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Abstract

In this paper we consider a free boundary problem which is used to
describe the motion of contact lines of a liquid droplet on a flat surface.
The elliptic nature of the equation for droplet shape and the monotonic
dependence of contact line velocity on contact angle allows us to intro-
duce a notion of “viscosity” solutions for this problem. Unlike similar
free boundary problems, a comparison principle is only available for
a modified short-time approximation because of the constraint that
conserves volume. We use this modified problem to construct viscosity
solutions to the original problem under a weak geometric restriction
on the free boundary shape. We also prove uniqueness provided there
is an upper bound on front velocity.

1 Introduction

This paper is concerned with solutions of the free boundary problem in
IRN × [0,∞)

(P )







































−∆u(·, t) = λ(t;u) in {u(·, t) > 0}

∫

{u(·,t)>0} u(x, t)dx = V0

V = F (|Du|) on ∂{u > 0}

u(·, 0) = u0

Here V = V (x, t) denotes the outward normal velocity of the free boundary
∂{u > 0} of u at (x, t). In spatial dimension N = 2, this problem describes
the motion of a liquid droplet of height u(x, t) and volume V0 on a planar
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surface [Gr, Ho, G1]. In this context the positive phase {u > 0} denotes the
wet region and the free boundary denotes the contact line between the drop
and the surface. The first equation in (P ) defines the shape of a quasi-static
droplet. The second equation is a volume conservation condition which is
enforced by a suitable choice of the Lagrange multiplier λ(t;u) (which is
physically the hydrostatic pressure). The third equation in (P ) defines the
contact line motion by a relationship between the free boundary normal
velocity V = ut/|Du| and the “apparent” contact angle |Du|.

The initial condition for the evolution is specified by an open, bounded
set Ω0 ⊂ IRN and volume V0. The initial droplet shape u0(x) : IRN → IR+

is the smallest (weak) solution of







−∆u0 = λ0 > 0 in Ω0

u0 = 0 in IRN − Ω̄0

(1)

where by linearity λ0 > 0 can be chosen to satisfy any volume constraint.
Also, given λ0 > 0, u0 is uniquely determined by

u0 := inf{v : −∆v ≥ λ0 in Ω0, v ≥ 0 in IRN}.

Many formulas for the constitutive velocity relation F appear in the
literature (e.g. [T]). The present paper focuses on the most widely used one
[V, C])

F (|Du|) = |Du|3 − 1. (2)

The techniques which we use, however, only rely on the fact that F is con-
tinuous and strictly increasing.

The free boundary problem (P ) has been used as a fundamental model
for contact line motion for the last 30 years. Mathematical understanding
of this problem has been slowly accruing in the form of numerical methods
[G1, Hu], stability calculations [Ho] and homogenized dynamics [G2]. On the
other hand, very little is known for (P ) in terms of rigorous analysis. To the
best of our knowledge the short-time existence of classical solutions has not
been established. Furthermore, no notion of weak or generalized solutions
has yet been put forth. There are, however, compelling reasons to con-
sider non-classical solutions to this free boundary problem. Numerical (and
even physical) experiments indicate that the free boundary evolution with
initially convex positive phase develops corners (see Figure 1). Of course,
other more standard topological singularities of the positive phase, such as
splitting and reconnection, are possible as well (in fact we demonstrate this
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initial data

Figure 1: Development of a non-smooth corner in the free boundary, using
the numerical method in [G1].

must happen for certain initial data, see Lemma 6.10). Our results address
only the former type of singularity. There is a good reason for this: during,
for example, splitting of the free boundary, the model itself breaks down
since separate volume constraints for each connected component would be
required. While there may be a more general model that admits changes in
topology, we do not address this here.

Originally invented by Crandall and Lions [CL] for Hamilton-Jacobi
equations, viscosity solutions allow for singularities of their level sets, and
enjoy strong stability properties under various limits. The notion of viscosity
solutions has been applied to a variety of free boundary problems that sat-
isfy a comparison principle, which states that if one solution is smaller than
the other at one time, then the order is preserved for later times (see, e.g.,
[K2]). For example, in [K1] a notion of viscosity solutions were introduced
for Hele-Shaw and Stefan problems with zero surface tension.

In this paper we define a notion of “viscosity” solutions for problem (P ),
and we show that it is well-posed in the sense of existence and uniqueness
of solutions. Furthermore, under a moderate geometric restriction (see con-
dition (I) in section 3.3, (J) in section 5, and Appendix B), solutions will
exist for all time. In our case, solutions of (P ) do not satisfy a comparison
principle directly due to the volume constraint that gives rise to a dynamic
Lagrange multiplier λ(t;u), and thus a straightforward definition of viscos-
ity solutions is more difficult. In particular, the comparison principle we
employ only holds for discrete time intervals of an approximating problem
(PM

n ) (see section 3) which relaxes the constraint and fixes λ over small time
intervals.

The paper is organized as follows. In section 2 we define viscosity solu-
tions for problem (P ) and a modified problem (PM ) which puts an upper
bound on the free boundary velocity. We also outline the strategy for con-
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structing solutions of (P ) by approximating problems (PM
n ). In section 3 the

small-time-approximation problem (P̃ ) is defined, and a comparison prin-
ciple and existence theorem for this problem is given. We also introduce
a geometric restriction (I) and discuss settings for which it is satisfied to
yield global-in-time existence. In section 4 we use the results in section 3 to
show existence of a weak solution for (PM

n ), and derive regularity properties
for uM

n . In section 5 we use the equicontinuity of {uM
n } to show that {uM

n }
converges to viscosity solutions as n,M → ∞. In section 6 we prove that
uM can be obtained as the local uniform limit of the whole sequence {uM

n }
as n → ∞, and the solution uM of (PM ) is unique. In Appendix A we
prove the comparison principle and the existence result for solutions of (P̃ )
stated in section 3. Finally in Appendix B we show that (I) holds for all
times when the initial data is (a) symmetric with respect to two axes or (b)
symmetric with respect to one axes and convex in two dimensions.

