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Abstract

In this paper we consider a free boundary problem which describes
contact angle dynamics on inhomogeneous surface. We obtain an es-
timate on convergence rate of the free boundaries to the homogeniza-
tion limit in periodic media. The method presented here also applies to
more general class of free boundary problems with oscillating boundary
velocities.

1 Introduction

Consider a bounded domain Ω in IRn containing K = B1(0). Let Ω0 = Ω−K
and Γ0 = ∂Ω, and let u0 satisfy

−∆u0 = 0 in Ω0, u0 = 1 on K, and u0 = 0 on Γ0.

(See Figure 1)
Let us define ei ∈ IRn, i = 1, ..., n such that

e1 = (1, 0, ..0), e2 = (0, 1, 0, .., 0), ..., and en = (0, .., 0, 1),

and consider a Lipschitz continuous function

g : IRn → [m,M ], g(x + ei) = g(x) for i = 1, ..., n

with Lipschitz constant L. For simplicity in the analysis we will work with
m = 1, M = 2 and L = 10, but the method in this paper applies to general
m,M > 0 and L.
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Figure 1: Initial setting of the problem

In this paper we consider the behavior, as ǫ → 0, of the viscosity solutions
uǫ ≥ 0 of the following problem

(P )ǫ







−∆uǫ = 0 in {uǫ > 0},

uǫ
t = |Duǫ|(|Duǫ| − g(x/ǫ)) on ∂{uǫ > 0}

in Q = (IRn − K) × (0,∞) with initial data u0 and smooth boundary data
f(x, t) > 0 on ∂K × [0,∞). Here Du denotes the spatial derivative of u.

We refer to Γt(u
ǫ) := ∂{uǫ(·, t) > 0} − ∂K as the free boundary of uǫ

and to Ωt(u
ǫ) := {uǫ(·, t) > 0} as the positive phase of uǫ at time t. Note

that if uǫ is smooth up to the free boundary, then the free boundary moves
with outward normal velocity V =

uǫ
t

|Duǫ| , and therefore the second equation

in (P )ǫ implies that

V = |Duǫ| − g(
x

ǫ
) = Duǫ · (−ν) − g(

x

ǫ
)

where ν = ν(x,t) denotes the outward normal vector at x ∈ Γt(u) with respect
to Ωt(u).

A weak notion of solution is necessary since, due to the collision, neck-
pinching or shrinking of free boundary parts, smooth solutions cease to exist
in finite time even with smooth initial data and smooth velocity (see Remark
2). For the definition of viscosity solutions we refer to section 2.

(P )ǫ is a simplified model to describe contact line dynamics of liquid
droplets on an irregular surface (see [G].) Here u(x, t) denotes the height
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of the droplet. Heterogeneities on the surface, represented by g(x
ǫ ) in (P )ǫ,

result in contact lines with a fine scale structure that may lead to pinning
of the interface and hysteresis of the overall fluid shape.

For literature on homogenization of nonlinear PDEs and free boundary
problems, we refer to [CSW] and [K3].

Below we recall the main result obtained in [K3].

Theorem 1.1. (Theorem 0.1, [K3]) Let uǫ be a viscosity solution of (P )ǫ
with initial data u0 and boundary data f . Then there exists a continuous
function

r(q) = IRn − {0} → [−2,∞), r increases in |q|
such that the following holds:

(a) If uǫk
locally uniformly converges to u as ǫk → 0, then u is a viscosity

solution of

(P )







−∆u = 0 in {u > 0},

ut = |Du|r(Du) on ∂{u > 0}

in Q with initial data u0 and boundary data f on ∂K.

(b) If u is the unique viscosity solution of (P ) in Q with initial data u0 and
boundary data f on ∂K, then the whole sequence {uǫ} locally uniformly
converges to u.

Uniqueness of u holds if the initial data satisfies one of the following (see
Theorem 2.8 and the remark below ):

(A) Ω = Ω0 ∪ K is star-shaped with respect to a small ball Br(0);

(B) Γ0 is locally Lipschitz and |Du0| > 2 on Γ0;

(C) Γ0 is locally Lipschitz and |Du0| < 1 on Γ0.

(In case of (A), Ωt(u) stays star-shaped with respect to Br(0) for t > 0. In
case of (B) u strictly increases in time, and in case of (C) u strictly decreases
in time for all times.)

The goal of this paper is to refine the analysis performed in [K3] to
provide a quantitative estimate on the distance between Ωt(u

ǫ) and Ωt(u)
at each time. The main result (Corollary 4.2) can be summarized as below:
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(1.1) For sufficiently small ǫ > 0, Ωt(u
ǫ) stays in O(ǫ1/70)-neighborhood of

Ωt(u) for 0 ≤ t ≤ ǫ−1/300 if one of conditions (A)-(C) holds for the
initial data.

Such estimate is, to the best of author’s knowledge, new for homogeniza-
tion of free boundary problems. Below we sketch an outline of the paper.
In section 2 we recall the notion of viscosity solutions and their properties.
In particular comparison principle (Theorem 2.6) is used frequently in the
paper. In section 3 we improve existing results obtained in [K3] to derive
Proposition 3.5 and Corollary 3.6. In section 4 we state the main result
(Theorem 4.1) and prove it with the help of Corollary 3.6 and Proposi-
tion 4.3. In section 5 we prove Proposition 4.3, and thus finishing the proof
of Theorem 4.1. We finish with section 6, the corresponding result are stated
for expanding free boundary problem (P2)ǫ: for this problem (1.1) holds for
general initial data.

Remark 1. The analysis presented here and in [K2]-[K3] can be generalized
to free boundary problems of the type







(ut) − ∆u = 0 in {u > 0},

V = G(Du, x
ǫ ) on ∂{u > 0}

where G(p, y) : IRn × IRn → IR is (i) Lipschitz continuous, (ii) strictly
increasing with respect to |p| and (iii) satisfies

b|p| ∂G

∂|p| − aG ≥ |∂G

∂y
|

for some constants a and b > 0. For example, in (P )ǫ we have

G(p, y) = |p| − g(y) and a = b =
Lip g

inf g
.

In (P2)ǫ given in section 6 we have

G(p, y) = g(y)|p| and a = 0, b =
Lip g

inf g
.

2 Notations and viscosity solutions

We begin by recalling existence and uniqueness of viscosity solutions ob-
tained in [K3] for a general class of free boundary problem, including both
(P ) and (P )ǫ.
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Let us consider a continuous function

F (q, y) : (IRn − {0}) × IRn → [−2,∞)

such that

(a) F increases in |q|, |q| − 2 ≤ F (q, y, ν) ≤ |q| − 1.

(b) F (q, y + ek) = F (q, y) for k = 1, ..., n

(c) |F (q, y1) − F (q, y2)| ≤ L|y1 − y2| for y1, y2 ∈ IRn.

Let Σ ⊂ IRn × [0,∞) be a space-time domain with smooth boundary,
and onsider the free boundary problem

(P̃ )ǫ







−∆uǫ = 0 in {uǫ > 0},

uǫ
t − |Duǫ|F (Duǫ, x

ǫ ) = 0 on ∂{uǫ > 0}
in Σ with appropriate boundary data.

Let Σ(s) := Σ ∩ {t = s}. For a nonnegative real valued function u(x, t)
defined for (x, t) ∈ Σ, define

Ω(u) = {(x, t) ∈ Σ : u(x, t) > 0}, Ωt(u) = {x : (x, t) ∈ Σ : u(x, t) > 0};

Γ(u) = ∂Ω(u) − ∂Σ, Γt(u) = ∂Ωt(u) − ∂Σ(t).

Below we define viscosity solutions of (P̃ )ǫ.

