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Abstract: We introduce a notion of viscosity solutions for a nonlinear degenerate diffusion

equation with a drift potential. We show that our notion of solutions coincide with the weak

solutions defined via integration by parts. As an application of the viscosity solutions theory,

we show that the free boundary uniformly converges to the equilibrium as t grows. In the case

of a convex potential, an exponential rate of free boundary convergence is obtained.

1 Introduction

Consider a C2 function Φ(x) : Rn → R, and consider a nonnegative, continuous function
ρ0(x) : Rn → R which has compact support Ω0. In this paper we study the porous medium
equation with a drift

ρt = 4(ρm) +∇ · (ρ∇Φ), (1.1)

for m > 1, with initial data ρ0(x). Note that, at least formally (and proven in [4] for the
weak solutions), the solution of (1.1) preserves its L1 norm.

It will be convenient to change from the density variable to the pressure variable

u =
m

m− 1
ρm−1, u0 =

m

m− 1
ρm−1

0 . (1.2)

so that the equation becomes

(PME–D) ut = (m− 1)u4u+ |∇u|2 +∇u · ∇Φ + (m− 1)u4Φ

(for more on the density to pressure transform see e.g., the discussions in [5]). We consider
continuous and nonnegative solutions in the space–time domain Q = Rd × (0, T ) for some
T > 0, with prescribed initial conditions u(x, 0) = u0(x) ∈ C(Rn).
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Note that, formally, the free boundary ∂{u > 0} moves with the outward normal velocity

V =
ut
|Du|

= (Du+DΦ) · Du
|Du|

= |Du|+DΦ · Du
|Du|

,

where the first equality is due to the fact that u = 0 on Γ(u) .

The weak solution theory for (PME–D) has been developed in [4] and [10]. Further, L1 and
uniform convergence to equilibrium have also been shown in [4] and [8] (see Theorem 3.1
and Theorem 3.2); in the latter work, an exponential rate of convergence is also obtained.
In fact, in these works a more general form of the equation is actually considered, i.e.,
ρt = 4(ϕ(ρ)) + ∇ · (ρ∇V ) with suitable assumptions on ϕ. It is the case that almost all
of our results would also go through for a general equation of this form, but for ease of
exposition we will restrict attention to (PME–D).

When Φ ≡ 0, (PME–D) is the widely-studied Porous Medium Equation (PME): We refer
to the book [17] for the references. Moreover when V = |x|2, (PME–D) is obtained as a
re-scaled version of the (PME) with new variables

θ(η, τ) := t−αu(x, t), η = xt−β, τ = ln t.

where u solves (PME). This suggests that the local behavior of (PME–D) is similar to that
of (PME), with perturbations due to the inhomogeneity of Φ. We will illustrate this fact in
the construction of various barriers in section 2 and 3.

We introduce a notion of viscosity solution for the free boundary problem associated with
this equation, which we will show to be equivalent to the usual notion of weak solutions
– see [9] for the general theory of viscosity solutions. In this regard we closely follow the
framework and arguments set out in [6] (see also [13] and [5]), where the viscosity concept
is introduced and studied for the Porous Medium Equation. We point out especially that
[5] extends the result of [6] to the case where the diffusion term is multiplied by more
general nonlinearities; our focus, however, is on the added drift term, which introduces
spatial inhomogeneities. The key utility of the viscosity concept here is that we will be able
to describe the pointwise behavior of the free boundary evolution by maximum principle
arguments with local barriers. As an application, we are able to extend the results of [4]
and [8] to a stronger notion of free boundary convergence.

Main Theorem. There exists a viscosity solution of u (PME–D) with
∫

(m−1
m u0)1/m−1dx =∫

ρ0(x)dx = m0. Further:

(a) u is unique and coincide with weak solutions studied in [4] and [8].

(b) If |DΦ| > 0 except at x = x0 where Φ achieves its minimum, then from [4] there
exists a unique C0 > 0 depending only on m0 such that u uniformly converges to
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u∞ := (C0 − Φ(x))+. Then we have

sup
y∈∂{u(·,t)>0}

d(y,Γ(u∞))→ 0 as t→∞.

(c) For a strictly convex Φ with k0 < ∆Φ, there exists K,α > 0 depending on u0, k0, the
C2-norm of Φ and n such that

sup
y∈∂{u(·,t)>0}

d(y,Γ(u∞)) ≤ Ke−αt.

Remark. 1. We point out that the free boundary convergence may not hold if |DΦ| vanishes
at some points, even though the uniform convergence of the solution still holds.

2. In the case of Φ(x) = |x|2 (that is for the renormalized (PME)) corresponding results
were proved in [7] using techniques from [8]. In general dimensions, in [15] it was shown
that the interface becomes convex in finite time. It is unknown whether such results hold for
general convex potentials: we shall investigate this in an upcoming work.

2 Viscosity Solution

In this section we introduce the appropriate notion of viscosity solution for (PME–D) and
show that it is equivalent to the usual notion of weak solution. Our definition descends from
those in [6] and [13]. For more details we also refer the reader to the definitions, discussions
and results in [5].

2.1 Definition and Basic Properties

Let Q := Rn× (0,∞). For a nonnegative function u(x, t) in Q, we denote the positive phase

Ω(u) = {u > 0}, Ωt(u) := {x : u(x, t) > 0}

and the free boundary
Γ(u) = ∂Ω(u), Γt(u) := ∂Ωt(u).

As in [6], to describe the free boundary behavior using comparison arguments we need an
appropriate class of test functions to deal with the degeneracy of (PME–D).

Let Σ be a smooth, cylinder–like domain in Rn × [0,∞), i.e.,

Σ =
⋃

t1≤t≤t2

Σ(t)× {t}, where Σ(t) is a smooth domain in Rn. (2.1)
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Definition 2.1. A nonnegative function u ∈ C2,1({u > 0} ∩Σ) is a classical free boundary
subsolution in Σ if u satisfies (PME–D) with ≤ replacing = in the classical sense in {u >
0} ∩ Σ, |Du| > 0 on Γ(u) ∩ Σ with the outward normal velocity

V ≤ β|∇u|+∇Φ · ∇u
|∇u|

on Γ(u)

or equivalently,
ut ≤ β|∇u|2 +∇Φ · ∇u on Γ(u).

We define a classical free boundary supersolution by replacing ≤ with ≥. Finally, u is a
classical free boundary solution if it is both a sub and supersolution.

Before proceeding further it is convenient to introduce some auxiliary definitions.