2 Definitions and preliminaries

Consider a domain D ⊂ IRN and a time interval I ⊂ IR+. For a nonnegative
real valued function u(x, t) defined for (x, t) ∈ D×I, we will use the notation

Ω(u) = {(x, t) ∈ D × I : u(x, t) > 0}, Ωt(u) = {x ∈ D : u(x, t) > 0};

Γ(u) = ∂Ω(u) − ∂(D × I), Γt(u) = ∂Ωt(u) − ∂D.

We call Ω(u) and Γ(u) respectively the positive phase and the free boundary
of u.

For x ∈ IRN we also denote Br(x) as the ball of radius r with center x
in IRN .

2.1 Viscosity solutions

We first define the notion of viscosity solutions for problem (P ), with open,
bounded initial positive phase Ω0 and initial shape given by (1).

Definition 2.1. A nonnegative function u(x, t) in Q := IRN × [0,∞) is a
viscosity solution of (P ) in Q with initial positive phase Ω0 and volume V0

if the following is true:

1. u is continuous with u(·, 0) = u0(x).
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2. At each t > 0 −∆u = λ(t;u) in Ωt(u) where λ(t) := λ(t;u) is chosen
such that

∫

u(x, t)dx =

∫

u0(x)dx = V0.

3. For every φ ∈ C2,1(Σ) such that u−φ has a local maximum in Ω(u)∩
{t ≤ t0} ∩ Σ at (x0, t0) and with |Dφ|(x0, t0) 6= 0, then

(

φt − |Dφ|(|Dφ|3 − 1)
)

(x0, t0) ≤ 0.

4. For every φ ∈ C2,1(Σ) such that u− φ has a local minimum in Ω(u)∩
{t ≤ t0} ∩ Σ at (x0, t0) and with |Dφ|(x0, t0) 6= 0, then

(

φt − |Dφ|(|Dφ|3 − 1)
)

(x0, t0) ≥ 0.

Note that classical solutions of (P ) are also viscosity solutions.
One can similarly define viscosity solutions of a problem which has an

imposed upper bound on velocity

(P )M































−∆u(·, t) = λ(t;u) in {u > 0}

∫

{u>0} u dx = V0

V =
ut

|Du|
= min(|Du|3 − 1,M) on ∂{u > 0}

Since the upper bound is arbitrary, there is no loss of generality in the physi-
cal problem where one expects finite speeds. This modification considerably
simplifies our analysis of proving uniqueness in section 6.

Note that (P ) does not satisfy a comparison principle: since Ωs ⊂ Ωt

implies λ(t) ≤ λ(s), then one cannot use the maximum principle to conclude
that u(x, t) ≤ u(x, s). Therefore the usual viscosity solution approach must
be modified. To do this, we consider the “discrete time approximation”
problem

(P )Mn























−∆uM
n (·, t) = λn,M (ktn) in {uM

n > 0} ∩ [ktn, (k + 1)tn)

V = min(F (|DuM
n |),M) on ∂{uM

n > 0},

uM (x, 0) = u0(x)
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where tn = 2−n and λn,M(ktn) is chosen so that

(2.1)

∫

uM
n (·, ktn)dx = V0 for k = 0, 1, 2, ..., .

This problem will satisfy the desired comparison principle in each time in-
terval [ktn, (k + 1)tn). Note that if Γt(un) and uM

n change continuously in
time, then by (2.1)

(2.2) uM
n (x, ktn) =

λn,M (ktn)

λn,M((k − 1)tn)
lim

{t↑ktn}
uM

n (x, t)

To construct a viscosity solution of (P ), we first construct the solution uM
n

of (P )Mn by finding a viscosity solution in [ktn, (k + 1)tn) on each interval
and restart at t = (k + 1)tn using (2.2). We will then show that uM

n and
Ωt(u

M
n ) converge uniformly as n,M go to infinity to a viscosity solution of

the original problem.

3 The small-time problem and a comparison prin-

ciple

Let F (s) : [0,∞) → IR be a continuous, increasing function of s.
As a small-time approximation of (P ), we consider

(P̃ )



















−∆u(·, t) = λ in {u > 0}

V =
ut

|Du|
= F (|Du|) on ∂{u > 0}

where λ is a prescribed constant, rather than determined by an additional
constraint. For purposes of this section only, we allow F (s) : [0,∞) → IR
to be any continuous, monotonically increasing function. In particular, if F
is replaced with min(F,M), then a solution uM

n of (PM
n ) will also solve (P̃ )

with λ = λ(ktn) on intervals [ktn, (k + 1)tn).
Let Q = IRN × (0,∞) and let Σ be a cylindrical domain D × (a, b) ⊂

IRN × IR, where D is an open subset of IRN .

Definition 3.1. A nonnegative upper semi-continuous function u defined
in Σ is a viscosity subsolution of (P̃ ) if

(a) for each a < T < b the set Ω(u) ∩ {t ≤ T} is bounded; and
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(b) for every φ ∈ C2,1(Σ) such that u− φ has a local maximum in Ω(u) ∩
{t ≤ t0} ∩ Σ at (x0, t0),

(i) − ∆φ(x0, t0) ≤ λ when u(x0, t0) > 0.