Definition 2.1. A nonnegative, upper semi-continuous function u defined
in Σ is a viscosity subsolution of (P̃ )ǫ if

(a) for each a < T < b the set Ω(u) ∩ {t ≤ T} ∩ Σ is bounded; and

(b) for every φ ∈ C2,1(Σ) such that u− φ has a local maximum in Ω(u) ∩
{t ≤ t0} ∩ Σ at (x0, t0),

(i) if u(x0, t0) > 0, then − ∆φ(x0, t0) ≤ 0.

(ii) if (x0, t0) ∈ Γ(u), |Dφ|(x0, t0) 6= 0 and
−∆φ(x0, t0) > 0,

then
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(φt − |Dφ|F (Dφ,
x0

ǫ
))(x0, t0) ≤ 0.

Note that, because u is only upper semi-continuous, there may be points
of Γ(u) at which u is positive.

Definition 2.2. A nonnegative, lower semi-continuous function v defined
in Σ is a viscosity supersolution of (P̃ )ǫ if for every φ ∈ C2,1(Σ) such that
v − φ has a local minimum in Σ ∩ {t ≤ t0} at (x0, t0), then

(i) if v(x0, t0) > 0, then − ∆φ(x0, t0) ≥ 0.

(ii) if (x0, t0) ∈ Γ(v), |Dφ|(x0, t0) 6= 0 and
−∆φ(x0, t0) < 0,

then

(φt − |Dφ|F (Dφ,
x0

ǫ
))(x0, t0) ≥ 0.

Let K,Ω0,Γ0, f, u0 and Q be as given in the introduction.

Definition 2.3. u is a viscosity subsolution of (P̃ )ǫ in Q with initial data
u0 and fixed boundary data f > 0 if

(a) u is a viscosity subsolution of (P̃ )ǫ in Q,

(b) u is upper semicontinuous in Q̄, u = u0 at t = 0 and u ≤ f on ∂K.

(c) Ω(u) ∩ {t = 0} = Ω(u0).

Definition 2.4. u is a viscosity supersolution of (P̃ )ǫ in Q with initial
data u0 and boundary data f if u is a viscosity supersolution in Q, lower
semicontinuous in Q̄ with u = u0 at t = 0 and u ≥ f on ∂K.

For a nonnegative real valued function u(x, t) in Σ ⊂ IRn × [0,∞) we
define

u∗(x, t) := lim sup
(ξ,s)∈Σ→(x,t)

u(ξ, s).

and
u∗(x, t) := lim inf

(ξ,s)∈Σ→(x,t)
u(ξ, s).

Note that u∗ is upper semicontinuous and u∗ is lower semicontinuous.
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Definition 2.5. u is a viscosity solution of (P̃ )ǫ (in Q with initial data u0

and boundary data f) if u is a viscosity supersolution and u∗ is a viscosity
subsolution of (P̃ )ǫ (in Q with initial data u0 and boundary data f .)

We say that a pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated
(denoted by u0 ≺ v0) in D ⊂ IRn if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii)
u0(x) < v0(x) in supp(u0) ∩ D̄.

Theorem 2.6. (Comparison principle, Theorem 1.7, [K3]) Let h1, h2 be
respectively viscosity sub- and supersolutions of (P̃ )ǫ in Σ. If h1 ≺ h2 on
the parabolic boundary of Σ, then h1(·, t) ≺ h2(·, t) in Σ.

Theorem 2.7. (Theorem 1.8, [K3]) Suppose one of the conditions (A)-(C)
holds for u0. Then there exists a unique solution of (P ) in Q with initial
data u0 and boundary data 1.

Lemma 2.8. (Lemma 1.9, [K3])

(a) Let u be a supersolution of (P ) or (P )ǫ in Q with fixed boundary data 1.
Then Γ(u) does not “jump inward” in time: for any point x0 ∈ Γt0(u)
with t0 > 0 there exists a sequence of points (xn, tn) ∈ {u = 0} such
that tn < t0 and (xn, tn) → (x0, t0).

(b) Let u is a subsolution of (P ) or (P )ǫ in Q with fixed boundary data 1.
Then Γ(u) does not “jump outward” in time: for any point x0 ∈ Γt0(u)
with t0 > 0 there exists a sequence of points (xn, tn) ∈ Ω̄t(u) such that
tn < t0 and (xn, tn) → (x0, t0).

Proof. 1. To prove (a), suppose that x0 ∈ Γt0(u). If (a) fails for x0, then
Br(x0) ⊂ Ωt(u) for t0 − r ≤ t < t0 for some r > 0. On the other hand
there exists y0 ∈ Br/2(x0) such that u(y0, t0) > 2c0 > 0 for some c0 > 0.
Since u is lower semicontinuous, u ≥ c0 > 0 in Bδ(y0) × [t0 − δ, t0] for some
0 < δ < r/2. Consider a barrier function φ(x, t) in

Σ := (IRn − Bδ(y0)) × [t0 − δ/2, t0]

such that






















−∆φ(·, t) = 0 in Br−2(t−t0+δ/2)(x0) − Bδ(x0),

φ(·, t) = 0 on ∂Br−2(t−t0+δ/2)(x0),

φ(·, t) = c0 on ∂Bδ(x0).
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Note that

φt

|Dφ| = V = −2 < |Dφ| − 2 ≤ r(Dφ) on Γ(φ).

Hence φ is a subsolution of both (P ) and (P )ǫ in Σ. It follows from The-
orem 2.6 that φ ≤ u in Σ, but this means that u(·, t0) > 0 in Br/2(x0),
contradicting the fact that x0 ∈ Γt0(u).

2. The argument to prove (b) proceeds similarly. Suppose x0 ∈ Γt0(u)
and Br(x0) ∩ Ω̄t(u) = ∅ for t0 − δ ≤ t < t0. We may choose r < δ. Let
r(t) := t0−t

2r2 + r/2. Consider a barrier function φ(x, t) in

Σ := B2r(x0) × [t0 − r4, t0]

such that






















−∆φ(·, t) = 0 in B2r(x0) − Br(t)(x0),

φ(·, t) = 0 on ∂Br(t)(x0),

φ(·, t) = 1 on ∂B2r(x0).

Note that in Σ we have |Dφ| ≤ C/r with a dimensional constant C. Hence
if r is chosen sufficiently small, then

φt

|Dφ| = V = −r′(t) =
1

2r2
≥ |Dφ| ≥ r(Dφ) on Γ(φ),

and thus φ is a supersolution of both (P ) and (P )ǫ in Σ. Again Theo-
rem 2.6 yields that u ≤ φ in Σ, but this means that u(·, t0) ≡ 0 in Br/2(x0),
contradicting the fact that x0 ∈ Γt0(u).

Remark 2. Note that above lemma does not guarantee the continuity of the
free boundary in time. In fact free boundary parts may instantly disappear,
for example in n = 1 if we superpose two radially symmetric functions (see
the introduction in [K1] ). For n > 1 discontinuity of the free boundary
also happens when the free boundary contains a slit in the middle of its
positive phase: in this case the slit instantly disappears and at this time the
discontinuity of the solution occurs as well. The discontinuity of the free
boundary also happens if a portion of the positive phase gets disconnected
by a neck pinching and instantly disappears. Hence the definition of the
viscosity solution with semi-continuous sub and supersolutions are indeed
necessary for (P̃ )ǫ.
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For (x, t) ∈ IRn × IR, let us denote the space and space-time balls by

Br(x) := {y ∈ IRn : |y − x| ≤ r}

and
B(n+1)

r (x, t) := {(y, s) ∈ IRn × IR : |(y, s) − (x, t)| ≤ r}.
The following lemma will be used frequently in our analysis. The proof

is parallel to that of Lemma 3.5 in [GK].

