(3.6) ur(z + (§+pe,t+ kar_le) < uy(z,t),

in By/4(0), where 1 is any lattice vector orthogonal to ¢ such that |u| < nN.
Let

r—ro—2y _(C(n)—2)y

(3.7) =
ro+ T ro+7r
and
@
(3.8) ug(z,t) == (1+ Z)E?;Oq,m(x’ (14 a)t+ Me+ Ciye)

where C7 > 0 is a dimensional constant to be chosen later.
Parallel argument as in the case of u; yields that

(3.6) ug(x + (£ + p)e, t + %n(l + o) trgTe) > ug(x, t).

in By/4(0), where p is as given in (3.6).
3. Finally, set
ty(z,t) == sup wi(y, (1 —a)t); Up(x,t) := inf  wua(y,t).
yEBye(x) YEBe, ve(w)

Note that @; and a9 are respectively a sub- and supersolution of (P). if
C(n) is large with respect to C7. Our goal is to prove that

(3.10) iy <y in ¥ := Byy(0) x [0,2Meo /7]

if Cy and C(n) is sufficiently large.

Due to Lemma 3.1, I'(ug) stays within the Me-strip of [, ,(t). This and
the fact that (1 —a)r — (1 + a)rg = 27 and Ue,q, < u; yields our theorem
for Mo <t < 2MT€0 once (3.10) is proved. For Meg/vy <t <1, the theorem
holds due to Corollary 2.6, (a) for te.q,,.

4. Suppose that @; contacts ag from below at (xg,to) for the first time
in . Let us define

S :={y € B1/2(0) : |(y — w0) - v| < Ne for any v orthogonal to ¢.}

By our definition of ¢, for any point « € S, one can find a lattice vector u
orthogonal to ¢ such that

(n—1N < |u| <nN, x4+ (£+p)e € Byy(0).
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(For example p can be chosen as bN;n;, where i is chosen such that e; - ﬁ <
—1/n and b € Z" satisfies bN; € [nN — N;,nN].
Due to (3.6) and (3.9), we have

(3.11) iy (z,t — 2v%€) < dg(z,t) in S x [tg — Me, tg
since

k
(e, t—20%) < Wla+ (E+p)et -2 — <e(l—a) )

IN

(e + (€ + pe,t — 272 — ’mee(l )l

< ipr,t = 2%+ Bre(1+a)7hrg ! = (L—a) 717

S fLQ (1'7 t)v
where the second inequality is due to the fact 1 < 42 in By/4(0) x [to —
Me, tp).
D.

Lemma 3.5. If C1 = Ci(n) in (3.8) is sufficiently large, then

(3.12) ti(x,t) < inf  wua(y,t)
yEBaye()

on T'(a1) N (S x [to — €,to]) and

(3.13) ai(x,t) < inf  wa(y,t)
yEB'ye(:L‘)

in (a1) N (Bame(wo) X [to — 3Me, to]).

Proof of Lemma 3.5

1. To show (3.12), we first note that if (y,s) € I'(u1) with y € By 5(0),
then uy(-,s) < 2€ on Be(y) if ¢ = ¢(n) is small enough: otherwise (3.5), a
barrier argument and the Harnack inequality for harmonic functions shows
that it violates the fact

ui(z + e, t +€) <wuy(z,t) in O
for any lattice vector p such that p-q > 1. Hence for 0 <t < 2Meq/~,
(3.14) (- 1) < 2ein {y : d(y, {u (1) = 0}) < c(n)e} N By y2(0).
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By definition of @y and by (3.11), for any (zo,70) € I'(42) N (S X [to — €, to])
there is a spatial ball By := Bcy~e(21), 20 € 0By, such that

By € {ia(-,70) = 0} N {1 (-, 70 — 27%€) = 0}

Consider a function ¢ defined in the domain C = (1 4 v€)B;y x [0, 272¢]
such that

CAp(,t) =0 in (1+40B - (1— (3 )By;
o(-,t) = 2 on (1 + ~ve)By;
o(,t) =0 outside (1 — (ve)~t)B;.