(ii)
(

φt − |Dφ|F (|Dφ|)
)

(x0, t0) ≤ 0 if (x0, t0) ∈ Γ(u) when − ∆φ(x0, t0) > λ.

Note that because u is only upper semi-continuous there may be points
of Γ(u) at which u is positive.

Definition 3.2. A nonnegative lower semi-continuous function v defined in
Σ is a viscosity supersolution of (P̃ ) if for every φ ∈ C2,1(Σ) such that v−φ
has a local minimum in Σ ∩ {t ≤ t0} at (x0, t0),

(i) − ∆φ(x0, t0) ≥ λ if v(x0, t0) > 0,

(ii) If (x0, t0) ∈ Γ(v), |Dφ|(x0, t0) 6= 0 and
−∆φ(x0, t0) < λ,

then
(

φt − |Dφ|F (|Dφ|)
)

(x0, t0) ≥ 0.

For a nonnegative real valued function f(x, t) in a cylindrical domain
D × (a, b) we define

f∗(x, t) := lim sup
(ξ,s)∈D×(a,b)→(x,t)

f(ξ, s).

and
f∗(x, t) := lim inf

(ξ,s)∈D×(a,b)→(x,t)
f(ξ, s).

Definition 3.3. A lower semicontinuous function u is a viscosity solution
of (P̃ ) if u is a viscosity supersolution and u∗ is a viscosity subsolution
of (P̃ ). u is a viscosity solution of (P̃ ) with initial positive phase Ω0 if
Ω0(u

∗) = Ω0(u) = Ω0.

For later use we show that free boundaries of solutions of (P̃ ) do not
“jump” at any positive time.

Lemma 3.4. Let v solve (P̃ ) in Q. Then for x0 ∈ Γt0(v) with t0 > 0, there
exists xn ∈ Γtn(v), tn < t0 such that xn → x0 and tn → t0 as n → ∞.
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Proof. 1. Suppose not. Then there exists r > 0 and a sequence of tk
converging to t0 such that for large k, either (i) v(·, tk) = 0 in Br(x0) or (ii)
Br(x0) ⊂ Ωtk(v).

2. If (i) holds, we construct a barrier function φ(x, t) in Σ := IRN×[tk, t0]
such that







−∆φ(·, t) = λ in IRN/Br(t)(x0)

φ(·, t) = 0 on ∂Br(t)(x0),

where r(t) = r + (t0 − t)/(2(t0 − tk)). (Note that r(t) is positive for tk ≤
t ≤ t0.) If tk is sufficiently close to t0, φ is a supersolution of (P̃ ) in Σ with
φ ∈ C2,1(Ω̄(φ)) and with smooth positive phase. Using Definition 3.1, one
can check that v ≤ φ in Σ and in particular x0 lies in the interior of the zero
set of v(·, t0), a contradiction.

3. If (ii) holds, we construct the barrier ϕ(x, t) in Σ such that

−∆ϕ(·, t) = λ in Br(t)(x0), ϕ(·, t) = 0 in IRN/Br(t)(x0)

where r(t) is given above. If tk is sufficiently close to t0, ϕ is a subsolution
of (P̃ ) in Σ with ϕ ∈ C2,1(Ω̄(ϕ)) and with smooth positive phase. Hence
using Definition 3.2, one can check that v ≥ ϕ in Σ and in particular x0 lies
in the interior of Ωt0(v), a contradiction.

3.1 Convolutions

An important tool for the analysis in the rest of the paper is the inf- and sup-
convolution over space balls. These are employed to obtain larger or smaller
sub- and supersolutions, respectively, from existing sub- and supersolutions.

Lemma 3.5. (a) If u is a viscosity subsolution of (P̃ ), then the sup-convolution

ũ(x, t) := sup
y∈Br−ct(x)

u(y, t)

is a viscosity subsolution of (P̃ ) with F (|Du|) replaced by F (|Du|) − c, as
long as r − ct > 0.

(b) If u is a supersolution of (P̃ ) then the inf-convolution

ũ(x, t) = inf
y∈Br−ct(x)

u(y, t)

is a viscosity supersolution of (P̃ ) with F (|Du| replaced by F (|Du|) + c, as
long as r − ct > 0.
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Proof. We only prove (a).
1. First suppose ũ(·, t) − φ(·, t) has a local maximum at x0 ∈ Ωt(ũ). By

definition of ũ, u(·, t)− φ(·+ (x0 − y0), t) has a local maximum at y0, where
y0 ∈ Br−ct(x0) and ũ(x0, t) = u(y0, t). Since u is a viscosity solution of (P̃ ),
it follows that −∆φ(x0, t) ≤ λ. Hence our claim is proved.

2. Next suppose that ũ(·, t)−φ(·, t) has a local maximum zero in Ω̄(ũ)∩
{t ≤ t0} at (x0, t0) ∈ Γ(ũ) with |Dφ|(x0, t0) 6= 0. By definition of ũ, ũ − φ̃,
where

φ̃(x, t) := φ(x + (1 − c|x0 − y0|
−1(t − t0))(x0 − y0), t),

has a local maximum in Ω̄(u)∩{t ≤ t0} at (y0, t0) ∈ Γ(u), where |y0 −x0| =
r−ct0 and ũ(x0, t) = u(y0, t). Note that Br−ct0(y0) lies in Ωt0(ũ) and touches
Γt0(ũ) at x0. Since ũ touches φ from below, it follows that y0−x0 is parallel
to the direction of Dφ(x0, t0). Since u is a viscosity solution of (P̃ ), it follows
that

φ̃t

|Dφ̃|
(y0, t0) =

φt

|Dφ|
(x0, t0) + c

≤ F (|Dφ̃|)(y0, t0) = F (|Dφ|)(x0, t0).