Lemma 2.9. (a) If u is a viscosity subsolution of (P̃ )ǫ in Q, then the sup-
convolution

ũ(x, t) := sup
y∈Bmǫ−δt(x)

u(y, t)

is a viscosity subsolution of (P̃ )ǫ in

Qc,δ := ∪{0≤t≤mǫ/δ}((IR
n − (1 + mǫ − δt)K) × t)

with F (Du, x
ǫ ) replaced by F (Du, x

ǫ ) + Lm − δ.

(b) If u is a supersolution of (P̃ )ǫ in Q then the inf-convolution

ũ(x, t) = inf
y∈Bmǫ−δt(x)

u(y, t)

is a viscosity supersolution of (P̃ )ǫ in Qc,δ with F (Du, x
ǫ ) replaced by F (Du, x

ǫ )−
Lm + δ.

(a)-(b) also holds with Bmǫ−δt(x) replaced with space-time balls B
(n+1)
mǫ−δt(x).

3 Properties of free boundaries in obstacle prob-

lems

3.1 Introduction of the obstacle problem and statement of

previous results

First we recall some of the results obtained in [K3]. These results address so-
lutions of ”obstacle problems” which we introduce below. For given nonzero
vector q ∈ IRn and r ∈ [−2,∞), we denote ν = q

|q| and define

Pq,r(x, t) := |q|(rt − x · ν)+, lq,r(t) = {x ∈ IRn : rt = x · ν}

Note that the free boundary of Pq,r, Γt(Pq,r) := lq,r(t), propagates with
normal velocity r with its outward normal direction ν.
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Figure 2: The spatial domain for test functions

Next we construct a domain with which the obstacle problems will be
defined. In e1 − en plane, consider a vector µ = en +

√
3e1. Let l to be the

line which is parallel to µ and passes through 3e1. Rotate l with respect to
en-axis and define D to be the region bounded by the rotated image and
{x : −1 ≤ x · en ≤ r} (see Figure 2). For any nonzero vector q ∈ IRn, let us
define D(q) := Ψ(D), where Ψ is a rotation in IRn which maps en to q/|q|.
Let us define

O =
⋃

0≤t≤1

((1 + 3t)D(q) × {t}).

Let us define the space-time domain Q1 := D(q) × [0, 1] for r ≥ 0, and
Q1 := O for r < 0.

Next we define the maximal subsolution below Pq,r and minimal super-
solution above Pq,r in Q1:

ūǫ;q,r := (sup{u : a subsolution of (P )ǫ in Q1 with u ≤ Pq,r})∗

uǫ;q,r := (inf{v : a supersolution of (P )ǫ in Q1 with u ≥ Pq,r})∗.

Remark 3. Note that then ūǫ;q,r(·, t) and uǫ;q,r(·, t) are both harmonic in
their positive phases. The main reason for defining a rather complicated
domain Q1 is to guarantee that the free boundary of uǫ;q,r and ūǫ;q,r does not
detach too fast from Pq,r as it gets away from the lateral boundary of Q1

(see Lemma 2.4 in [K3]).

Below we recall properties of ūǫ;q,r and uǫ;q,r which we need later in the
paper.

Lemma 3.1. (Lemma 2.5, [K3])
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(a) ūǫ;q,r is a subsolution of (P )ǫ in Q1 with ūǫ;q,r ≤ Pq,r in Q̄1 and
ūǫ;q,r = Pq,r on the parabolic boundary of Q1. Moreover (ūǫ;q,r)∗ is
a solution of (P )ǫ away from Γ(ūǫ;q,r) ∩ lq,r.

(b) uǫ;q,r is a supersolution of (P )ǫ in Q1 with uǫ;q,r ≥ Pq,r in Q̄1 and
uǫ;q,r = Pq,r on the parabolic boundary of Q1. Moreover uǫ;q,r is a
solution of (P )ǫ away from Γ(uǫ;q,r) ∩ lq,r.

(c) ūǫ;q,r decreases in time if r < 0. uǫ;q,r increases in time if r > 0.

Lemma 3.2. (Corollary 2.6, [K3]) For any given nonzero vector q ∈ IRn,
ν = q

|q| and for any a ∈ [0, 1], there is η ∈ IRn such that aν + η ∈ ǫZn,

η · ν ≥ 1
2 |η| and ǫ ≤ |η| < 3ǫ. For this η the following holds:

(a) For r > 0

ūǫ;q,r(x + aν + η, t + τ) ≤ ūǫ;q,r(x, t) (3.1)

for 0 ≤ τ ≤ r−1(a + η · ν) and

uǫ;q,r(x + aν + η, t + τ) ≥ uǫ;q,r(x, t) in Q1. (3.2)

for τ ≥ r−1(a + η · ν).
(b) For r < 0 the above inequalities are true with ν, η and r replaced by

−ν,−η and |r|, and the range of τ for ūǫ;q,r and uǫ;q,r interchanged.

For a nonzero vector q ∈ IRn we set ν = q
|q| and define the contact sets

Aǫ;q,r := (Γ(uǫ;q,r) ∩ lq,r) ∩ (B1/2(
1

2
rν) × [1/2, 1])

and

Āǫ;q,r := (Γ(ūǫ;q,r) ∩ lq,r) ∩ (B1/2(
1

2
rν)× [1/2, 1]).

As the speed r of the obstacle Pq,r increases, the contact set from above
(Aǫ;q,r) increases, and the contact set from below (Āǫ;q,r) decreases. The free
boundary speed r(q) in the homogenization limit turns out to be the unique
speed with which both contact sets are (in the limiting sense) nonempty:

Lemma 3.3. (Lemma 3.12 , [K3])

r(q) = inf{r : Aǫ;q,r 6= ∅ for ǫ ≤ ǫ0 with some ǫ0 > 0}

= sup{r : Āǫ;q,r 6= ∅ for ǫ ≤ ǫ0 with some ǫ0 > 0}.
Moreover Aǫ;q,r(q) and Āǫ;q,r(q) are both nonempty for any 0 < ǫ < 1/10.

11



Remark 4. From scaling arguments it follows that if Aǫ0;q,r (Āǫ0;q,r) is
nonempty, then so is Aǫ;q,r(Āǫ;q,r) for ǫ ≥ ǫ0.

3.2 Improved estimates

In [K3] we showed that Γ(ūǫ;q,r) and Γ(uǫ;q,r), with r = r(q) given in (2.1),
are at most Mǫ-away from lq,r(t) where M depends on several parameters,
including the size of q. (See Proposition 2.8 and 2.9, [K3]). This flatness
constant M is then used in the main proposition (Proposition 3.8 and 3.11
in [K3]) to measure the free boundary detachment from the obstacle, when
the speed of the obstacle is not the correct one for the homogenization limit.
For the purpose of our investigation, it is necessary to refine the estimate on
M such that the size of M it only depends on one perturbation parameter
γ . This is what we will carry out below:

Lemma 3.4. Let q ∈ Rn −{0} and r = r(q). Then there exist dimensional
constants 0 < γ(n) < 1 < C(n) such that for 0 < γ < γ(n) the following is
true:

(a) If r1 = (1 − γ)r and q1 = (1 − γ)q, then

d(Γ(uǫ;q1,r1
), lq1,r1) <

C(n)ǫ

γ
.

(b) If r2 = (1 + γ)r and q2 = (1 + γ)q, then

d(Γ(ūǫ;q2,r2), lq2,r2) <
C(n)ǫ

γ
.