Definition 2.2. Let ϕ be a continuous, nonnegative function. Now if ψ is another such
function, then we say that ϕ touches ψ from above at (x0, t0) in Σ if ϕ − ψ has a local
minimum zero at (x0, t0) in Σ ∩ {t ≤ t0}. We have a similar definition for ϕ touching ψ
from below.

Definition 2.3 (Strictly Separated Data). For two nonnegative functions u, v : Rn → R,
we write u0 ≺ v0 if the following holds: supp(u0) is compact and supp(u0) ⊂ Int(supp(v0))
and inside supp(u0), u0(x) < v0(x).

We note that e.g., due to the maximum principle, a classical free boundary subsolution
that lies below a classical free–boundary supersolution at time t1 ≥ 0 cannot cross the
supersolution from below at a later time t2 > t1. This observation leads to a notion of
viscosity solution which takes into account the free boundary:

Definition 2.4. Let u be a continuous, nonnegative function in Q.

◦ u is a viscosity subsolution of (PME–D) if, for any given smooth domain Σ given in
(2.1), for every ϕ ∈ C2,1(Σ) that touches u from above at the point (x0, t0), we have

ϕt ≤ αϕ4ϕ+ β|∇ϕ|2 +∇ · (ϕ∇Φ) (2.2)

◦ u is a viscosity supersolution of (PME–D) if, for any given smooth domain Σ given in
(2.1),
(i) for every ϕ ∈ C2,1(Σ) that touches u from below at the point (x0, t0) ∈ Ω(u) ∩ Σ,
we have

ϕt ≥ αϕ4ϕ+ β|∇ϕ|2 +∇ · (ϕ∇Φ) (2.3)

(ii) for every classical free–boundary subsolution ϕ in Σ, the following is true: If
ϕ ≺ u on the parabolic boundary of Σ, then ϕ ≤ u in Σ. That is, every classical

4



free–boundary subsolution that lies below u at a time t1 ≥ 0 cannot cross u at a later
time t2 > t1.

◦ u is a viscosity solution of (PME–D) with initial data u0 if u is both a super– and
subsolution and u uniformly converges to u0 as t→ 0.

Remark 2.5. In general one can define viscosity sub– and supersolutions respectively as
upper– and lower semicontinuous functions. Such a definition turns out to be useful when
one cannot verify continuity of solutions obtained via various limits. This problem does
not arise in our investigation here thanks to [4], and our definition assumes continuity of
solutions.

It is fairly straightforward to verify that a classical free boundary sub– (super)solution is
also a viscosity sub– (super)solution.

Lemma 2.6. If w is a classical free boundary sub– (super) solution to (PME–D), then w
is also a viscosity sub– (super) solution.

Proof. We will be brief: The subsolution case presents no difficulty since if contact with
some ϕ ∈ C2,1(Σ) occurs in Ω(w) then we use the fact that w is classical there, whereas
no contact can occur on the free boundary unless |∇w| = 0, in which case the differential
inequality is satisfied since then ϕ = |∇ϕ| = 0 and ϕt ≤ 0.

If w is a classical free boundary supersolution, then (i) in Definition 2.4 follows as before.
To see (ii), let us note that if ϕ is a classical free boundary subsolution which crosses
w, then since the free boundary is C2, Hopf’s Lemma implies that at the touching point
|∇ϕ| < |∇w| (see e.g., [16]). On the other hand, since ϕ started below w, at the touching
point we must have vn(ϕ) ≥ vn(w), which leads to a contradiction since it is also the case
that we have ∇w

|∇w| = ∇ϕ
|∇ϕ| .

Next we have the following stability result.

Lemma 2.7. Let uε be a smooth solution of (PME–D) with initial data u0 + ε and let u be
its uniform limit. Then u is a viscosity solution of (PME–D) with initial data u0.

Proof. Let Σ be as given in (2.1) and let ϕ ∈ C2,1(Σ).

1. Let us first show that u is a subsolution. First suppose that ϕ touches u from above
at the point (x0, t0). We may assume that u − ϕ has a strict maximum at (x0, t0) in
Ω(u) ∩ Σ ∩ {t ≤ t0} by replacing ϕ by

ϕ̃(x, t) := ϕ(x, t) + σ((x− x0)4 − (t− t0)2), σ > 0
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if necessary. By uniform convergence there exists a sequence (xε, tε) converging to (x0, t0)
such that uε − ϕ has a local maximum at (xε, tε). Now if we we let

ϕ̃(x, t) := ϕ(x, t)− ϕ(xε, tε) + uε(xε, tε)

Then uε− ϕ̃ has a local maximum at (xε, tε) with (uε− ϕ̃)(xε, tε) = 0. We can now conclude
by taking the limit of the viscosity subsolution property of uε.

2. Next we show that u is a supersolution. Let ϕ be a classical free–boundary subsolution
such that ϕ(x, t1) ≺ u(x, t1). Since the uε’s are strictly ordered, u < uε and hence ϕ(x, t1) ≺
u(x, t1) < uε(x, t1). Now suppose ϕ touches uε at some point (x2, t2), then ϕ(x2, t2) > 0
since uε is positive, so by continuity, there is a parabolic neighborhood of (x2, t2) in which
both functions are classical and positive. By the Strong Maximum Principle, the touching
cannot have occurred at (x2, t2), a contradiction. We conclude that ϕ < uε so that in the
limit ϕ ≤ uε.

An immediate consequence of above lemma is that weak solutions are viscosity solutions
(see Corollary 2.11). We shall introduce the precise notion of weak solutions in the next
subsection, and summarize some results from [4].

2.2 Weak Solutions

To be consistent with the setup in both [4] and [8], let us return to the density variable and
consider the solution of (1.1) in a bounded domain Ω with Neumann boundary condition:

(N)


ρt = 4ρm +∇ · (ρ∇Φ) in Ω×R+,

∂
∂ν ρ

m + ρ∂Φ
∂ν = 0 on ∂Ω×R+,

ρ(x, 0) = ρ0(x) in Ω.