3.2 Comparison Principle

Here we state the comparison principle for viscosity solutions of (P̃ ).

Definition 3.6. We say that a pair of functions u0, v0 : D̄ → [0,∞) are
(strictly) separated (denoted by u0 ≺ v0) in D if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii) The functions are strictly ordered in the support of u0:

u0(x) < v0(x) in {u0 ≥ 0}.

Variations of the following theorem, whose proof is deferred to appendix
A, will be used later in the paper.

Theorem 3.7. (Comparison principle) Let u, v be respectively viscosity sub-
and supersolutions of (P̃ ) in Σ = D × (a, b) with u(·, 0) ≺ v(·, 0) in D. If
u(·, t) ≺ v(·, t) on ∂D for a < t < b, then u(·, t) ≺ v(·, t) in D for t ∈ [0, T ).
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3.3 A geometric restriction and global existence

As discussed in the introduction, one cannot expect viscosity solutions to
exist for all time in every circumstance. This fact will be encoded into a
restriction on the shape of the positive phase, which is the following: We
say that a domain Ω ∈ IRN is star-shaped with respect to a point p0 ∈ Ω if
the line segments connecting p0 to boundary points q ∈ ∂Ω lie in Ω.

The following theorem, whose proof is deferred to the appendix, estab-
lishes existence for small times of star-shaped solutions to problem (P̃ ). We
will later prove short-time existence for the full problem as well.

Theorem 3.8. There exists a viscosity solution of (P̃ ) in Q with initial
positive phase Ω0 if Ω0 is star-shaped with respect to Br(0) for some r > 0.

For long time existence for the full problem (P ), we need to ensure
that star-shapedness is preserved. Below we prove this is true provided
the free boundary does not collapse in on the ”center”; that is, there must
always be some ball in Ωt so that Ωt is star-shaped with respect to points
in that ball. In particular, this allows us to side-step issues involved with
topological changes, such as when the free boundary pinches off. The precise
requirement is the following: there exists r > 0 so that solutions v(x, t)
satisfy

(I)







Ω0(v) is star-shaped with respect to Br(0) and

Br(0) ⊂ Ωt(v).

We will in general invoke requirement (I) when referring to approximating
solutions uM

n (see Definition 4.1), but we could just as well suppose that (I)
holds for the limits as n,M → ∞, that is, it holds for viscosity solutions to
the full problem. We briefly detail some natural cases where (I) is expected
to hold for uM

n :

1. If the free boundary always spreads, then Br(0) will always be in
Ωt(u

M
n ), and therefore the free boundary will always be star-shaped.

Conversely, a contracting free boundary would still satisfy (I) with
possibly different r up to the point at which Br(0) was entirely outside
the positive phase.

2. A convex positive phase is star-shaped with respect to every ball, and
therefore remains that way if it is contracting. In other words, con-
vexity is preserved for strictly contracting free boundaries. We also
suspect, but cannot prove, that this is the case for expanding free
boundaries.
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3. If the initial data has certain symmetries, (I) is guaranteed for all
times. Details of this are given in appendix B.

4. Since there is a lower bound on the free boundary velocity, Br(0) will
at least stay inside Ωt for a short time. For short-time existence, we
can therefore always assume (I) holds, so long as the initial data is
star-shaped.

We will now prove that star-shapedness is preserved as long as (I) holds
in problem (P̃ ), and later observe the same is true for the full problem.
Therefore if (I) is preserved by the evolution, we will be able to obtain
global existence and uniqueness.

Lemma 3.9. Suppose that v solves (P̃ ) with F (|Dv|) = min(|Dv|3 − 1,M)
and condition (I) is satisfied. Then Ωt(v) is star-shaped for all t > 0.

Proof. 1. Let x0 ∈ Br(0). We claim that for all x,

(3.1) v(x, t) ≤ (1 + ǫ)2v(
x − x0

(1 + ǫ)
+ x0, t) for any ǫ > 0.

For t ∈ [0, c/(2M + 2)] define

(3.2) ṽ(x, t) = inf
y∈Bcǫ−(2M+2)ǫt(x)

(1 + ǫ)2v(
y − x0

(1 + ǫ)
+ x0, t)

where c (which only depends on r), is chosen small enough so that v ≺ ṽ at
t = 0.

Notice this is just a inf-convolution of a rescaled version of v, which is
easily checked to be a supersolution, so Lemma 3.5 applies. Therefore,

ṽt

|Dṽ|
= (1 + ǫ)min(|Dv|3 − 1,M ] + (2M + 2)ǫ

≥ (1 + ǫ)min((1 − 3ǫ)|Dṽ|3 − 1,M ] + (2M + 2)ǫ

> min(|Dṽ|3 − 1,M ]

Moreover −∆ṽ(·, t) ≥ λ in Ωt(ṽ) due to Lemma 3.5. Hence ṽ is a superso-
lution of (P̃ ). Now Theorem 3.7 applies to v and ṽ in IRN × [0, c/(2M + 2)]
to yield v ≤ ṽ for 0 ≤ t ≤ t1 := c/(2M + 2) which yields (3.1). Since ǫ > 0
in (3.1) is arbitrary, it follows that v(·, t + t1) satisfies (I). Hence one can
repeat this process indefinitely on intervals of length c

2M+2 .
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4 Construction of u
M
n

Our next goal is to construct solutions uM
n of the approximating problem

(PM
n ) with star-shaped initial positive phase Ω0 and initial volume V0, under

condition (I). By definition of (PM
n ), uM

n is in general discontinuous in time
at the endpoints of time intervals Ik := [ktn, (k + 1)tn), and as mentioned
before the comparison principle only holds for uM

n in small time intervals
Ik and thus a conventional notion of viscosity solutions will not apply. It is
therefore necessary to first establish a weak notion of solutions for (PM

n ).