Proof. The general idea for the proof of, for example (a), is the follow-
ing: since Aǫ;q,r is nonempty and the free boundary velocity of Γ(uǫ;q,r) is
increasing with respect to |Duǫ;q,r|, the size of uǫ;q,r near lq,r should stay
small: otherwise Γ(uǫ;q,r) will completely detach from lq,r. Now suppose
part of Γ(uǫ;q,r) is trying to get away from lq,r. Since u is already small
near lq,r and is harmonic in its positive set, |Duǫ;q,r| is very small near the
far away part of Γ(uǫ;q,r). This and the free boundary motion law forces
Γ(uǫ;q,r) recede, putting it closer to lq,r. This heuristic argument suggests
that Γ(uǫ;q,r) cannot be too far away from lq,r to begin with. Unfortunately
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the rigorous proof of above reasoning is rather complicated, and we will
divide the proof into several steps. Observe that by scaling law

r((1 − γ)q) ≤ (1 − γ)r(q) and r((1 + γ)q) ≥ (1 + γ)r(q),

and thus both Aǫ;q1,r1
and Āǫ;q2,r2 are nonempty for 0 < ǫ < 1/2. Also

observe that it is enough to prove the lemma for r−1ǫ ≤ t ≤ 1.

1. Let ν := q
|q| . We first prove (a) in the case r ≤ 0. We begin by

claiming that

uǫ;q1,r1
(·, t) ≤ Cǫ on D := {x : 0 ≤ x · ν ≥ rt − 2ǫ}. (3.3)

Suppose our claim fails with r < 0. Then uǫ;q1,r1
(x0, t) > Cǫ for some

x0 ∈ D. By lower semicontinuity, we then have uǫ;q1,r1
(·, t) ≥ Cǫ in a small

ball Bδ(x0), δ > 0.
Choose a lattice vector ξ ∈ ǫZn such that |ξ − ξ · ν| ≤ 2ǫ, ξ · ν = −10ǫ.

Due to Lemma 3.2, we have

uǫ;q1,r1
(x + ξ, t) ≥ uǫ;q,r(x, t0) in B1/2(0) × [t0, t0 + 5ǫ].

Hence
uǫ;q1,r1

≥ Cǫ in Bδ(y0) × [t0, t0 + 5ǫ], y0 = x0 + ξ

Next let r(t) := 4(t−t0)+δ/2 , C1 := c(n)C where c(n) is a small dimensional
constant to be determined, and construct a barrier function φ(x, t) solving























−∆φ(·, t) = 0 in B2r(t)(y0) − Br(t)(y0);

φ = C1ǫ in Br(t)(y0) × [t0, t0 + 5ǫ],

φ(·, t) = 0 in IRn − B2r(t)(y0).

If C is sufficiently large such that |Dφ| > 6 on Γ(φ) for t0 ≤ t ≤ t0 + 5ǫ,
then

φt

|Dφ| = r′(t) = 4 ≤ |Dφ| − 2.

Hence φ is a subsolution of (P )ǫ in

Σ :=
⋃

t0≤t≤t0+5ǫ

(IRn − Br(t)(y0)) × t.

2. In the following paragraph we show that

φ ≤ uǫ;q1,r1
in Σ. (3.4)
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Proof of (3.4): By construction φ ≤ uǫ;q1,r1
in Σ∩{t = t0}. Next observe

that, if uǫ;q1,r1
(·, t) is positive in B 3

2
r(t)(y0), by interior Harnack inequality

for harmonic functions applied to uǫ;q,r(·, t) in B 3
2
r(t)(y0) yields that

uǫ;q1,r1
(·, t) ≥ C1ǫ = φ in Br(t)(y0). (3.5)

where C1 = c(n)C with c(n) a dimensional constant.
On the other hand, suppose that (3.5) holds for t0 ≤ t < s for some

t0 ≤ s
leqt0 + 5ǫ. Then we claim that

uǫ;q1,r1
> 0 in

⋃

t0≤t≤s

B2r(t)(y0) × {t}.

To see this, begin by applying Theorem 2.6 to φ and uǫ;q1,r1
in Σ to yield

φ ≤ uǫ;q1,r1
in Σ ∩ {t0 ≤ t < s}. As a consequence B2r(t)(y0) ⊂ Ωt(uǫ;q1,r1

)
for t < s. Now Lemma 2.8 and the continuity of r(t) yields that

B 3
2
r(t)(y0) ⊂ Ωt(uǫ;q1,r1

) for s ≤ t ≤ t + δ0 for some δ0 > 0.

Thus (3.5) holds for t0 ≤ t ≤ s + δ0. This argument states that (3.5) holds
for all times t0 ≤ t ≤ t0 + 5ǫ, and as a consequence φ ≤ ūǫ;q1,r1 in Σ. 2

(3.4) states, in particular,

uǫ;q1,r1
(x, t0 + 5ǫ) > 0 in B20ǫ(y0) ⊃ B8ǫ(x0).

Observe that, by definition of uǫ;q1,r1
,

1

2
uǫ;q1,r1

(2x, 2t) ≤ uǫ/2;q1,r1
(x − η, t + τ) in

1

2
Q1 + (η,−τ) (3.6)

when τ > 0 and η ∈ ǫZn satisfies |η| ≤ 1
2 and η · ν ≥ |r1|τ. In particular it

follows that
Aǫ/2;q1,r1

= ∅,
contradicting the fact that r1 ≥ r(q1). We have shown (3.3).

3. So far we have shown that u is small near lq,r. The next step is to
show that |Du| is small on free boundary parts far away from lq,r. To do
this we need to regularize the free boundary in some sense: this is done via
sup-convolution as follows. Define

v(x, t) := sup
y∈Bγǫ/80(x)

(1 − γ)−1u2ǫ;q1,r1
(y +

γǫ

20
ν, (1 − γ)−1t)

14



We claim that
v(x, t) ≤ 2uǫ;q,r(x/2, t/2) (3.7)

Thanks to Lemma 2.9, v is a subsolution of (P )ǫ away from lq,r with v ≤ Pq,r.
From these facts (3.7) seem plausible. However we need to go around the
technical difficulty arising at lq,r, so a slightly different route is taken.

Let us choose y ∈ Bγǫ/80(0) and let ξ = y − γǫ
20ν. Then

w(x, t) := 2(1 − γ)uǫ;q,r(
(x + ξ)

2
,
(1 − γ)t

2
)

is a supersolution of (P )2ǫ. This is because w is harmonic in its positive set
and w satisfies the free boundary motion law

Vx,t =
wt

|Dw| (x, t) ≥ (1 − γ)(|Duǫ;q,r|( (x+ξ)
2 , (1−γ)t

2 ) − g(x+ξ
ǫ ))

≥ |Dw|(x, t) − (1 − γ)(g( x
2ǫ ) + 5

8γ)

≥ |Dw|(x, t) − g( x
2ǫ).

(Here the second inequality is due to the fact that Lip g ≤ 10 and g ≥ 1.)
Moreover

w(x, t) ≥ 2(1 − γ)Pq,r(
(x + ξ)

2
, (1 − γ)(t)) ≥ Pq1,r1 in Q1.

Since u2ǫ;q1,r1
is the smallest supersolution of (P )2ǫ which stays above Pq1,r1,

it follows that uǫ;q1,r1
≤ w and thus (3.7) is proved.

4. Pick t0 > 0. Let x0 be the furthest point of Γt0(v) from lq1,r1(t0) in
Q1 ∩ {t = t0}. We may assume that

d0 := d(x0, lq,r(t0)) >
C(n)

γ
,

where C(n) is a large dimensional constant, to be determined. Due to the
barrier argument in the proof of Lemma 2.4 in [K3], if γ ≤ (10C(n))−1, then
(x0, t0) is more than 10ǫ away from the lateral boundary of Q1.

Due to (3.7), (3.6) and due to the fact that Aǫ;q,r 6= ∅ for 0 < ǫ < 1/2,
for any ǫ neighborhood of a point in

S = {x : d0 − 20ǫ ≤ d(x, lq,r(t0 − 10ǫ)) ≤ d0}

15



there exists z0 in the zero set of uǫ;q,r(·, t0), and therefore in the zero set of
v(·, t0). Choose z0 such that d(z0, x0) ∈ (4ǫ, 6ǫ).