We will see shortly that we need not worry about the fact that we are on a bounded domain,
but for now we will let Q = Ω×R+ and Qt = Ω× (0, t]. Following [4],

Definition 2.8. We say ρ : [0,∞)→ L1(Ω) is a weak solution of (N) if

(i) ρ ∈ C([0, t];L1(Ω)) ∩ L∞(Qt) for all t ∈ (0,∞);
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(ii) for all test functions ϕ ∈ C2,1(Q) such that ϕ ≥ 0 in Q and ∂ϕ/∂ν = 0 on ∂Ω ×R+,
we have ∫

Ω
ρ(t)ϕ(t) =

∫
Ω
ρ(0)ϕ(0) +

∫ ∫
Qt

(ρϕt + ρm4ϕ− ρ∇Φ · ∇ϕ)

We also define a weak subsolution (respectively supersolution) by (i) and (ii) with equality
replaced by ≤ (respectively ≥).

From [4] we have existence, regularity, uniqueness and comparison principle for weak solu-
tions:

Theorem 2.9 (From [4]). Under the assumption that Φ is C2 in Ω̄

(a) The problem (N) has a unique solution;

(b) The solution is uniformly bounded in Q and is continuous in any set Ω× [0, T ].

(c) Suppose ρ(t) is a subsolution and ρ(t) is a supersolution, then if ρ
0
≤ ρ0 in Ω, then

ρ(t) ≤ ρ(t) in Ω for t ≥ 0.

The existence of solutions is obtained as the uniform limit of solutions to uniformly problems
(equicontinuity is obtained from [10]). For our purposes, a very simple approximation
basically suffices and we summarize the relevant result in the following:

Lemma 2.10 (From [4]). Let uε be a solution of (N) with initial data uε0 = u0 + ε, then
uε is equicontinuous and there exists a subsequence which uniformly converge to u which is
the unique weak solution to (N) with initial data u0.

While a priori our viscosity solution is defined in all of Rd, since (formally at least) solutions
of (PME–D) should have finite speed of propagation, the boundary conditions should be
inconsequential if we take Ω sufficiently large. (Later we will also establish finite propagation
for viscosity solutions – see Corollary 2.16.) Control on the speed of expansion of the
support can be done via comparison with any (weak) supersolution. In particular, when Φ
is monotone (that is, when |DΦ| > 0 except at one point where Φ achieves its minimum),
we can use the stationary profiles of the form Ψ(x) = (C −Φ)+ with sufficiently large C as
a supersolution (see Theorem 3.1).

Combining Lemma 2.7 with Lemma 2.10 and the uniqueness statement in Theorem 2.9, we
obtain:

Corollary 2.11. Any weak solution is also a viscosity solution.

We will eventually establish uniqueness of viscosity solutions via maximum–principle type
arguments, which culminates in the identification of the two notions of solution.

7



2.3 Construction of test functions

In this subsection we collect some test functions, i.e., (classical free boundary) sub– (super)
solutions, to (PME–D) which will be useful for comparison purposes. In the first couple
of lemmas (Lemmas 2.14 and 2.18), the idea is to control the Φ dependence via Taylor
expansion in a small neighborhood of a point, so that we can appropriately perturb the test
functions for (PME) constructed in [5] and [6] for our purposes.

The starting point is to observe that if we consider (PME–D) in some small cylinder Qα :=
Bα(x0)× [t0 − α, t0 + α] and define v1(x, t) = α−1u(α(x− x0), α(t− t0)), then v1 satisfies,
in the unit cylinder B1(0)× [−1, 1], an equation of the type

(v1)t = (m− 1)v14v1 + |Dv1|2 +~b ·Dv1 +O(α)Dv1 + α(m− 1)v1∆Φ,

where ~b = ∇Φ(x0, t0). The size of the last two terms depends on the C2-norm of Φ in Qα.

Next we take
v(x, t) = v1(x−~bt, t) (2.4)

Then v satisfies
vt = (m− 1)v4v + |Dv|2 +O(α)Dv +O(α)v. (2.5)

Next proposition illustrates the necessary perturbation one needs to perform on solutions
of (PME) to arrive at (2.5).

Proposition 2.12. Let u(x, t) be a viscosity subsolution of (PME) in B1+α(0) × [−1, 1].
Then for 0 < α < 1,

u1(x, t) := sup
y∈Bα−αt(x)

e−αtu(y, t)

is a subsolution of

(PME–sub) (u1)t = (m− 1)u14u1 + |Du1|2 − α|Du1| − αu1

in B1(0) × [−1, 1]. Similarly, if u(x, t) is a viscosity supersolution of (PME) in B1(0) ×
[−1, 1], then for 0 < α < 1,

u2(x, t) := inf
y∈Bα−αt(x)

eαtu(y, t)

is a supersolution of

(PME–super) (u2)t = (m− 1)u2∆u2 + |Du2|2 + α|Du2|+ αu2

in B1(0)× [−1, 1].
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Proof. We only show the supersolution part. Let u2 be as given above. Suppose then that
ϕ is classical and touches u2 from below at some point (x0, t0). We first note that there
exists (x1, t1) ∈ Bα−αt(x0, t0) such that u2(x0, t0) = eαt1u(x1, t1).

Next for any unit vector b̂, let us consider

ϕ̃(x, t) = e−α(t−(t1−t0))ϕ(x− (x1 − x0)− αb̂(t− t0), t− (t1 − t0)).

Then we note that 1) ϕ̃(x1, t1) = ϕ(x0, t0) and so (u−ϕ̃)(x1, t1) = 0 and 2) by the definition
of u2 as an infimum and by continuity of ϕ, in a small parabolic neighborhood of (x0, t0),
it is the case that u− ϕ̃ ≥ u2 − ϕ̃ ≥ 0; we therefore conclude that ϕ̃ touches u from below
at (x1, t1) and so we have,

[ϕ4ϕ+ |∇ϕ|2](x0, t0) = eαt1 [ϕ̃4ϕ̃+ |∇ϕ̃|2](x1, t1)

≤ eαt1ϕ̃t(x1, t1)

= [ϕt − αϕ− αb̂ · ∇ϕ](x0, t0).

Now the desired inequality is achieved by setting b̂ = ∇ϕ
|∇ϕ|(x0, t0).

Indeed the above calculation shows that if u is a viscosity supersolution of (PME), then u2

should be a viscosity supersolution of (PME–super): If a classical free boundary subsolution
ϕ of (PME–super) crosses u2 from below, then the corresponding ϕ̃ is a subsolution of
(PME) and crosses u, yielding a contradiction (there is no distinction between the interior
and boundary cases).

Lemma 2.13. [CV] Consider the function

H(x, t;A,ω) = A(|x|+ ωt−B)+

with R/2 < B < R. Then u is a classical free boundary supersolution of (PME) in the
domain {|x| ≤ R} × [ω−1(R−B), 0] if

ω

A
> 1 + 2(m− 1)(d− 1)

R−B
R

.