If C1 = C1(n) is large enough and = is sufficiently small so that C'1y(14+ve) <
c(n) then ¢ is a supersolution of (P). in C. It follows from (3.14) and
Theorem 1.7 that @1 (z,t) < p(z,t — 70 + 27%€) in C, which yields (3.12).

2. We claim

(3.15) inf  uy(y,t) > Cyy?e on I'(i;)
YEBye(x)

in S x [ty — €, o] with a dimensional constant Cl.
Due to (3.12), for (zp,70) € I'(a1) NS,

(3.16) BQ—YE(ZO) C QTO(UQ).

Now suppose that (3.15) is not true at (zp,t9) € I'(a1). Then due to
(3.16), the harnack inequality for positive harmonic functions, and the fact
that us increases in time,

(3.17) us(y, s) < c(n)Cay?e in Bye(20) x [0, 0]

where ¢(n) is the dimensional constant from the harnack inequality.

Due to Lemma 3.1 I'(ug) is in Me-neighborhood of [,,. Hence at time
71 = 70 — (M + 7)€, the ball B,c(zp) is in the zero set of us. Now a barrier
argument as in previous step using (3.17) in the domain B.(29) x [11,70]
yields that if C3 is small enough then B, /5(20) is in the zero set of uz(-, 7o),
contradicting (3.16).

3. Now we proceed to prove (3.13). Due to Lemma 3.1,

ug(x, t+72%€) < Pyp(z,t+(M+~*)rte) < Pyo(z,t)+2Me < ug(z,t)+2Me.
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It follows from (3.11) that
(i — t1)(x,t) > —2Me in S.
Also observe that, due to the boundary condition of u; and us,
tg(x,t) —uy(z,t) >0 for z-qg < —2Meg/y, 0<t<2Mey/y.

Thus for ¢ € [tg — 3Me, ty] ,

v(-,t) - BIEE)’LLQ( ) — (-, t)
is a superharmonic function in Q4(%1) NS, with boundary data bigger than
Cov?e on T'y(ii1) NS, bigger than zero on the strip {z : - ¢ = —2Meo/v}
and bigger than —Me on JS.
Hence v(z,t) > h(z) in Q(a1) x [to — 3Me, to], where h is a harmonic
function in
Yi={-2Mey/y<x-q< Me+xzo-q} NS

with boundary data y2?e on the upper strip, zero on the bottom strip, and
—Me on the lateral boundary. Since the width of S is Ne with N > 1/+2,
it follows from a straightforward computation that if + is sufficiently small
then h > 0 on Bspze(xo)-
O
5. We proceed with the proof of the proposition. By previous argument
we have

(3.18) a1 (z,t) < inf ug(z,t).

ye

in Bspe(zo) X [to — 3Me,tg]. Let x1 := mo + (M + 2)eq, and let R =
Bopre(z1) — Be(x1).
Define

w(x,t) := inf us(y, t
(@8) = pinf sy,

where ¢ defined in R satisfies the following properties:
(@) A(p~™")=0 inR;
(b) =B, on 0B (x1);

(C) Y = 1 n (9BQME(£L'1).
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Fix A, > 0, a sufficiently large dimensional constant. Then Lemma 9
in [C1] yields that w is superharmonic in Q;(w) N R for 0 < ¢t < 2Meg/7.
Choose B, (depending on A,,) sufficiently large that ¢(z¢) > C;. Note that
|Dy| < Cy where Cy depends on A, B,, and M.

6. Now we compare w and @; in { := R X [-2Me+tg, tp]. Due to (3.18)
and the fact that @ < 4y = 01in Be(z1), @1 < w on OR X [—2Me + tg, to].
Moreover at t = —2M e+t the positive phase of % is outside of R, and thus
% =0 < win R. Hence %; < w on the parabolic boundary of {. However,
since p(z9) > C1, 41 crosses w from below in . This will be a contradiction
to Theorem 1.7 if we show that w is a supersolution of (P), in <.