By definition of v,

uǫ,q1,r1
(·, (1 − γ)−1(t0 − 10ǫ)) = 0 in Bγǫ/80(z̃0), (3.8)

where z̃0 := z0 − γǫ
20ν.

On the other hand, recall that u∗
ǫ;q1,r1

is a subsolution of (P )ǫ, and in
particular a subharmonic function in x-variable, away from lq1,r1(t). More-
over uǫ;q1,r1

(·, t0) vanishes in {x : x ·ν ≥ d0 +r1t0}, and u∗
ǫ;q1,r1

(·, t0) ≤ Cǫ on
lq1,r1(t) by (3.3). Consequently in the domain Q1∩{x : x ·ν ≥ r1t}∩{t = t0}

uǫ;q1,r1
(x, (1 − γ)−1t0) ≤

Cǫ

d0
(d0 − d(x, lq1,r1(t0)))+.

Thanks to Lemma 3.2, in the domain Q1 ∩ {x : x · ν ≥ r1t + 3ǫ} ∩ {t ≤ t0}.

uǫ;q1,r1
(x, (1 − γ)−1t) ≤ Cǫ

d0
(d0 + 3ǫ − d(x, lq1,r1)(t))+.

In particular

uǫ;q1,r1
(·, t) ≤ 24Cγ

C(n)
ǫ in S × [t0 − 2ǫ, t0]. (3.9)

Note that B10ǫ(z̃0) is a subset of S. Now let us consider a barrier φ(x, t)
defined in Σ := B10ǫ(z̃0) × [t1, t0], t1 := (1 − γ)−1(t0 − 10ǫ) such that



























−∆φ(·, t) = 0 in B10ǫ(z̃0 − Br(t)(z̃0), r(t) = γǫ
80 + (t − t1)

φ(·, t) = 24Cγ
C(n) ǫ on ∂B10ǫ(z̃0),

φ(·, t) = 0 on ∂Br(t)(z̃0).

If C(n) is chosen sufficiently large, then φ is a subsolution of (P )ǫ in Σ.
Equations (3.8) and (3.9) would then yield that uǫ;q1,r1

(·, t0) ≡ 0 in B8ǫ(z̃0).
But this is a contradiction to the fact that x0 ∈ Γt(v), since from our choice
of z̃0 it follows that v(·, t0) = 0 in B2ǫ(x0). We have thus shown that (a)
holds for r ≤ 0.

6. Next we prove (a) for r ≥ 0. If 0 ≤ r ≤ 2 then parallel argument as
above applies to yield (a), thus let us consider the case r ≥ 2. Here arguing
as in the proof of (3.3) yields that
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uǫ;q1,r1
(·, t) ≤ Crǫ on {x : 0 ≤ d(x, lq1,r1(t)) ≤ 2ǫ}, (3.10)

where C is the same dimensional constant as in (3.3).
Let x0 be the furthest point in Γ(uǫ;q1,r1

) from lq1,r1(t0), with

d0 = d(x0, lq1,r1(t0)) ≥
ǫ

γ
.

Equipped with (3.10), we can argue as in step 5 to yield

uǫ;q1,r1
(x, t) ≤ Crǫ

d0
(d0 + 3ǫ − d(x, lq1,r1(t))+ in {x : x · ν ≥ r1} × {t ≤ t0}.

We are now ready to yield a contradiction. Our barrier this time is

h(x, t) := Crγ(d0 + 3ǫ − d(x, lq1,r1)(t0 −
10ǫ

r
) + C(r + 2)γ(t − t0 +

10ǫ

r
))+.

h(x, t) is then a planar supersolution of (P )ǫ in

Σ := Q1 ∩ {x : x · ν ≥ r1t} ∩ {t0 −
10ǫ

r
≤ t ≤ t0}.

Hence Theorem 2.6 applied to uǫ;q1,r1
and h yields that uǫ;q1,r1

≤ h in Σ.
If γ ≤ (4C)−1, then the positive set of h does not reach x0 by time t0:

precisely
Ωt0(h) ⊂ {x : d(x, lq1,r1)(t0) < d0 − 2ǫ}.

Hence we reach a contradiction.

7. As for the proof of (b), the case for r ≤ 0 is shown in the proof of
Proposition 2.9 (a) in [K3]: the argument is indeed similar to the proof of (a)
for r ≤ 0, with simplifications due to the fact that the corresponding sub-
convolution v is also a subsolution of (P )ǫ in Q1. For 0 ≤ r ≤ 2 a stronger
version of (b) is Proposition 2.8 (b) in [K3]. Thus it remains to consider the
case r ≥ 2. First observe that, if x0 ∈ Γt(ū2ǫ;q2,r2) with d(x0, lq2,r2(t)) > ǫ
then for a dimensional constant C

ū2ǫ;q2,r2(·, t) < Crǫ in B2ǫ(x0 − 3ǫν). (3.11)

If not a barrier argument as in step 2 using Lemma 3.2 (a) yields that
x0 ∈ Ωt(ū2ǫ;q2,r2), a contradiction.

Pick t0 > 0. Suppose y0 is the furthest point of Γt0(ū2ǫ;q2,r2) from lq,r(t0)
in Q1 with

d0 = d(x0, lq2,r2(t0) ≥
ǫ

γ
.
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As in (3.6) we have

1

2
ū2ǫ;q2,r2(2x, 2t) ≥ ūǫ;q2,r2(x + η, t + τ) in

1

2
Q1 + (η,−τ) (3.12)

when τ > 0 and η ∈ ǫZn satisfies |η| ≤ 1
2 and η · ν ≥ rτ. It then follows from

(3.11) and (3.12) that

ūǫ;q2,r2(·, t0) ≤ Crǫ on B3/4(t0ν) ∩ (lq,r(t0) − (d0 + 3ǫ)ν). (3.13)

(3.13) and the fact that ūǫ;q2,r2(·, t0) is subharmonic yields that

ūǫ;q2,r2(·, t0) ≤ Crγǫ in B2/3(t0ν) ∩ {x : x · ν ≥ r2t0 − 5ǫ}.

Above equation and Lemma 3.2 says that for t ≥ t0

ūǫ;q,r(·, t0) ≤ Crγǫ in B4/7(t0ν) ∩ {x : x · ν ≥ r2t − 3ǫ}. (3.14)

Now a barrier argument similar to that in step.6 would yield that

ūǫ;q,r(·, t0 +
1

r
ǫ) ≡ 0 on lq2,r2(t0 +

1

r2
ǫ),

contradicting the fact that Āǫ;q,r 6= ∅ for 0 < ǫ < 1
2 .

Replacing the flatness constant M in Proposition 2.8 and Proposition

2.9 in [K3] with
C(n)

γ
in Lemma 3.4, Proposition 3.8 and 3.11 in [K3] now

reads as below.

Proposition 3.5. (Proposition 3.8 and 3.11 in [K3]) There exists dimen-
sional constant C1 > 0 such that for any nonzero vector q ∈ IRn and for
r = r(q) 6= 0 the following is true:

Let us fix 0 < γ << 1 and 0 < ǫ < ǫ0 = rγ11

n .

(a) For r1 ≥ (1 − γ)r and q1 ≤ (1 − γ)q,

d(Γt(ūǫ;q1,r1), lq1,r1(t) ∩ B1/4(0)) >
C1ǫ

γ

for t ≥ C1ǫ
|r|γ3 .
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(b) For r2 ≤ (1 + γ)r and q2 ≥ (1 + γ)q,

d(Γt(uǫ;q2,r2
), lq2,r2(t) ∩ B1/4(0)) >

C1ǫ

γ

for t ≥ C1ǫ
|r|γ3 .

Remark 5. Note that by scaling argument it follows that (1− a)r((1 + a)q)
increases in a.