Definition 4.1. uM
n is a weak solution of (PM

n ) with initial positive phase
Ω0 and volume V0 for 0 ≤ t ≤ (l + 1)tn where l ∈ IN if the following holds
for k = 0, 1, .., l:

(i) uM
n (·, 0) = u0

(ii) uM
n (·, t+ktn) is a viscosity solution of (P̃ ) in (0, tn] with initial positive

phase Ωktn(uM
n ) and λ = λn,M(ktn), where λn,M (ktn) satisfies (2.1).

(iii) Ωktn(uM
n ) is continuous from below, that is:

d(Ωt(u
M
n ),Ωktn(uM

n )) → 0 for t ↑ ktn.

Note that, due to (I) and Lemma 3.9, uM
n has its positive phase star-

shaped in space with respect to Br(0) as long as it exists. It follows that the
family of domains {Ωt(u

M
n )}n,t is uniformly Lipschitz in space if they are uni-

formly bounded (see Remark below Lemma 4.4). Using this fact, in Propo-
sition 4.5 we will show that for weak solutions uM

n satisfying (I), Ω(uM
n ) is

uniformly Hölder continuous in time. This establishes equi-continuity for
the family of functions {uM

n } to obtain convergence to a solution of (P )M

in section 5.
First we give an upper bound for λ(ktn) in terms of the circumradius of

Ωktn(uM
n ).

Lemma 4.2. Suppose uM
n exists and satisfies (I) with r > 0 for 0 ≤ t ≤ ktn.

Then for x0 ∈ Γktn(uM
n ), λ(ktn) ≤

C0

|x0|
, where C0 only depend on r, V0 and

N .

Proof. Due to Lemma 3.9, uM
n is star-shaped with respect to Br(0). There-

fore Ωktn(uM
n ) contains a cone with vertex x0, axis parallel to x0 and bottom

Br(0) ∩ {x · x0 = 0}. It follows that the function f(x) solving

−∆f = 1 in Ωktn(uM
n ), f = 0 on Γktn(uM

n )
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is bigger than the superpositions of h(x − kr x0
|x0|

), k = 1, .., |x0|/2r, where h

solves −∆h = 1 in Br/2(0) with h = 0 on ∂Br/2(0). Thus

∫

f(x)dx ≥
|x0|

2r

∫

h(x)dx ≥ C|x0|r
N+2.

Multiplying by λ(ktn) and noting the definition of V0, we can obtain the
desired bound.

Lemma 4.3. Suppose uM
n satisfies (I), with r > 0 independent of n and

M , for 0 ≤ t ≤ T . Define R(t, n,M) := sup{|x| : x ∈ Ωt(u
M
n )}. Then

R(t, n,M) ≤ R(T ) for t < T , where R(T ) is independent of n,M .

Proof. Let f solve −∆f = 2C0 in B1(0) with f = 0 on ∂B1(0), where C0 is
as given in Lemma 4.2. Let A be the value of |Df |3 on ∂B1(0) (Note that
f is radially symmetric). Next define

h(x, t) := R(t)f(
x

R(t)
) with R(t) = R(0) + At,

where R(0) is big enough such that BR(0)(0) contains Ω̄0. Note that

−∆h =
2C0

R(t)
in BR(t)(0)

with h = 0 in ∂BR(t)(0) and

(4.2)
ht

|Dh|
= R′(t) ≥ |Dh|3 > |Dh|3 − 1 on Γt(h).

We claim that Ωt(u
M
n ) is always strictly contained in BR(t)(0). To see

this, suppose not. Then due to the definition of uM
n and Lemma 3.4, Γt(u

M
n )

intersects ∂BR(t)(0) from inside of the ball for the first time at t = t0 ∈

(ktn, (k + 1)tn]. Choose the smallest ball BR(0) containing Ωktn(uM
n ). If

R(ktn)/2 ≤ R ≤ R(ktn), then t0 = ktn and by Lemma 4.2, λ(ktn) ≤
C0/R(t0) and thus uM

n (·, t0) ≤ h(·, t0). This and (4.2) yields that h is a
supersolution of (P̃ ) with λ = λ(ktn) on (ktn, (k + 1)tn), and Theorem 3.7
leads to a contradiction.

Hence R < R(ktn)/2 and t ∈ (ktn, (k + 1)tn].

(4.3) −∆uM
n (·, t) = λ(ktn) ≤ C0/R for t ∈ (ktn, (k + 1)tn].

Again Theorem 3.7 yields that uM
n ≤ h̃ in IRN × (ktn, (k + 1)tn], where

h̃(x, t) = (R + At)f(x/(R + At)). Since h̃(·, t) ≺ h(·, t) on [ktn, (k + 1)tn] if
Atn ≤ R(ktn)/2, we obtain a contradiction for sufficiently small n.
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Remark Lemma 4.3 and the star-shapedness of Ωt(u
M
n ) yield that for

each t > 0, Ωt(u
M
n ) is a Lipschitz domain, whose Lipschitz constant is uni-

formly bounded for 0 ≤ t ≤ T independently of n and M . This yields the
following proposition:

Proposition 4.4. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ) > 0.