7. Since w is superharmonic in its positive phase, to prove that w is a
supersolution we only have to check the free boundary condition. Suppose
there is a C%! function ¢ such that w — v has a local minimum at (x,¢;) €
I'(w)N< in Q(w)NE with | Di|(z1,t1) # 0. By definition, there is y; € T'y(u2)
such that

uz(y1,t1) = w(wy, t1),

and set

— X
us(@,t) = uz(z + vyep(),t) v= L
ly1 — 21

Then uz — ¢ has a local minimum at (x1,t1) in Q(u3) N o. Formally
speaking, on its free boundary us(z,t) satisfies

((ua): — g(z/€)| Dusl?) (w1,t1)
> (u2)e(y1,t1)
—(1+ Crlel + Cre| Dyl )(21)g(%) | Duzl*(y1, 1)
> ((u2)e — (1 + C7)g(%)| Duzl?)(y1,11)
>0
if C'(n) in (3.7) is large enough. Therefore we obtain 1, —g(-/¢)|Dy|* > 0
at (r1,t1) and w is a supersolution of (P). in {. For rigorous argument

proving that w is a supersolution of (P). in ¢, one can argue as in the proof
of Lemma 3.4 in [K2]. O

Remark Note that the condition € < €g is used to guarantee that the
domain O, with which u; is defined, remains a subset of Q1.

Parallel arguments yield the corresponding result for u..,
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Proposition 3.6. Suppose q, N as given in Proposition 3.4. Suppose r =
ro — C(n)y > ro/2, where ro := r(q) and C(n) > 0 is a sufficiently large
dimensional constant. If 1/N < ~v? then for e < ¢g = %
d(rt(ﬂe;qm)7 lq,r (t) N Bl/4(0)) > MGO

for @ <t <1, where M is the dimensional constant given in Lemma 2.9.

We are now ready to prove that 7(¢) = r(q) for any unit vector ¢ € IR"™.
First we will show that 7(¢) < r(q). The following elementary lemma is
given as Exercise 1.15-1.16 of [A].

Lemma 3.7. (a) Given a real x and an integer N > 1, there exits inte-
gers h and k with 0 < k < N such that |kx — h| < 1/N.

(b) If x is irrational there are infinitely many rational numbers h/k with
k>0 such that |x — h/k| < 1/k2.

Next we consider general unit vector ¢ = m(e; + ages + ...aney,) € R™,
1/n<|m| <1/ ax| <1,k=2,..,n.

Lemma 3.8. 7(q) < r(q) for any unit vector q € IR™.

Proof. 1. Note that the lemma is shown for rational vectors in Lemma 3.2.
2. We will only prove 7(q) < r(q) for the case where the coefficients a;
are all irrational, other cases can be proven similar.
3. Take any v > 0, where C(n) is as given in Proposition 3.4. Due to
Lemma 3.7 there are integers ao, Ny prime to each other such that

lag — ag/Na| <4°/Na, Ny >~72

Again due to Lemma 3.7 for any a > 0, there exist a;, N; € Z, 1 < N; <

N
52 such that

a

loi — ai/N;| < NzNi’i =

3, .0, M
choose a > 0 small enough so that N; > 73 for i = 3,...,n. Let
N =maxN;,i = 2,...,n. Then
3

(3.19) o — a; /| < ;—N i=2,..,n
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Now choose

. a a
d=q(v):=m(e1 + FZ@ 4+ er")

and compare U, With @eg, at r = 7(q) + C(n)y, where C(n) is given as
in Proposition 3.4. Due to Proposition 3.4 applied to ¢ we obtain that, for
2
€ < €0, €0 = girns
_ M
ATt (Tespu,r)s Lur (1) N Byy2(0)) > - €0,

2
and thus 7(u) < 7(q)+C(n)y for any unit vector u such that |p—q| <

A
~ 16nN’
including ¢ due to (3.19).
Similarly Proposition 3.6 yields that at » = r(q) — C'(n)y where C(n) is
given as in Proposition 3.6,

AT ) L (1) 0 B0)) > 5 o

and thus r(u) > r(¢) — C(n)y for any unit vector p such that |pu — ¢| <
2

1621]\7’ including ¢ due to (3.19).

Hence it follows that

7(q) < liminf7(g) < limsupr(q) < r(q).
y—0 ¥—0

O

Let C(n) be the maximum of dimensional constants given in Proposi-
tions 3.4 and 3.6.