Proposition 2.12 and Lemma 2.13 yields the following:

Corollary 2.14. Let us fix x0 ∈ Rn and let H be given as in Lemma 2.13. Then the inf
convolution of H, given as

H(x, t;α) = eαt inf
y∈Bα−αt(x)

H(y, t)

is a classical (free boundary) supersolution of (2.5). Consequently, there exists C = C0

which only depends on the C2-norm of Φ in B1(x0) such that

H̃(x, t) := αH(α−1(x− x0 +~b(t− t0)), α−1(t− t0);Cα)

is a classical (free boundary) supersolution of (PME–D) in Qα := Bα(x0)× [t0 − α, t0].
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Proof. By Lemma 2.6 and Proposition 2.12, H is a viscosity supersolution of (PME–super),
so it is sufficient to show that it has the required regularity. For this, note that for simplicity
we have only taken the supremum over space and the reader can readily check that in this
case the infimum for H(x, t;α) is achieved at the point y which minimizes |y| subject to the
constraint that |y − x| = α− αt, and thus an explicit expression is possible for H.

Remark 2.15. In fact due to the explicit form of H it follows that the free boundary velocity
of H̃ is given by

V = ω +~b · DH
|DH|

+ Cα.

By comparison with these supersolutions, we immediately obtain

Corollary 2.16. Any viscosity solution has finite propagation speed and is bounded in a
big ball in any local time interval. Further, if Φ is convex, then via comparison with the
stationary solutions of the form given in Theorem 3.1, the above holds globally in time.

For the analysis in section 3, we will make use of the Barenblatt profiles (see e.g., [CV] and
[V]).

Lemma 2.17. [Barenblatt] Let B(x, t; τ, C) be the family of functions

B(x, t; τ, C) =
(C(t+ τ)2λ −K|x|2)+

(t+ τ)

with constants λ,K,C, τ > 0 such that

λ = ((m− 1)d+ 2)−1, 2K = λ.

Then B(x, t; τ, C) is a classical (free boundary) solution of (PME).

Using Proposition 2.12 (see also the proof of Corollary 2.14) once again, we obtain the
following:

Lemma 2.18. Let us fix x0 ∈ Rn and let B be a Barenblatt function. Then there exists C
which only depends on the C2-norm of Φ in B1(x0) such that

ψ(x, t) = αe−Cα(t−t0) sup
y∈BCα−C(t−t0)(x)

B(α−1(y − x0 + α~b(t− t0)), α−1(t− t0))

is a classical (free boundary) subsolution of (PME–D) in Qα := Bα(x0)× [t0 − α, t0].

Remark 2.19. The reason for taking the hyperbolic scaling is because we will have occasion
to require rather fine control on the boundary velocity (see Lemma 2.23) and this is the
scaling which preserves the velocity – in contrast to the parabolic scaling, which dramatically
reduces the effect of the drift Φ in the bulk (the positivity set), but unfortunately at the cost
of severely disrupting the boundary velocity.
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To establish the Comparison Principle, we will need the following weak analogue of (ii)
in the definition of viscosity supersolutions for subsolutions, the proof of which utilizes an
approximation lemma from [5].

Lemma 2.20. Let u be a viscosity subsolution of (PME–D), and let ϕ be a classical free
boundary supersolution from Lemma 2.14 which lies above u at some time t0. Then ϕ
cannot cross u from above at a later time t > t0.

Proof. Let ϕ and u be as described in the statement, and suppose that ϕ touches u from
above at some point (x0, t0). From Lemma 2.14, we have that ϕ is given as the inf convolu-
tion of some spherical traveling waves from Lemma 2.13, which we denote ψ. Further, let
us suppose the infimum is achieve at (x1, t1) so that 1) ϕ(x0, t0) = ψ(x1, t1) and 2) by the
definition of ϕ as an inf convolution, the translated function

ψ̃(x, t) = ψ(x+ (x1 − x0), t+ (t1 − t0))

also touches u from above at the point (x0, t0). From Lemma 4.4 in [5], we know that
ψ can be given as the monotone limit of classical positive supersolutions, and hence the
same is true of ψ̃: I.e., there exsits ψε ↘ ψ̃, with ψε > 0 classical. But since u cannot
touch ψε by the Strong Maximum Principle, we obtain in the limit that u ≤ ψ̃, which is a
contradiction.

2.4 Comparison Principle and Identification with Weak Solution

Here the outline of the proof closely follows that of the corresponding result for (PME)
(Theorem 2.1 in [6]): We will give an abridged version of the proof, pointing out main steps
and modifications for our problem.

Theorem 2.21. [Comparison Principle] If u is a viscosity subsolution and v is a viscosity
supersolution in the sense of Definition 2.4 with strictly separated initial data, u0 ≺ v0, then
u(x, t) ≤ v(x, t) for every (x, t) ∈ Q.

Proof. 1) [Sup and Inf Functions] For given δ > 0 and r > 0 small with r � δ, we introduce
the regularized functions

W (x, t) = inf
Br−δt(x,t)

v(y, τ)

and
Z(x, t) = sup

Br(x,t)

u(y, τ)

First note that W and Z preserve properties of v and u:

◦ W is a supersolution and Z is a subsolution;
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◦ Z(·, r) ≺W (·, r) for r sufficiently small.

For a proof of the first item see [5], Lemma 7.1 or the proof of Lemma 2.14). The proof of
the second item relies on the fact that

◦ The support of a viscosity subsolutions and supersolutions evolve in a continuous way.
Here continuity is understood as continuity in the Hausdorff distance (in time) of the
positivity set.

The proof of this can be done by comparison with the supersolutions (respectively subso-
lutions) constructed in Lemma 2.14 (respectively Lemma 2.18). We omit the details since
with replacement of barriers it is no different from the proof of Proposition 6.2 in [5].

Thus if we can prove that W stays above Z for all choices of r and δ(sufficiently small), then
we may take δ → 0 and then r → 0 to recover the conclusion for u and v. First let us note
that due to the Strong Maximum Principle, W cannot touch Z from above, and therefore
we are reduced to the analysis of a first contact point of W and Z at some P0 = (A, t0).

The key usefulness of Z and W lies in the fact that they enjoy interior/exterior ball prop-
erties:

◦ The positivity set of Z has the interior ball property with radius r at every point of its
boundary and at the points of the boundary of the support of u where these balls are
centered we have an exterior ball;

◦ The positivity set of W has the exterior ball property with radius less than r−δt (since
in this case we really have an exterior ellipsoid in space–time) and at the points of the
boundary of the support of v where these balls are centered we have an interior ball.