Proposition 3.5 states that if the obstacle speed r1 (r2) is too fast (slow)
compared to the size of q1 (q2), then the maximal subsolution (minimal su-
persolution) of (P )ǫ stays away from the obstacle. We will use the following
variation of Proposition 3.5 in our analysis in section 4 (see Proposition 4.3).

Corollary 3.6. Let 0 < ǫ < c(n) and C1 be the constant given in Proposi-
tion 3.5. Let uǫ solve (P )ǫ in Σ := 2Bǫ1/2(0) × [−αǫ, 0], where

αǫ := min[
ǫ4/5

|r| , ǫ3/5].

(a) If (uǫ)∗ ≤ Pq0,r0 in Σ and if

r0 ≥ (1 − ǫ1/25)r((1 + ǫ1/25)q0) + 2ǫ1/25

then
d(Γ0((u

ǫ)∗), lq0,r0(0) ∩ Bǫ1/2/4(0)) > C1ǫ
24/25.

(b) If uǫ ≥ Pq0,r0 in Σ and if

r0 ≤ (1 + ǫ1/25)r((1 − ǫ1/25)q0) − 2ǫ1/25,

then
d(Γ0(u

ǫ), lq0,r0(0) ∩ Bǫ1/2/4(0)) > C1ǫ
24/25.

19



Proof. We only prove (a), since parallel arguments hold for (b).

Choose ξ ∈ ǫZn such that |ξ − rαǫν| ≤ 2ǫ, (ξ − rαǫ) · ν ≤ 0. ν = q0

|q0|
.

Define
ũǫ(x, t) := e−1/2uǫ(ǫ1/2(x − ξ), ǫ1/2(t − αǫ)).

Then (ũǫ)∗ is a subsolution of (P )ǫ
1/2

in Σ̃ := B10(0) × [0, αǫǫ
−1/2] with

(ũǫ)∗ ≤ Pq0,r0. Note that O ∩ {0 ≤ t ≤ αǫ} is contained in Σ̃. Hence by
definition of ū as the maximal subsolution above Pq,r in O we obtain

(ũǫ)∗ ≤ ūǫ1/2;q0,r0
in Σ̃.

Therefore if |r((1 + ǫ1/25)q0)| > ǫ1/25, then (a) follows from Proposi-
tion 3.5 with ǫ replaced by ǫ1/2 and γ = ǫ1/25.

If |r((1 + ǫ1/25)q0)| ≤ ǫ1/25, then by our hypothesis in (a) it follows that
|r0| ≥ ǫ1/25 and one can apply Proposition 3.5 with q0 replaced by q̃ = αq0

with which
r0 = (1 − ǫ1/25)r((1 + ǫ1/25)q̃).

Since r(q) increases in |q|, we have α > 1. It follows that uǫ ≤ Pq̃,r0 in Σ.
Thus one can apply Proposition 3.2 with ǫ replaced by ǫ1/2 and γ = ǫ1/25

and use the fact that
(ũǫ)∗ ≤ ūǫ1/2;q̃,r0

in Σ̃

to derive the conclusion.

Below we sketch a formal argument to prove (1.1). Suppose uǫ and u
respectively solve (P )ǫ and (P ) with same initial data u0. Suppose we can
perturb u to construct a new function w1 which satisfies the following:

(i) d(Γt(w1),Γt(u)) < ǫ1/70 for t ≥ 0

(ii) w1 satisfies (P ) with r(Du) replaced by

(1 − ǫ1/25)r((1 + ǫ1/25)Dw1) + ǫ1/25. (3.15)

(iii) uǫ(·, 0) ≺ w1(·, 0) and uǫ ≤ w1 for x ∈ K.
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Now assume that Γ(uǫ) touches Γ(w1) for the first time at P0 = (x0, t0).
Then t0 > 0 and uǫ ≤ w1 in Q ∩ {t ≤ t0}.

Let

q0 = Dw1(P0), r0 =
(w1)t
|Dw1|

(P0). (3.16)

Note that, due to (3.15),

r0 ≥ (1 − ǫ1/25)r((1 + ǫ1/25)q0) + ǫ1/25. (3.17)

Let ξ be a space-time translate of Pq,r such that lq,r+ξ touches P0. If one can
show that uǫ ≤ Pq0,r0 + ξ in ǫ1/2- neighborhood of P0, then a contradiction
would follow due to Corollary 3.6, yielding uǫ ≤ w1. A parallel argument
applies to constructing a perturbation function w2 which will bound uǫ from
below. Once we obtain w2 ≤ uǫ ≤ w1 with

d(Γt(wk),Γt(u
ǫ)) ≤ ǫ1/70 for t ≥ 0, k = 1, 2,

(1.1) follows.
In section 4-5 we show a rigorous version of above formal argument to

prove (1.1). The challenge is to find correct perturbations w1, w2 of u and
to find q0 and r0 for which (3.17) is satisfied and uǫ ≤ Pq0,r0 + ξ in ǫ1/2-
neighborhood of P0. (Note that (3.16) would not apply to non-smooth w1.)

4 Statement of main result

Let u be a solution of (P ) in Q with initial data u0, and fix t0 > ǫ1/30 and
ǫ > 0. In the domain

Qǫ := (IRn − Kǫ) × [ǫ1/30, ǫ−1/300], Kǫ := (1 + ǫ1/70 + 2ǫ1/30)K

we define

u1(x, t) := u((1 + ǫ1/70)−1x, (1 + ǫ1/70)−1(1 − ǫ1/60)t + t0), (4.1)

and the inf-convolutions

v1(x, t) := inf
y∈B

ǫ1/30
−ǫ1/27t

(x)
u1(y, t), (4.2)

and
w1(x, t) := inf

(y,s)∈B
(n+1)

ǫ1/30
(x,t)

v1(y, s). (4.3)
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Then w1 is a viscosity supersolution of







−∆w1 = 0 in {w1 > 0},

V = (1 − ǫ1/60)r((1 + ǫ1/70)Dw1) + ǫ1/27 on Γ(w1).

in Qǫ.

The convoluted functions v1 and w1 is introduced to improve the free
boundary regularity of u1: any free boundary point (x0, t0) ∈ Γ(w1) has
both an exterior space-time ball and an exterior space ball, lying in the zero
set of w1 and touching (x0, t0) (or x0) on their boundaries.

Similarly in the domain

Q̃ǫ := (IRn − K) × [ǫ1/30, ǫ−1/300], K̃ǫ = (1 + 2ǫ1/30)K

we define

u2(x, t) := u∗((1 − ǫ1/70)−1x, (1 − ǫ1/70)−1(1 + ǫ1/60)t + t1), (4.4)

and
v2(x, t) := sup

y∈B
ǫ1/30

−ǫ1/27t
(x)

u2(y, t),

w2(x, t) := sup
(y,s)∈B

(n+1)

ǫ1/30
(x,t)

v2(y, s).

Then w2 is a viscosity subsolution of







−∆w2 = 0 in Ω(w2)

V = (1 + ǫ1/60)r((1 − ǫ1/70)Dw2) − ǫ1/27 on Γ(w2).

in Q̃ǫ, with interior ball properties at the free boundary.

Suppose that there exist constants ǫ1/30 ≤ t0, t1 < ∞, respectively given
in (4.1) and (4.4), and τ > 0 such that the corresponding w2 and w1 satisfy

(H1) w2(x, 0) ≺ uǫ(x, τ) ≺ w1(x, 0).

and

(H2) uǫ(x, t+τ) < w1(x, t) for x ∈ Kǫ, w2(x, t) < uǫ(x, t+τ) for x ∈ K.
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Theorem 4.1. Suppose u and uǫ satisfies (H1)-(H2) with some t0, t1 and
τ . Then

w2(x, t) ≤ uǫ(x, t + τ) ≤ w1(x, t) in Qǫ.