Corollary 3.9. For any unit vector ¢ € IR™ and for small v > 0, there exists
4

0 <o =€(q,y) < ;57 such that if r = #(q) + C(n)y (r = r(q) — C(n)7)

then for 0 < e < e¢g

Me
d(y,lgr(t)) > TO for any y € T'y(te,q,r) N Biy4(0)

( for any y € I'(ueq,) N B1/4(0))
for @ <t <1, where M is given as in Lemma 2.9.

Lemma 3.10. r(q) < 7(q) for any unit vector q € IR™.
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Proof. Suppose not. Then for some v > 0, r(q) = 7(¢) + 2C(n)y. We
compare

u1(z,t) = Ueqr(z,t) and uz(z,t) = ue g (2,1 — 4eo)

at r = 7(q) + C(n)y in D(q) x [0,1], where €y = €p(g,y) is given as in
Corollary 3.9. By Corollary 3.9, ug crosses u; from below in @1 at (xo, to),
to € [4ep, Meg/v]. By Lemma 2.4 and the boundary data of u; and ug on
the parabolic boundary of @)1, x¢ is more than 2ep-away from the lateral
boundary of D(q) and on I'(u;) N T (uz).

Observe that, by definition of ., ,, for any vector p € aepZ", 0 < a <1
satisfying p-¢>0and |u| <1—a

T—p t—ru-q
( ; )

a a > ﬁaeo;q,r(xat) in an + (Nv T Q)'

Aley;q,r

Therefore by Corollary 3.9 if € < €2 then I'(u1) and I'(uz) is away from
lgr in & = (1—€9)D(q) X [€0,1], and therefore u; and ug are a solutions of
(P). in . This contradicts Theorem 1.7. O

Corollary 3.11. 7(q) = r(q) for any unit vector ¢ € IR".

For a unit vector ¢ € IR", we define

(3.20) r(q) == 7(q) = r(q)-
Lemma 3.12. r(q) is continuous.

Proof. Due to Corollary 3.9 it follows that if |¢1 — g2| < €o(q1,7y) where
€o(q1,7) is as given in Corollary 3.9 then |r(q1) — r(g2)] < C(n)y, which
yields our conclusion. O

4 Convergence to the limiting problem

Consider the free boundary problem

—Au=0 in {u>0}NQ,
(P)
u —r(V)|Vul2 =0 on d{u>0}NQ

with initial data ug and fixed boundary data on 0K, where @, ug and v is
as given in (P), in the introduction and r(q) is the continuous function on
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{q € R" : |q| = 1} defined in (3.20). Note that the existence and uniqueness
results in section 1, in particular Theorem 1.7 applies to (P).
We assume that ) satisfies

(4.1) Int(Q()) = QQ, \Duol 75 0 on FO,

so that Theorem 1.8 (a) applies and there exists a unique viscosity solu-
tion of (P).
Consider solutions {u¢} of free boundary problem (P), with initial data
ug and fixed boundary data 1. Let us define
ur(z,t) == ( lim sup{u(y,s) : € <eo,5 =2 0,|(z,t) — (y,5)| <7})"

€o,r—0

and

ug(z,t) = ( lim inf{u(y,s) : ¢ <eo,5 2 0,|(z,) = (y,5)] <7}
€0,"—
Note that u;(z,0) = ua(z,0) = up(z), since Qo(u) = N0 (u) at t = 0 due
to the condition (4.1). Our goal in this section is to prove that uy and ug
are respectively sub- and supersolutions of (P).