Then the distance function dM
n (·, t) to Γ(uM

n ) is locally uniformly Hölder
continuous in time for 0 ≤ t ≤ T , independently of M and n.

Proof. 1. Due to the previous lemma, Ωt(u
M
n ) ⊂ BR(t)(0). Moreover for

x0 ∈ Γt0(u
M
n ) with t0 ∈ (ktn, (k + 1)tn], there is a cone that touches the free

boundary on which uM
n is zero:

uM
n (·, t0) = 0 in C := {y :

(y − x0)

|y − x0|
·

x0

|x0|
≥

|x0|
√

r2 + |x0|2
}.

2. Let BR(0) be the smallest ball which contains Ωktn(uM
n ). Due to

Lemma 4.2, λ(ktn) ≤ C0/R. Moreover arguing as in the proof of Lemma 4.3
it follows that Ωt(u

M
n ) ⊂ BR+At(0) for t > ktn, where A only depends on

r, V0 and N .
Fix 0 < m << 1 and let g solve

−∆g = C0/(R − 1) in BR+1(0) − (C + mx0),

with g = 0 on the boundary. Then for any r > 0

(4.4) sup
x∈Br((1+m)x0)

g(x) ≤ C0r
α,

where C0 = C0(N) and 0 < α < 1 only depends on R(t), r and N and thus
independent of n and M . Note that, since Ωt(u

M
n ) is star-shaped and the

normal velocity of Γ(uM
n ) is bigger than −1, Ωt(u

M
n ) does not shrink more

than distance 1/A from Ωktn(uM
n ) by t = ktn + 1/A. This and Lemma 4.2

yields that, if we choose A > 1,

−∆uM
n (·, t) ≤ C0/(R − 1) for ktn ≤ t ≤ ktn + 1/A.

Due to (4.3), it then follows that

(4.5) uM
n (x, t) ≤ g(x) for ktn ≤ t ≤ ktn + 1/A

as long as uM
n ((1 + m)x0, t) = 0.
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3. Next we construct a barrier φ(x, t) of the form























−∆φ(·, t) = C0/R in (B2m − Br(t))((1 + m)x0)

φ(·, t) = 0 on ∂Br(t)((1 + m)x0)

φ(·, t) = C0(2m)α on B2m((1 + m)x0)

where C0 is as given in (4.4) and

r(t) = m/|x0| − C1m
3α−3(t − t0) with C1 = c(N)C3

0

in the domain

S := (B2m − Br(t))((1 + m)x0) × [t0, t1], t1 := t0 + (2|x0|C1)
−1m4−3α.

It then follows that, on ∂Br(t)((1 + m)x0) × [t0, t1], φ satisfies

φt

|Dφ|
≥ |Dφ|3 > |Dφ|3 − 1.

if c(N) is a sufficiently large dimensional constant. Due to (4.5), Theorem 3.7
applies to uM

n and φ in S as long as uM
n ((m + 1)x0, t) = 0. But uM

n ((m +
1)x0, t) = 0 as long as uM

n ≤ φ. Thus we conclude that uM
n ≤ φ in S.

4. In particular above argument yields that for any m > 0 if x0 ∈
Γt0(u

M
n ), then for any m > 0, Γ(uM

n ) does not reach (1 + m)x0 until t1 =
t0 + C(r, T,N)m4−3α. On the other hand a parallel argument, based on the
fact V = |DuM

n |3−1 ≥ −1, yields that Γ(uM
n ) does not reach (1−m)x0 until

t1 = t0 − m. Since m > 0 can be chosen arbitrarily small, we can conclude
that Γ(uM

n ) for t ≤ T is Hölder continuous in time with Hölder constant
1/(4 − 3α), where α = α(r, T,N).

5. Let x be arbitrary. For times t1 < t2, choose x2 ∈ Γt2(u
M
n ) so that

|x−x2| = d(x, t2), and choose x1 to be the unique point on Γt1(u
M
n ) parallel

to x2. Using step 4 we have

d(x, t1) ≤ |x − x1| ≤ |x2 − x1| + |x − x2| ≤ C(r, T,N)|t2 − t1|
α + d(x, t2)

so that d(x, t1) − d(x, t2) ≤ C(r, T,N)|t2 − t1|
α. We can analogously show

d(x, t2) − d(x, t1) ≤ C(r, T,N)|t2 − t1|
α, which verifies uniform Hölder con-

tinuity.

We now prove the main result of this section.

15



Theorem 4.5 (Existence of uM
n ). Suppose any weak solution uM

n of (PM
n )

in IRn × [0, t0], t0 ≤ T satisfies (I) for 0 ≤ t ≤ t0, with r = r(T ) > 0.
Then there exists a weak solution uM

n of (PM
n ) with initial positive phase

Ω0 and volume V0 for 0 ≤ t ≤ T . Moreover Ωt(u
M
n ) is star-shaped with

respect to Br(0) and Γt(u
M
n ) is locally uniformly Hölder continuous in time,

independently of n and M .