For detailed proofs of these statements we again refer the reader to [5].

2) [The Contact Point] The first contact point P0 = (x0, t0) is located at the free boundary of
both functions. Therefore by the definitions of Z and W , there is a point P1 = (x1, t1) on the
free boundary of u located at distance r from P0 and there is another point P2 = (x2, t2)
on the free boundary of v at distance r0 = r − δt0 from P0. Let us also denote by HZ

(respectively HW ) the tangent hyperplane to the free boundary of Z (respectively W ) at
P0. (see Figure 1)

Lemma 2.22. Neither HZ nor HW is horizontal. In particular, one can denote the space-
time normal vector to HZ , in the direction of P1 − P0, as (en,m) ∈ Rn × R where |en| = 1
and −∞ < m <∞.

12



Figure 1: The geometry at the contact point

Proof. It is enough to show that t1 > t0−r (i.e., Γ(Z) cannot propagate with infinite speed)
and t2 < t0 + r (i.e., Γ(W ) cannot propagate with negative infinite speed). The desired
conclusion then follows by the ordering of Z and W .

We first show that t2 < t0 + r. Otherwise HW is horizontal and after translation we have
P0 = (0,−r) and P2 = (0, 0). Moreover Ω(v) has an interior ball at P2 with horizontal
tangency with radius 0 < r′ < r. Now in any parabolic cylinder

Cη = {(x, t) : |x| ≤ η,−η2 ≤ t ≤ 0}

with bottom edge contained in the interior ball (which can be achieved by taking η ≤ r′),
we have by continuity that v ≥M > 0 on that edge. (see Figure 2)

On the lateral boundary of Cη it may be the case that v = 0, so we will have to compare
with a subsolution with support strictly contained in −η < |x| < η at time t = −η2 and
still contains 0 in its support at time t = 0, which rigorously implies that v cannot contract
sufficiently fast for (0, 0) to be a free boundary point. The necessary subsolution can be
constructed as the one in Lemma 2.18, adjusted for the parabolic scaling.

The case t1 > t0 − r follows mutatis mutantis from the arguments in [6] and [5] (see [6],
Lemma 4.2 or [5], Lemma 8.2) with the barrier in Lemma 2.14 replacing the barriers used
therein.

3) [Non–tangential Estimate] The next lemma states that the normal velocity V of Γ(Z) at

13



Figure 2: Infinite, negative speed

(x0, t0) satisfies, in the viscosity sense,

V(x0,t0) ≤ (|DZ|+DΦ(x0) · DZ
|DZ|

)(x0, t0).

Lemma 2.23. Let xn := x · en, and consider a non-tangential cone K := {x : xn ≥
k|x| with k > 0}. Then we have

lim
x∈K, x→0

Z(x0 + x, t0)
xn

≥ m−DΦ(x0) · en.

Proof. The argument is parallel to the proof of Lemma 4.3. in [6]; the only difference for
us is taking into account the change of reference frame introduced by the drift given by Φ.
This is ensured by the local nature of the construction of our barrier in Lemma 2.14, which
replaces the corresponding barriers used in [6].

4) [Conclusion] Due to Lemma 2.23, we may place a small subsolution ϕ from Lemma 2.18
below Z at P0 with speed close to m (again see Remark 2.19, which assures us that our
subsolutions are constructed so that this is possible) such that it crosses anything with
speed m′ < m. Since ϕ is also below W and hence v (after a small translation), v must
expand by at least m′, but then Γ(W ) has speed m′+ δ > m at P0, yielding a contradiction
to the fact that Z touched W from below at P0.

We can now establish uniqueness of viscosity solutions:
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Theorem 2.24. The problem (PME–D) admits a unique solution in the class of viscosity
solutions as defined in Definition 2.4 for continuous and nonnegative initial data. This
solution coincides with the continuous weak solution.

Proof. The existence of a continuous weak solution can be provided as the uniform limit of
classical solutions with initial data u0,ε = u0 + ε, and by Lemma 2.7, such a limit, which
we will denote by U , is also a continuous viscosity solution. Further, by comparison with
u0,ε and taking a limit, it is clear that such a limit U is also a maximal viscosity solution.

Uniqueness would follow if we can show that any other viscosity solution u also cannot be
smaller than U . For this purpose, consider un(x, t) with initial data un(x, 0) := (u0 − 1

n)+.
Now consider positive uεnn such that |uεnn − un| < 1

n in Rn × [0, T ]. It follows from Lemma
2.10 that uεnn uniformly converges to U2(x, t), which is then a continuous weak solution of
(PME–D). Therefore, by uniqueness of weak solutions, U2 is equal to U . On the other hand
by Theorem 2.21 un ≺ u and thus U = U2 ≤ u. Hence we conclude.

Using Theorem 2.21 and Theorem 2.24, we can in fact prove a stronger comparison theorem
for viscosity solutions (see [5], Theorem 10.2):

Theorem 2.25. Let u1 and u2 be respectively a viscosity subsolution and a viscosity super-
solution of (PME–D) in some parabolic cylinder Q with initial data u0,1 and u0,2 such that
u0,1(x) ≤ u0,2. Then u1(x, t) ≤ u2(x, t) for all (x, t) ∈ Q.

This comparison theorem in particular allows us to restrict attention to only the (classical
free boundary) supersolutions used to establish Theorem 2.21, and consequently, we can now
strength Lemma 2.20 to enable comparison with any classical free boundary supersolution:

Lemma 2.26. Let u be a viscosity subsolution of (PME–D), and let ϕ be a classical free
boundary supersolution which lies above u at some time t0. Then ϕ cannot cross u from
above at a later time t > t0.

Proof. Let us first replace ϕ by a viscosity solution of (PME–D) with the same initial data
which we denote v. Since ϕ is a viscosity supersolution by Lemma 2.6, we have that ϕ ≥ v
by Theorem 2.25. Finally, u ≤ v by Theorem 2.21.

3 Convergence to Equilibrium

We begin by discussing the set of equilibrium solutions to (PME–D) and reviewing some
known results. Since by Theorem 2.24, the unique viscosity solution coincides with the
continuous weak solution, we may carry out our discussion in the context of weak solutions.
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The set of equilibrium solutions and uniform convergence of solutions to the equilibrium
are established in [4]. Below we state the corresponding result in the pressure variable.