Lemma 4.1. Suppose (xg,tg) € T'(u®). Then there exists ¢ = c¢(n) > 0 and
ro = 1o(d) > 0, where d = d(xo,Q(uo)) such that if r < % then
2
s(r,€; o, tg) := sup u(-,tg) > c—.
B2'r(x()) t()

Proof. Consider a point z¢ € I'y, (ue) with d(x,Qo(u)) > 2r. Take 7 > 0
such that ue(-,t) = 0 in Bg.(x¢). Since uf is increasing in time, one can
show by the barrier argument in Ba,(xg) X [7,to] that if

2

r
s(r, e, x0,t0) < c—
to
where c is a sufficiently small dimensional constant, then I'(u¢) will not reach
o by the time ¢t = t(, yielding a contradiction. O

Theorem 4.2. u; and uy are respectively a subsolution and a supersolution
of (P) with initial data ug and fized boundary data 1. In particular u :=
up = ug and {u.} uniformly converges to u as € — 0, where u is the unique
viscosity solution of (P) with initial data ug and fized boundary data 1.
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Proof. The second assertion follows from the first assertion and Theorem 1.7
for (P).

To prove the first assertion, suppose ¢ touches u; from above at Py =
(zo,to) € I'(uy) with |Do|(Py) # 0 and

max[—Ag, ¢y — r(v)|Dg|*|(Py) = C(n)y|Do|*(Fo) > 0,

for some v > 0, where v = %,q = —D¢(xq,tp). Without loss of generality
we may assume that |¢| = 1 - otherwise a scaling argument applies, and that
the maximum is zero and strict- otherwise consider, with small § > 0,

d(x,t) := p(x,t) — Pp(wo,t0) + d(x — o) + 6(t — t9)>.
Let
Py(x,t) .= (r(t—to) —v-(x —x9g — )4, r = —
Since ¢ is smooth with |D¢|(FPy) # 0, I'(¢) has an exterior ball at Py and
thus for sufficiently small A > 0
(4.2) ui(x,t) < ¢(x,t) < Py in Beyipa(xo) x [to — ChY? 1]

(see Figure 6.)

Choose h < C?¢2(q,) where C is given as in (4.2) and €y(q,~) is given
as in Corollary 3.9. By definition of u; and by Lemma 4.1, there exists a
sequence € — 0 such that u., < P, in Ch'/?-neighborhood of (zg,t) and

d((.’L’Q,tO),F(UEk)) —0ask— 00,

However after a scaling argument, Corollary 3.9 yields that I'(u,, ), for suf-
ficiently small e, should stay away from T'(P,) by Cegh'/? in C/2h/?-
neighborhood of (xg, o), which is a contradiction since

d(zo,T(Py)) = h < Cegh'/?.
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5 Homogenization of Stefan-type problems

In this section we will consider the limiting behavior of {u.} solving the
Stefan-type problem

uf — Au =0 in  {u® > 0},
(P2)e
uy — g(z/e)|Du> =0 on 9{u¢ > 0},

in IR™ x [0,00) with initial data uo(z). Here and g is as given in (P).. To
ensure that u€ is behaves smoothly near ¢ = 0 we assume that ug satisfies

(5.1)  wup € C*({ug > 0}) and |Dugl|, Aug > Cy near I'y := d{ug > 0}.

As before, for uniqueness and existence results we consider the general-
ized problem

uf — Auc =0 in  {u> 0},
(P2)c

u§ — g(x/e,v)|Duf|> =0 on {u > 0},
where g, v is as given in (]5)6 Here we extend the notion of viscosity solutions
for the Stefan problem (g = 1) in section 4 of [K1] to define the viscosity
solutions of (P2).. Let ¥ be an open set in IR x [0, 00).

Definition 5.1. A nonnegative upper semicontinuous function v in ¥ is a
viscosity subsolution of (P2) in X if for every ¢ € C*1(X) such that u — ¢
has a local mazimum in Q(u) N {t <to} NX at (xg,to) then

(i) (ot — Ap)(wo,t0) <0 if u(zxo,to) > 0.

(i1) if (wo,t0) € T'(u),|Vo[(x0,t0) # 0 and
(91 — Ap)(wo,t0) > 0,

then

(¢t — g(zo/e,v)| DS[*)(z0, t0) <0,

where v = —%(mo,to).
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Definition 5.2. A nonnegative lower semicontinuous function u in Y isa
viscosity supersolution of (P2). in X if for every ¢ € C**(X) such that u—¢

has a local mazimum in Q(u) N {t <t} NQ at (zo,ty) then

(i) (¢t — Ag)(zo,t0) <0 if u(wo, to) > 0.