Proof. We use induction on l. Suppose we have constructed uM
n in IRN ×

[0, ltn]. Due to Proposition 4.4, Ωt(u
M
n ) uniformly converges to Ωltn(uM

n ) as
t → ltn. Since Ωltn(uM

n ) is star-shaped, λ(ltn) and uM
n (·, ltn) is well-defined

and is continuous in space. Due to Theorem 3.8 there exists a viscosity
solution uM

n of (P̃ ) with λ = λ(ltn) in (ltn, (l + 1)tn] with initial positive
phase Ωltn(uM

n ). Now the induction can be continued to show that uM
n can

be solved for 0 ≤ t ≤ T . The rest of the theorem is due to Lemma 3.9 and
Proposition 4.4.

5 Convergence of u
M
n and existence of u

M and u

In this section we prove the existence of the viscosity solution u of our
original problem (P ), by passing to limits in n and M , and verifying the
result is a viscosity solution. First we fix M and send n → ∞. Due to
Theorem 4.5, for 0 ≤ t ≤ T the distance function dM

n (·, t) to the set Γt(u
M
n ) is

locally uniformly Lipschitz continuous in space and locally uniformly Hölder
continuous in time, independently of n and M . Hence due to Arzela-Ascoli,
dM

n converges locally uniformly to dM in IRn × [0, T ] along a subsequence.It
then follows that

(a) ΩM
t := {dM (·, t) > 0} is star-shaped with respect to Br(0),

(b) ΓM
t := {dM (·, t) = 0}, and the limiting distance function dM (·, t) = 0

is locally Lipschitz in space and locally uniformly Hölder continuous
in time,

(c) ΩM
0 = Ω0.

Let uM (x, t) solve

−∆uM(·, t) = λ(t;uM ) in ΩM
t .
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with zero boundary data on ΓM
t , where λ(t;uM ) is the volume preserving

constant such that
∫

uM (x, t)dx = V0.

Then uM (·, 0) = u0.

Proposition 5.1. uM (x, t) is a viscosity solution of (P )M in IRn × [0, T ]
with initial positive phase Ω0 and volume V0.

Proof. 1. First observe that λn,M(ktn) converges to λ(t;uM ), locally uni-
formly in time, because Ωt(u

M
n ) locally uniformly converges to Ωt(u

M ) and
Γt(u

M
n ) is locally uniformly Hölder continuous in time independently of n

(in the sense of the corresponding distance function). Therefore uM
n locally

uniformly converges to uM .
2. Suppose uM −φ has a local maximum zero in Ω̄(uM )∩ (Br(x0)× [t0−

r, t0]) for some r > 0 at (x0, t0) ∈ Γ(uM ) with φ ∈ C2,1(Q), |Dφ|(x0, t0) 6= 0.
Assume that, for some ǫ > 0,

(5.1) (
φt

|Dφ|
− min(|Dφ|3 − 1,M))(x0, t0) > ǫ.

We may assume that this maximum is strict in Br(x0) × [t0 − r, t0]-
otherwise one can replace φ by φ + ǫ(x − x0)

4 + ǫ(t − t0)
2 to make it strict.

Since φ is smooth with |Dφ|(x0, t0) 6= 0, we may assume that a space-
time ball of radius r, BN+1

r (P0) with P0 ∈ IRN+1, lies in the zero set of
uM and touches Γ(uM ) at (x0, t0) (See Figure 2). Moreover due to (6.1)
the outward normal vector ν of the ball BN+1

r (P0) at (x0, t0) is given by
ν = (ν1, b) ∈ IRN × IR, where |ν1| = 1 and the slope b of the ball at (x0, t0)
satisfies

b ≥ min(|Dφ|3 − 1,M)(x0, t0) + ǫ.

Let us tilt and shift the ball so that the new ball B̃N+1 passes through
(x0−aν1, t0) with slope b− ǫ/2 for a << ǫ. Note that if a is small compared
to ǫ and τ ,

(5.2) d(B̃N+1 ∩ {t = t0 − τ},Ω(uM )) > O(ǫ).

Now let us choose a, τ, δ such that a << τ << δ << r, ǫ and define
h(x, t) in the domain

Σ := (1 + a)B̃N+1 ∩ [t0 − τ, t0]
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( x 0 t 0),

MΓ u( )
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Γ ( φ)

M > 0u

0>φ

Figure 2: Exterior ball BN+1
r (P0) at the contact point P0.

such that






















−∆xh(x, t) = λ(t0) + δ in ((1 + a)B̃N+1 − B̃N+1) ∩ [t0 − τ, t0]

h(x, t) = φ(x, t) on (1 + a)(∂B̃N+1) ∩ [t0 − τ, t0]

h(x, t) = 0 in B̃N+1 ∩ [t0 − τ, t0].

Since φ is smooth with |Dφ|(x0, t0) 6= 0, if r is chosen small enough (5.1)
yields that

(5.3)
ht

|Dh|
> min(|Dh|3 − 1,M) on Γ(h) ∩ Σ.

Moreover due to (5.2) uM ≺ h on the parabolic boundary of Σ. Since
uM

n and Ω(uM
n ) locally uniformly converges to uM and Ω(uM ), it follows

that uM
n crosses h from below for the first time at (yn, sn) in Σ with sn ∈

(ktn, (k + 1)tn] for some k ∈ IN , for sufficiently large n. This contradicts
Theorem 3.7 if n is large enough that λn,M (ktn) ≤ λ(t0) + δ.

3. The above arguments prove that uM is a viscosity subsolution of
(PM ). A parallel argument would similarly prove uM is a viscosity super-
solution of (PM ).