Suppose Ω(u0) ⊂ BR(0). From a barrier argument with radially sym-
metric solutions of (P ), using the fact that r(|Du|) ∈ [|Du| − 2, |Du| − 1], it
follows that

BR1(0) ⊂ Ωt(u) ⊂ BR2(0) for t ≥ 0, (4.5)

where Ri depends on n and u0. In particular R2 is given as the maximum
of a dimensional constant and R.

Corollary 4.2. Suppose u solves (P ) and uǫ solves (P )ǫ, with initial data
u0. Also suppose Ω(u0) ⊂ BR(0) and one of the conditions (A)-(C) holds.
Then for any T > 0, there exist positive constants ǫ0 = ǫ(n, u0, T ) and
C0 = C(n,R) such that for 0 < ǫ < ǫ0

d((x, t),Γ(uǫ)) ≤ C0ǫ
1/70 for (x, t) ∈ Γ(u) ∩ [0, T ]. (4.6)

Proof. 1. First suppose that (A) holds. Since Ω is star-shaped with respect
to Br(0), it follows that for 0 < ǫ < ǫ0 = ǫ0(r) and for t0 = τ = t1 = ǫ1/30

Ω0(w2) ⊂ Ωτ (u
ǫ) ⊂ Ω0(w1). (4.7)

Due to (4.5) and barrier arguments with radially symmetric harmonic
functions it follows that

|Du|(·, t) ∼ C(n, u0) for x ∈ K. (4.8)

Therefore, for sufficiently small ǫ depending on n and u0, (H2) holds. In
particular maximum principle for harmonic functions yield (H1) due to (4.7)
and (H2). Hence if ǫ is chosen sufficiently small that T ≤ ǫ−1/300 then
Theorem 4.1 yields (4.6) with

C0 = C(n) sup
(x,t)∈Ω(u)

|x|.

Due (4.5), C0 = C(n,R).
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2. Next suppose that (B) holds. Then the free boundary velocity is
strictly positive at t = 0. Since Γ0 is locally Lipschitz, by a barrier argument
one can check that there exists ǫ1/30 = t0 < τ, t1 = O(ǫ1/70) satisfying

Ω0(w2) ⊂ Ωτ (u) ⊂ Ω0(w1)

if ǫ > 0 is sufficiently small depending on u0. The rest of argument is
the same as in the case of (A). Parallel argument applies to the case (C),
for which the free boundary velocity is strictly negative at t = 0.

Proof of Theorem 4.1

Suppose our theorem is false. Then either (uǫ)∗ crosses w1 from below
or uǫ crosses w2 from above in finite time. Suppose the former, that is

0 < t0 = sup{t : Ωt((u
ǫ)∗) ≺ Ωt(w1)} < ∞.

For simplicity we denote (uǫ)∗ by uǫ in the rest of the proof.

Suppose Ω̄t0(u
ǫ) is a compact subset of Ω(w1) − Kǫ. Since uǫ < w1 on

Kǫ and (uǫ − w1)(·, t0) is subharmonic in Ωt0(u
ǫ) − Kǫ, it follows from the

maximum principle for harmonic functions that uǫ(·, t) < w1(·, t) in Ωt0(u
ǫ),

and thus uǫ(·, t0) ≺ w1(·, t0). Due to the lower semicontinuity of w1 − uǫ,
then for a small time period after t0 the supports of uǫ and w1 stays strictly
ordered and thus uǫ(·, t) ≺ w1(·, t), contradicting the definition of t0.

On the other hand suppose uǫ(x0, t0) > 0 at some x0 ∈ Γt0(w1). By
construction, there exists a space-time ball B(n+1) of radius ǫ1/30 such that

E := {(x, t) : |x − y| ≤ ǫ1/30/2 for some (y, t) ∈ B(n+1)}

lies in the zero set of w1 and touches (x0, t0) on its boundary. (See Figure
3). A barrier argument based on this set, similar to the one given in the
proof of Lemma 2.8 (b), leads to a contradiction.

From above discussion we conclude that at t = t0 we have Ωt0(u
ǫ) ⊂

Ωt0(w1), uǫ = 0 on Γt0(w1), and there exists P0 := (p0, t0) such that p0 =
Γt0(u

ǫ) ∩ Γt0(w1). In particular due to (H2) uǫ ≤ w1 for t ≤ t0.

Next we investigate the geometry of Γ(w1) at the contact point P0. By
definition of w1, the set Ω(w1) lies outside

B
(n+1)
1 := B

(n+1)

ǫ1/30 (P1) (4.9)
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with P1 = (p1, t1) ∈ Γ(v1), touching Γ(w1) at P0 (see Figure 2). On the
other hand Ω(u1) has an interior space ball B2 := Bǫ1/30−ǫ1/6t1

(P1) touching
Γ(u1) at P2 = (p2, t1). We rotate the coordinates such that

P0 − P1 = (d1e1,−d2) ∈ IRn × IR, where d1 ≥ 0 and e1 = (1, 0, ..., 0).

P1 − P2 is then also parallel to e1. Observe that, if Γ(w1) were smooth, d2
d1

equals the (outward) normal velocity of Γ(w1) at P0. Barrier arguments with

radially symmetric barrier in 2B
(n+1)
1 − B

(n+1)
1 , as in the proof of Theorem

2.2 in [K1], yields that

d1 6= 0 and
d2

d1
≥ −2.

(Formally speaking d1 6= 0 since otherwise Γ(w1) would have infinite normal
velocity at P0: but this is impossible because |Dw1| stays finite on Γ(w1)
due to the exterior ball property.)

Let us define

r0 =
d2

d1
∈ [−2,∞) and q0 = me1,

where

m = min
x∈W,x1=ǫ1/10

u1(x + p2, t1)

ǫ1/10
.

and
W = {x : x1 := x · e1 ≥ 0, |x − x1e1| ≤ (1 − ǫ1/70)|x|}

(See Figure 4).
We will prove, in the next section, the following proposition:
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Proposition 4.3. For 0 < ǫ < c(n) let q1 = (1 + ǫ1/50)q0. Then

(uǫ)∗ ≤ Pq1,r0 + P0 + ǫ29/30e1 in Bǫ1/2(x0) × (t0 − αǫ, t0),

where αǫ is as given in Corollary 3.6 and

r0 ≥ (1 − ǫ1/60)r((1 + ǫ1/60)q1) + 2ǫ1/25.

If above proposition is true, then due to Corollary 3.6 and Remark 5

d(Γt0((u
ǫ)∗), x0) > C1ǫ

24/25 − ǫ29/30,

where C1 is a dimensional constant. Hence for 0 < ǫ < c(n),

d(Γt0((u
ǫ)∗), x0) >

C1

2
ǫ24/25,

which contradicts the fact that x0 ∈ Γt0((u
ǫ)∗).

Parallel argument holds for the case uǫ crossing w2 from above.
2

5 Proof of Proposition 4.3

It remains to show Proposition 4.3. We begin with the following lemma.

Lemma 5.1.

r0 > (1 − ǫ1/60)r((1 + ǫ1/65)q0) + ǫ1/27

for 0 ≤ ǫ ≤ c(n).
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Proof. Recall that u1 satisfies the free boundary motion law

V ≥ (1 − ǫ1/60)r((1 + ǫ1/70)Du1) on Γ(u1)

in the viscosity sense. As mentioned in the previous section, Ωt1(u1) has an
interior space ball Bǫ1/30−ǫ1/27t1

(P1) touching p2 ∈ Γt1(u1). Therefore one

can also find a space ball B̃ of radius ǫ1/13 in Ωt1(u1) touching p2. In fact
from (4.2)-(4.3)

O ⊂ Ω(u1),

where O is a ”flat” space-time ball-like set given by

O := {(x, t) : |x − y| ≤ ǫ1/30 − ǫ1/27t for some y ∈ B
(n+1)
1 },

where B
(n+1)
1 is as given in (4.9) (see Figure 5).