(@) if (zo,t0) € T'(u), |[Vo[(z0,t0) # 0 and
(¢t — Ag)(wo,t0) > 0,

then

(60 — g(wo/e,v)|De|?) (0, t9) <0,
where v = —%(mo,to).
Definition 5.3. (a) w is a viscosity subsolution of (P2) with initial data

ug if u is a viscosity subsolution in IR™ x [0,00) with u(x,0) = ug(z)
and Q(u) N {t =0} = Q(up).

(b) w is a viscosity supersolution of (P2). with initial data ug if u is a
viscosity supersolution in IR"™ x [0,00) with u = ug at t = 0.

A parallel argument as in section 4 of [K1] yields the following theorem
on the solutions of (P2).:

Theorem 5.4. Theorem 1.7 holds between a subsolution and a supersolution
of (P2)¢. Furthermore there exists a unique viscosity solution of (P2)c in
IR™ x [0, 00) with initial data ug satisfying (5.1).

Consider
up — Au =0 in  {u> 0},
(P2)
ug —r(v)|Dul? =0 on 0{u >0},

where r(v) is as defined in (3.20). Let u be the unique viscosity solution of
(P2) with initial data ug. Below we show that u° solving (P2). uniformly
converges to u as € — 0. First we prove a nondegeneracy property of {u‘}.

Lemma 5.5. Suppose (xo,to) € I'(u®), to > 0. Then for any € > 0, dy 1, ==
d(zo,Q0) > c(to) > 0 and for any 0 <1 < dyq 19,

60T2

(5.2) sup  u(y,s) > —.
Br(z0)%[0,t0] to

where co = co(tg,n).
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Proof. 1.The first assertion follows from (5.1). In fact due to (5.1), for Cy
given in (5.1) and for sufficiently small ¢y we have
C
g tg = d(T'go (u), Q0) > 70750 > 0.
2. Let us choose C(tg) > 0 such that
(5.3) up(z) < (14 C(to))u(z, to).

(Such C(tg) exists since the positive phase of u¢ expands in time.)
If (5.2) is not true, then due to (5.3)

(5'4) uE < Co(l + C(to))?’2 ;

<~ n BT(ZC()) X [O,to]
to

for some r € (0,dy,+,). Since u(-,0) = 0 in B,(x(), a barrier argument
with a radially symmetric barrier function in B,(xg) x [0,%] using (5.4)
yields that if ¢y < ¢(n)(1 + C(to))~! with sufficiently small ¢(n) then I'(u¢)
does not reach xy by t = tg, a contradiction. O

Let us define

up(z,t) == ( limosup{ue(y, s):e<e€y,s>0,(y,8) € B(x)x[t—r,t+7r]})"

€0,r—

and

ug(z,t) := ( lim inf{u(y,s):e<ep,s>0,(y,s) € Bp(x) X [t —r,t +7]})s.

€o,r—0

Theorem 5.6. u; and ug are respectively a viscosity sub- and supersolution
of (P2) with initial data ug. In particular if u is the unique viscosity solution
of (P2) with initial data ug, then u; = ug and {u} uniformly converges to
u as e— 0.

Proof. 1. The second assertion follows from the first. It is easy to check
that u; = ug = ug at t =0, due to (5.1).

2. Suppose uj — ¢ has a local maximum zero in Q(u1) at (xg,t) € T'(u1)
with [D¢|(xo,t0) # 0 and

min(¢t - A¢7 ¢t - T(V)’D¢|2)(x07t0) > 07
where v = ‘—g‘ and ¢ = —D¢(zg, tg), in a local neighborhood By (x¢) X [tg —
k,to]. As in the proof of Theorem 4.2, without loss of generality we may
assume that |¢| = 1 and the maximum is strict. Due to Lemma 5.5,

Q(uq) = limsup Q(u°)

e—0
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and thus there is a sequence ¢; — 0 such that u“ — ¢ has maximum in
By(z0) % [to — k,to] at (x;,t;) € T'(u®) with (x;,t;) — (x0,t0) as i — oc.
Since ¢ is smooth with |D¢|(xo,t9) # 0, there exists Cp > 0 such that for
0 < ¢ << h << 1 and for any vector £ € IR" with |{] < 2¢;,