Theorem 3.1. [Theorem 5.1, [4]] The set of equilibrium solutions for (PME–D) is given
by

S = {W ∈ C(Rd) : W ≥ 0 in Ω, and for every x ∈ Ω, either W (x) = 0
or W + Φ = C for some constant C in a neighborhood of x}

Further, given u0, there exists a unique W (x) ∈ S such that u(x, t) uniformly converges to
W as t→∞.

It is fairly immediate that S is contained in the set of equilibrium solutions; the converse
containment and the convergence statement are established based on a L1 contraction result
in [4].

Under the assumption that Φ is convex. Note that the density function ρ(·, t) given in
(1.2) preserves its L1 norm over time. Therefore there is a unique equilibrium solution
u∞ = (C0 − Φ)+ to which u(·, t) uniformly converges as t→∞, i.e., the one with∫

(u0)1/(m−1)(x)dx =
∫

(u∞)1/m−1(x)dx.

An explicit exponential rate of convergence is then derived in [8] by the entropy method:

Theorem 3.2. Suppose that Φ is strictly convex, i.e., there exists a constant k0 > 0 such
that xT · [(Hess Φ(x))x] ≥ k0|x|2 for x ∈ Rn. Let u∞ = (C0 − Φ)+ be the equilibrium
solution to which our solution u(x, t) converges as t → ∞. Then there exist constants
K,α > 0 depending on m, k0 and the L1 norm of u0 such that∫

|u(x, t)− u∞(x)|dx ≤ Ke−αt.

Remark 3.3. In fact the estimate in [8] is given in terms of the pressure variable ρ. Due to
Corollary 2.16, for a convex (and in fact monotone) potential Φ u is uniformly bounded with
its support contained in a compact set for all times. This allows us to derive the estimate
for u from that of ρ for 1 < m <∞. Further, due to the equivalence of all Lp norms in our
setting, we will take some liberties in passing between u and ρ in our estimates.

3.1 Convex potential

As an application of the viscosity solutions theory, we will convert the L1 estimate in
Theorem 3.2 into a pointwise estimate (see Lemmas 3.4 and 3.5); such an estimate in turn
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will yield a quantitative estimate on the rate of the free boundary convergence (see Theorem
3.6).

Rescaling u by cu(x, ct) if necessary, let us assume for the rest of this subsection that u ≤ 1
and max ∆Φ ≤ 1 on our domain of consideration, which is bounded (see Corollary 2.16)
and we assume to be {|x| ≤ R} for some R > 0.

Lemma 3.4. [Uniformly Bounded From Below] There exists a sufficiently small constant
k > 0, depending only on m and n, such that the following is true:

Suppose, for (x0, t0) ∈ Rn × (0,∞) and for 0 < a < 1,

a−n
∫
Ba(x0)

u(·, t0)dx ≥ ak.

Then u(·, t0 + a) ≥ ak′ in Ba(x0).

Proof. 1. Let us define
ũ(x, t) := u(a(x− x0), a2(t− t0)).

Then ũ is a supersolution of

ψt = (m− 1)ψ∆ψ + |Dψ|2 − Ca(|Dψ|+ ψ), (3.1)

where C is a constant depending on the C2–norm of Φ (near x0). Below we will construct
a subsolution of (3.1) to compare with ũ in order to establish the lemma.

2. Let us consider w(x, t) which satisfies

wt = (m̃− 1)w∆w + |Dw|2 − Ca (3.2)

in the weak sense (see e.g., [11]), with initial condition w(x, 0) := (1−a)ũ(x, 0)χ|x|≤1, where
m̃− 1 = (1 + a)(m− 1).

Then, say for t ≥ 1/2, w(·, t) is Hölder continuous due to [11]. Since u is bounded by 1,
so is w(x, 0), by the Maximum Principle. Further, note that any solution of the (PME) is
now automatically a supersolution of (3.2) and therefore, using an appropriate Barenblatt
profile as a supersolution of (3.2), one can check that

Ω1/2(w) ⊂ {|x| ≤ 2}. (3.3)

Moreover, integration by parts yields that∫
w(x, t)dx =

∫
w(x, 0)dx− at,
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and in particular we deduce that e.g.,
∫
w(x, 1/2)dx ≥ ak/2. Let x∗ be the point where

w(·, 1/2) assumes its maximum, then from (3.3) we see that w(x∗, 1/2) ≥ Cna
k for some

dimensional constant Cn. Due to the Hölder regularity of w,

w(·, 1/2) ≥ (Cn/2)ak in Bak2 (x∗).

where k2 = γ−1k where 0 < γ < 1 depends only on m and n.

Let U(x, t) := B(x − x∗, t; τ, C), where B(x, t; τ, C) = (C(t+τ)2λ−K|x|2)+
(t+τ) is the Barenblatt

profile given in Lemma 2.17, with m̃ as the permeability constant and the conditions

Cτ2λ−1 = ak/4 (height), and
√
C/Kτλ ≤ ak2/2 (the size of initial support).

Note that, in its positive set, U is concave. Therefore Ũ(x, t) := (U(x, t)− Cat)+ satisfies,
in its positive set,

Ũt = Ut − Ca

= (m̃− 1)(U − Cat)∆U + (m̃− 1)at∆U + |DU |2 − Ca

≤ (m̃− 1)Ũ∆Ũ + |DŨ |2 − Ca.

Therefore Ũ(x, t) is a subsolution of (3.2) for positive t. Comparison with Ũ(x, t) and
w(x, t+ 1

2) yields that
w(·, a−1) ≥ ak′ in B1(0),

if k′ is chosen sufficiently large.

3. Observe that v := (1 + a)w satisfies

vt = ≤ (m− 1)v∆v + 1
(1+a) |Dv|

2 − Ca(1 + a)

≤ (m− 1)v∆v + |Dv|2 − Ca(|Dv|2 + 1)

≤ (m− 1)v∆v + |Dv|2 − Ca(|Dv|+ 1)

Hence v is a subsolution of (3.1), and further v(x, 0) = (1− a2)ũ(x, 0) ≤ ũ(x, 0). Therefore
by the comparison principle (for weak solutions, see [11]) we have v ≤ ũ. From previous
discussions we obtain that ũ(·, a−1) ≥ ak′ in B1(0), and thus

u(·, a) ≥ ak′ in Ba(0),

as desired.
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Next lemma establishes a uniform upper bound on u in terms of its L1 norm. Here we would
address our equation in pressure form, i.e., (1.1), to invoke regularity theory for divergence
form operators studied in [14].