Let
C(t) = a(t)B̃,

where a(t) = sup{s : sB̃ × {t} ⊂ O} and

Σ =
⋃

t1−δ≤t≤t1

(C(t) − 1

2
C(t)) × {t},

where δ is small and to be determined. We now construct φ(x, t) in Σ as
follows:























−∆φ(·, t) = 0 in C(t) − (1 − ǫ1/10)C(t),

φ(·, t) = (1 − ǫ)mǫ1/10 > 0 on (1 − ǫ1/10)∂C(t)

φ(·, t) = 0 on ∂C(t)
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Then we have

|Dφ|(P2) ≥ (1 − Cǫ1/10−1/13)m,
φt

|Dφ| (P2) = r0 − ǫ1/27.

Note that
S = {(x + p2, t1) : x1 = ǫ1/10} ∩ B̃.

is a set of width ǫ1/10 in e1-direction and of width

Cǫ1/20+1/26 ≤ ǫ6/70 for 0 < ǫ < c(n)

in other directions, and S ⊂ W + p2. Hence

φ(·, t) = (1 − ǫ)mǫ1/10 < u1(·, t) on S × [t1 − δ, t1],

if δ is chosen sufficiently small, first at t = t1 by definition of m, and then for
other times by lower semi-continuity of u. Moreover Σ is a subset of Ω(u1)
by construction. Therefore by maximum principle of harmonic functions

φ ≤ u1 in {x + p2 : x1 ≤ ǫ1/10} ∩ B̃ × [t1 − δ, t1],

and in particular u1 − φ has a local minimum zero at P2.
Using the definition of viscosity supersolution, if ǫ is sufficiently small,

r0 = φt

|Dφ|(P2) + ǫ1/27 ≥ (1 − ǫ1/60)r((1 + ǫ1/70)|Dφ|(P2)) + ǫ1/27,

≥ (1 − ǫ1/60)r((1 + ǫ1/70)(1 − ǫ3/130)q0) + ǫ1/27

≥ (1 − ǫ1/60)r((1 + ǫ1/65)q0) + ǫ1/27.

Our next goal is to construct a barrier which bounds w1 from above and
lies below (a perturbation of) Pq0,r0 + P0. Such barrier will be constructed
by small increments, starting from investigation of u1 at p2.

By definition of m, there exists y0 ∈ W ∩ {x : x1 = ǫ1/10}+ p2 such that

u1(y0, t1) = mǫ1/10.

By definition of v1 we then have

v1(x, t1) ≤ mǫ1/10 in D1 := B
ǫ1/30−ǫ1/27t1

(y0). (5.1)
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Recall that Ωt1(v1) has an exterior ball Bǫ1/30−ǫ1/27t1
(p2) touching p1 ∈

Γt1(v1). Thus Ωt1(v1) also has an exterior spatial ball D̃ = Bǫ1/30/4(x̃)
touching p1.

Since y0 − x2 = ǫ1/10e1 + µ with µ · e1 = 0, |µ| ≤ ǫ6/70, a straightforward
calculation yields that

∂D1 is outside (1 + 4ǫ1/15 − ǫ2/15)D̃. (5.2)

(See Figure 6.)
Let h(x) be the harmonic function in the ring domain

Π := (1 + 4ǫ1/15 − ǫ2/15)D̃ − D̃

with boundary data

h = mǫ1/10 on (1 + 4ǫ1/15 − ǫ2/15)∂D̃, h = 0 on ∂D̃.

Then |Dh| = m(1 + Cǫ1/15) on ∂D̃: in fact from the explicit formula for
radially symmetric harmonic functions it follows that |Dh| ≤ m(1 + Cǫ1/15)
in Π.

Due to (5.1) and (5.2), for 0 < ǫ < c(n)
v1(·, t1) ≤ mǫ1/10 ≤ h on the outer boundary of Π, and thus

v1(·, t1) ≤ h on Π. (5.3)

Next we construct a barrier for w1, using the information gathered from
above. Let us construct the space-time ring domain
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C =
⋃

t0−αǫ≤t≤t0

(Π + a(t)e1) × {t}

where
a(t) > 0,−→v (t) := (a(t)e1, t − t1) ∈ ∂B

(n+1)

ǫ1/30 (0)

In particular a(t) ∈ C2, a(t0) = d1 and a′(t0) = −r0. (see Figure 7).
Now define ϕ(x, t) = h(x − a(t)en) in C. Then by definition of w1 and

(5.3)
w1(x, t) ≤ v1(x − a(t)en, t1) ≤ ϕ(x, t) in C. (5.4)

Finally we bound ϕ from above by Pq0,r0 +P0. Note that Γt(ϕ) is a sphere of
radius ǫ1/30/4. This fact and the twice differentiability of a(t) yields that,in
Bǫ1/2(x0)× [t0 − ǫ1/2, t0], Γt(ϕ) is in ǫ1−1/30- neighborhood of its space-time
tangent plane at (x0, t0), which is lq0,r0(t) + P0. Since |Dh| ≤ m(1 + Cǫ1/5)
in Π, so is |Dϕ| in C. Therefore

ϕ ≤ (1 + ǫ1/50)Pq0,r0 + P0 + ǫ29/30e1 in Bǫ1/2(x0) × [t0 − ǫ1/2, t0]. (5.5)

Recall that we have (uǫ)∗ ≤ w1 for t ≤ t0. This and (5.4)-(5.5) proves
our proposition.

6 Remarks on an expanding free boundary prob-

lem

As stated in Corollary 3.6, for problem (P )ǫ and (P ) our error estimate
is only obtained for the class of initial data (A) − (C). This is because
uniqueness does not hold for solutions of (P ) with general initial data.
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Below we show that stronger result holds for problems with expanding
free boundaries.

Let u0,Ω,K, g and Γ0 the same as in the introduction, and let u(x, t)
solve

(P2)ǫ























−∆uǫ(·, t) = 0 in Ωt(u) − K

V = g(x
ǫ )|Duǫ| on Γ(u),

uǫ = 1 on K,

in Q = (IRn − K) × (0,∞) with initial data u0. The following result was
recently shown in [K2] and [KM] :

Theorem 6.1. ([K2],[KM]) Let uǫ be a viscosity solution of (P2)ǫ with
initial data u0. In addition suppose that Γ0 is C1. Then uǫ locally uniformly
converges to the unique viscosity solution of

(P2)























−∆u(·, t) = 0 in Ωt(u) − K,

V = (< 1
g >)−1|Du| on Γ(u)

u = 1 on K

in Q with initial data u0. Here < h > denotes the average of h, i.e.,
∫

[0,1]n h(x)dx.

Parallel analysis as in section 3-5, yields the following:

Proposition 6.2. Proposition 3.5 holds for u and uǫ, respectively solving
(P2) and (P2)ǫ.

Corollary 6.3. If Γ0 is C1, then for sufficiently small ǫ > 0 depending on
Γ0

d((x, t),Γ(u)) ≤ ǫ1/90 for (x, t) ∈ Γ(uǫ).

Proof. Since Γ0 is C1 and u0 is harmonic in Ω0 with u0 = 1 on K, one can
conclude that

u(−den, 0)

d
∈ [d1/8, d−1/8] for small d > 0.
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Hence by a barrier argument, one can check that for sufficiently small t > 0
the set Γt(u) lies outside t9/8-neighborhood and inside t7/8-neighborhood of
Ω0(u).

It follows that for sufficiently small ǫ > 0, (H1) and (H2) in Proposi-
tion 3.5 is satisfied with t0 = ǫ1/30, τ = ǫ1/80 and t1 = 2ǫ1/80.
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