(55) u® (x,t) < qur(x — o — C()hl/ +€, t— t()) in Bh1/2 (xo) X [t() — hl/z, t()]

where r = ¢ (g, to).
Consider

_ x — xo + rhY?v — Cohv + &t —to + h/?
we(l'v t) = uhfl/ze;q,r( hl/2 ’ hi/2 )’

where 1p1/2,.,, is as in Definition 2.1 and { € IR" is chosen such that
zo — rht?2y — & € h'/2ez" and |€c| < 2e. Note that w, solves (P)¢ in Qq
away from the contact set

D(we) N (lgr(t = to) +z0 — &)
and w, is harmonic in its positive phase, and thus
(we)r — Awe = (we) > 0 in Q(we).

Therefore w, is a supersolution of (P2), away from I, ,(x — zo — Cohv +
&t —tg). Due to (5.5), we have

(56) u® < We; in Bh1/2 (xo) X [to — hl/z,to].

On the other hand, since r = r(v) + C(n)~y for some v > 0 where C(n)
is as given in Corollary 3.9, Corollary 3.9 applies to 1,2 to yield that

€97

d(Ty, (we) N %Bhw (20),14.,-(0)) > €gh/? — Coh — 2¢ > %Ohl/Q

2
with some €y = €y(v,7y) > 0, h < % and € < h1/22€0, This contradicts
0
(5.6) and the fact that d(I'(u), (xg,t9)) — 0 as ¢; — 0.
3. Next suppose ug — ¢ has a strict local minimum zero in Q(ug) at

(z0,%0) € I'(uz) with [Dg|(zo, o) # 0 and

max(¢y — Ad, ¢y — r(v)|Do|?)(x0, to) <0,
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where v = ‘_D—?jf(xo, to), in a local neighborhood By (x¢) X [tg — k, to]. Again
for simplicity we may assume that |D¢|(zo,t9) = 1 and the maximum is
strict. Due to Lemma 5.5,

Qug) = lilzn_)iglf Q(u).

Therefore along a subsequence €; — 0 u“ — ¢ has its minimum in Bg(zg) X
[to — k,to] at (x4, t;) € T'(u) with ¢, — 0, (x4, ;) — (z0,t0) as i — oo.
Let o, := Z—’; and consider

v(z,t) = limpoor—oinf{o,(y,s) : |(y,s) — (z,t)] <1},

vp(z,t) = a;1u57l(an(x —x,),an(t —tn)),

where x., € e1Z" and |z, — x,, | < €.

We claim that v(z,t) is a supersolution of (P)., in B1(0) x [0, 1].

Proof of the claim: Suppose v — ¢ has local (strict) minimum in
Q(v)) at (zo,tp). Since v > 0, in fact the minimum is strict in the local
neighborhood of (zg,%p) in IR".(Note that this argument does not apply
for the corresponding claim with subsolutions.) Without loss of generality
we may assume that |¢| = 1. Hence along a subsequence n — oo, v,, — ¢ has
a local minimum at (yy, s,,) with (yn, sn) — (zo,t0) as n — oo.

If (xo,tp) € Q(v), then (y,, s,) € Q(v,) for large n. By definition of v,

(an¢t - A¢)(yna sn) >0,

and therefore —Ag(xq,t9) > 0.

If (z0,t0) € I'(v) with |D¢|(zo,t0) # 0, then either there is a sequence
(Yn, $n) € T'(vn) or (yn, Sn) € Q(vy,) converging to (xg,ty). In either case, it
follows that

max(aney — Ad, ¢y — g(i—jnwﬁ)(ym 5n) > 0,

and thus in the limit one obtains the desired inequality at (z¢,%p) and
the claim is proved. O
Therefore v is a supersolution of (P),, in B;(0) x [—1,0] with

v> P, (v —2Z,t—1p) in B1(0) x [-1,0],

where T € ;2" with |9 — Z| < €;. This contradicts Corollary 3.9 if ¢; is
sufficiently small.
|
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