Lemma 3.5. Let K be a compact subset of Rn with u = 0 outside of K for all time. Then
there exists a constant C > 0 depending on m > 1, sup ρ and max ∆Φ := M1 such that the
following holds:

If ∫
BC(0)

ρ(·, t)dx ≤ c0 for t1 ≤ t ≤ t2 := t1 + log(1/c0).

then ρ(·, t2) ≤ Cc1/n+1
0 in B1(0).

Proof. 1. We proceed by induction. Suppose that u ≤ a = c
1/n+1
0 2k in BC(0)× [0, t2] where

k > 0 is chosen such that
4Cc1/n+1

0 ≤ a ≤ 1, (3.4)

with C to be determined later. Our goal is to show that

u ≤ a/2 in BC(1−a/2)(0)× [1, t2].

Then the desired result is obtained by iteration, beginning with a = 1 and continuing until
a reaches the lower bound in (3.4). Note that the total number of iteration for this process,
therefore the total time we need for the desired result, is of order log(1/c0).

2. Let ρ1(x, t) solve our equation (1.1) with initial data ρ0 + a/10 in Σ := BC(0) × [0,∞)
with boundary data corresponding to u+a/10. Observe that f(t) = 11

10ae
t is a supersolution

of (1.1), since max ∆Φ = 1 due to our normalization. Thus by the comparison principle
ρ1 ranges from a/10 to 4a for 0 ≤ t ≤ 1. Therefore, treating the diffusion coefficients as a
priori given, ρ̃(x, t) := a−1ρ1(ax, t) solves a quasi-linear equation of divergence form with
diffusion coefficient of unit size:

(P ) ρ̃t = ∇ · (b(x, t)∇ρ̃+ ρ̃∇Φ), where b(x, t) = ρ̃ ∈ [1/10, 4].

In particular, we can decompose ρ̃ := ρ̃1 + ρ̃2 where ρ̃1 solves (P) (which is linear) with
initial data ρ0/a+1/10 and boundary data zero, and ρ̃2 solves (P) with initial data zero and
boundary data 4. We claim that both of them stays smaller than 1/4 in BC/a−1/4(0)× [0, 1].

For ρ̃1 we have∫
B1/a(0)

ρ̃1(·, t)dx ≤
∫
B1/a(0)

ρ̃1(·, 0)dx = c0a
−(n+1) for all t > 0,

Due to (3.4) and the Hölder regularity of ρ̃1 (see [14]) we have

ρ̃1(·, 1) ≤ Cc0a−(n+1) ≤ 1/4 in B1/a−1(0).
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if we choose C > 0 sufficiently large in (3.4) corresponding to the Hölder regularity for
solutions of (P) for t ≥ 1.

As for ρ̃2, arguments with test functions in the weak formulation of (P) (not very different
from the case of the heat equation) in combination with the Hölder regularity estimates
yield that, for sufficiently large C > 0,

ρ̃2(x, t) ≤ 4te−3/t in BC/a−C/4(0)

with a dimensional constant C. In particular ρ̃2(x, 1) ≤ 1/4 in BC/a−C/4(0).

Hence we obtain ρ̃(x, 1) ≤ 1/2 in BC/a−C/4(0). Scaling back to our original density function
ρ(x, t), we conclude that

ρ(·, 1) ≤ a/2 in BC(1−a/4)(0).

Due to our assumption on ρ0, one can go through the above argument starting at any time
t = τ ∈ [0, t2] instead of t = 0, obtaining that ρ(·, t) ≤ a/2 in BC(1−a/2)(0)× [1, t2].

5. Repeating the above argument with a2 := a/2 starting at t = 2, we get

ρ ≤ a2/2 = a/4 in BC(1−a/4−a/8)(0)× [3, t2].

If we iterate up to of order log c0 times, then a reaches the lower bound in (3.4), and we
arrive at the desired result.

Next we use the uniform bounds obtained above to investigate the rate of free boundary
convergence.

Theorem 3.6. Let Φ and u∞ be as in Theorem 3.2. Then for T > 0 sufficiently large, Γ(u)
is in the Ke−α2t-neighborhood of Γ(u∞). Here 1/K,α2 > 0 is a sufficiently small constant
depending on m, supu0, k0, M1, A := minΦ(x)>C0

|DΦ| and n.

Proof. 0. We first show that Γt(u) is close to the equilibrium profile from the inside, i.e.,

{x : d(x,Rn − Ω(u∞)) ≥ Ce−Ct} ⊂ Ωt(u). (3.5)

After t = T ≥ C ln a, L1-average of u in Ba(x0) is bigger than Cak when the center x0 is in
Ωa := {Φ ≤ C0 − ak}. Hence Lemma 3.4 yields that u(x0, T ) ≥ C2a

k′ with T = ak/2. As a
result we conclude that Γ(u) lies outside of Ωa after t = C ln a.

It remains to show that Γt(u) is also close to the equilibrium profile from the outside. This
will be more involved.
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1. Let Da := {Φ ≥ C0 + a} and let b(t) := e−αt. Due to Theorem 3.2, we have∫
Db(T )

ρ(x, t)dx ≤ Ke−αT for t ≥ T.

Take any point x0 such that BCb(T )(x0) ⊂ Db(T ) if T is chosen large. Hence one can apply
Lemma 3.5 to

ũ(x, t) := u(b(T )(x− x0), b(T )2t+ T )

with t1 = 0 and c0 = Ke−αT to obtain

ũ(·, αT + β) ≤ K ′e−αT/(n+1) in B1(0).

Since x0 was arbitrarily chosen, repeatedly using Lemma 3.5 and scaling back we get

u(x, t) ≤ Ke−αT/(n+1) in D2b(T ) × [T1,∞), T0 := (1 + Cα)T. (3.6)

2. We claim that estimate (3.6) yields that

Γt(u) ⊂ Rn −Da(t) with a(t) := Ke−α2t for t ≥ T0 (3.7)

where α2 = 1/K3 and K >
2C0

A
, where C0 is given in Corollary 2.14. We prove the claim

by induction. Due to Corollary 2.16 the claim is true up to a sufficiently large time t = T0

if K is sufficiently large (in particular α2 < α). Next let

T ∗ := sup{t0 : (3.7) holds for 0 ≤ t ≤ t0} ≥ T0.

We want to show that T ∗ = ∞. Let us choose x0 ∈ ∂Da, where a = Ke−α2T ∗ . Since Φ
is convex with |DΦ| > 0 in Da, there is an exterior ball B1(x1) outside of Da such that
x0 ∈ ∂B1(x1). Due to (3.6) and due to the fact T ∗ ≥ T0, we have for ã := 1/K,

u ≤ ã/K in Σ := [B1+ã(x1) ∩B4ã(x0)]× [T ∗,∞).

Let us first make a heuristic argument. Suppose that x0 ∈ ΓT ∗(u) (by the definition of T ∗

such an x0 exists). Then at x0 we have DΦ(x0, T
∗) pointing in the direction of x1 − x0,

which is the inward normal of Γ(u) at (x0, T
∗), which is parallel to − Du

|Du|(x0, T
∗). Hence

formally the normal velocity of Γ(u) at (x0, T
∗) should be

V = (|Du| − |DΦ|)(x0, T
∗) ≤ O(ã)−A < −A/2 (3.8)

if K > 2/A. This way one can conclude that the furthest point of Γt(u) from D0 shrinks
away with the normal velocity less than −A/2 at t = T ∗. This would yield a contradiction
to the definition of T ∗ since

−(Ke−α2t)′ = Kα2a ≤ A/2.
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Figure 3: The construction of barriers

(see Figure 3)

The rest of the proof consists of a barrier argument to establish an appropriate version of
(3.8).

3. Consider H from Lemma 2.13 with ω = 8/K, A = 4/K, B = 3/4, R = 1 and define
H̃ as in Lemma 2.14 with α = ã and (x0, t0) = (x0, T

∗). Then H̃ is bigger than u on the
parabolic boundary of Σ∩{T ∗ ≤ t ≤ T ∗+ ε} for sufficiently small ε > 0. We then compare
H̃ with u in Σ∩ [T ∗, T ∗+ ε]. Observe that the spatial outward normal of Γ(H̃) at (x0, T

∗),
which is −DH̃/|DH̃|, points toward x1 − x0. Hence the outward normal velocity of Γ(H̃)
satisfies (see Remark 2.15)

V = ω − |DΦ|(x0, T
∗) + Cã ≤ −A/2.

if K > 2C/A. Since u ≤ H̃ in Σ ∩ [T ∗, T ∗ + ε), we conclude that

u(·, T ∗ + ε) = 0 in BAε/2(x0).

Since x0 ∈ ∂Da is chosen arbitrarily, we conclude that u(·, T ∗ + ε) vanishes in Aε/2-
neighborhood of Da, which includes Da(T+ε) if K > 2/A for any ε > 0.

This contradicts the definition of T ∗.
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3.2 Monotone potential

Suppose Φ is monotone, i.e.,

|DΦ| > 0 except at x = x0 where Φ obtains its minimum.

We are not able to yield quantitative estimates on the rate of free boundary convergence,
due to the lack of available L1–estimates. However we state the theorem below to illustrate
that if we neglect the rate of convergence, then considerably simpler arguments already
yield the free boundary convergence of u as t→∞,

Theorem 3.7. Suppose Φ(x) satisfies |DΦ|(x) > 0 except at x = 0, where Φ achieves
its minimum. Let u∞(x) := (C0 − Φ)+(x) where C0 is chosen such that ‖u∞‖L1/m−1 =
‖u0‖L1/m−1. Then Γt(u) uniformly converges to Γ(u∞) in the Hausdorff distance, as t→∞.

Proof. 0. We first verify that for any compact subset K of Ω(u∞) there exists T > 0 such
that Γt(u) lies outside of K for t ≥ T . This is immediate from the uniform convergence of
u to u∞. It remains to establish the statement from the outside of Ω(u∞).

1.Since Φ is monotone the sets {x : Φ(x) ≤ r} starts from a point (when r = min Φ) and
extends all the way to Rn. In particular, there is only one equilibrium solution u∞ to which
u converges as t → ∞. Choose T > 0. Recall that, by the comparison principle, the set
Ω̄(u)∩ [0, T ] is compact in Rn× [0,∞). Therefore there exists a largest C(T ) > 0 such that
{x : Φ(x) < C} contains ΩT (u). We will show that Ω(u), after a while, eventually shrinks
away so that after T1 > T we have

ΩT1(u) ⊂ {x : Φ(x, t) < C2} with C2 ≤ C. (3.9)

Let us choose x0 ∈ ∂{Φ(x) < C}. Due to the regularity of Φ there is a ball Br(x1) ⊂
{Φ(x) ≥ C} such that x0 ∈ ∂Br(x1), where r > 0 is independent of the choice of x0. Due
to [4], u(x, t) uniformly converges to zero in {x : Φ(x) ≥ C} with C > C0. Therefore there
exists T0 such that

u ≤ r/2 min
Σ
|DΦ|(x) in Σ× [T0,∞), where Σ := {x : C0 < C2 < Φ(x) < C + 1}.

(It is noted that the condition is to ensure that, formally, |Du| < |DΦ| at (x0, T0)). We now
argue as in step 3 of the proof of Theorem 3.6 to construct a radially symmetric barrier
supported in (B2r(x1) − Br(t)(x1)) × [T0, T0 + 1] with r′(t) < 0, boundary data zero on
∂Br(t)(x1) and 2r on ∂B2r(x1), to demonstrate that at Γ(u) stays out of Br/2(x0) after
t = T0 + 1. Since x1 is an arbitrary point of ∂{Φ(x) < C}, we arrive at (3.9).

23



Acknowledgments

We thank Jose Carrillo for suggesting this problem and some preliminary discussions.

References

[1] D. G. Aronson and Ph. Benilan, Régularité des solutions de l’équation de millieux
dans Rn, C. R. Acad. Sci. Paris 288 (1979), pp.103–105.

[2] D. G. Aronson and L.A. Caffarelli, The Initial Trace of a Solution of the Porous
Medium Equation, Trans. AMS, 280, No. 1 (1983), pp. 351-366

[3] M. Bertsch, M. E. Gurtin, D. Hilhorst, and L. A. Peletier. On Interacting Populations
that Disperse to Avoid Crowding: The Effect of a Sedentary Colony. J. Math. Biology,
19 (1984), pp. 1–12.

[4] M. Bertsch and D. Hilhorst. A Density Dependent Diffusion Equation in Population
Dynamics: Stabilization to Equilibrium. SIAM J. Math. Anal. 17, no. 4 (1986), 863–
883.
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