So far we have proved the existence of viscosity solutions of (P )M . By a
similar process, we can send M → ∞ to obtain the most general existence
result.
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Theorem 5.2. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ). Then

along a subsequence uM and Ω(uM ) locally uniformly converges to u and
Ω(u) in IRn × [0, T ] as M → ∞. The limit function u is a viscosity solution
of (P ) in IRn × [0, T ] with initial positive phase Ω0 and volume V0.

Corollary 5.3. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ). Then

there exists a viscosity solution u of (P ) in IRN × [0, T ] with initial positive
phase Ω0 and volume V0. Moreover Ω(u) is star-shaped in space with respect
to Br(0) and Γ(u) is Lipschitz continuous in space and Hölder continuous
in time.

Since Ω(u) is only Lipschitz, difficulties arise in the analysis due to the
lack of upper bound on the free boundary velocity. For this reason we will
prove uniqueness result for only the modified problem (PM ) in next section.

6 Uniqueness of u
M

In this section we show that uM given in Corollary 5.3 is the unique viscosity
solution of (P )M . Recall that uM

n is a weak solution of (PM
n ) with initial

positive phase Ω0 and volume V0.

Proposition 6.1. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ).

Then for k ≥ n and for 0 ≤ t ≤ T , there exists A > 0 depending only on
r, δ, M ,T and the spatial dimension N such that

An(t)−2N−2uM
k (An(t)x, t) ≤ uM

n (x, t) ≤ A(t)2N+2uM
k (

x

An(t)
, t),

where An(t) := 1 + AeAttn.

Proof. 1. For simplicity we set r = δ = 1/2 in (4.1). A parallel argument
holds for the general case.

2. Let A > M > 0 to be chosen later. For each t ∈ [0, 1
(6N+6)A ], we claim

that
(6.1)
(1+An)−2N−2uM

k ((1+An)x, t) ≺ uM
n (x, t) ≺ (1+An)2N+2uM

k ((1+An)−1x, t)

where An = Atn. At t = 0 the inequality is true due to the star-shaped
initial data. Suppose the second inequality in (6.1) is violated for the first
time at t = t0 ∈ (0, 1

(6N+6)A ].

Due to (6.1),

(1 + Atn)−1Ωt(u
M
k ) ⊆ Ωt(u

M
n ) ⊆ (1 + Atn)Ωt(u

M
k ) for 0 ≤ t ≤ t0.
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Thus by definition of λn,M and λk,M ,

(1 + Atn)−Nλn,M (ltn) ≤ λk,M (ltn) ≤ (1 + Atn)Nλn,M(ltn)

for any ltn ≤ t0, l = 0, 1, ...
3. We claim that for any x ∈ Ωt(u

M
k )

(6.2) d(Ωltn(uM
k ), x) ≤ Atn for ltn ≤ t ≤ (l + 1)tn,

where A depends on M and the Lipschitz constant L of Ωltn(uM
k ). Note

that, due to Lemma 3.9 and Lemma 4.2, L = L(r, T,N).
To verify (6.2), pick any point x0 such that d(Ωltn(uk

M ), x0) = Atn. Due
to the fact that Ωltn(uk

M ) is Lipschitz, if we choose A = C0M where C0

depends only on L, then there is a ball

B := B2M (x0) ⊂ {uM
k (·, ltn) = 0}

which touches Γltn(uM
k ). Let us define

Λ := sup
(l−1)tn≤mtk≤(l+1)tn

λk,M(mtk).

Note that Λ ≤ r−N by (4.1).
Consider φ(x, t): a nonnegative function in Σ := 3B× [ltn, (l+1)tn] such

that for ltn ≤ t ≤ (l + 1)tn























−∆φ(·, t) = Λ in (3B − (2 − t
tn

)B)

φ(·, t) = supΣ uM
k on ∂(3B)

φ(·, t) = 0 in (2 − t
tn

)B

Then φ is a supersolution of (P̃ ) in Σ with λ = Λ and F (|Du|) = M .
Moreover uM

k ≺ φ on the parabolic boundary of Σ and uM
k (·, t) ≤ φ(·, t) as

long as Ωt(u
M
k ) ∩ 3B ⊂ Ωt(φ). Hence Theorem 3.7 applied to uM

k and φ in
each time interval (mtk, (m + 1)tk) ∩ [ltn, (l + 1)tn] would then yield that
uM

k ≤ φ in Σ. In particular x0 lies outside of Ω(uM
k ) for ltn ≤ t ≤ (l + 1)tn.

This yields (6.2).
4. Due to (6.2),

(6.3) (1 + Atn)−2Nλk,M(mtk) ≤ λl,M (ltn) ≤ (1 + Atn)2Nλk,M(mtk)

for mtk ∈ [(l − 1)tn, (l + 1)tn] ∩ [0, t0], where m, l = 0, 1, 2, ...
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Due to (6.3) and Lemma 3.5, one can now check that for 0 ≤ t ≤ t0 ≤
1

(6N+6)A ,

(6.4) ũM
k (x, t) := (1 + Atn)2N+2 inf

BAtn−(6N+6)A2tnt

uM
k ((1 + Atn)−1x, t)

satisfies the free boundary motion law

V ≥
(1 + Atn)(uM

k )t

|DuM
k |

+ (6N + 6)A2tn

= (1 + Atn)min[(|DuM
k |3 − 1),M ] + (6N + 6)A2tn

≥ min[(1 + Atn)6N+1|DuM
k |3 − 1,M ] − (6N + 2)AtnM + (6N + 6)A2tn

≥ min[|DũM
k |3 − 1,M ]

if tn is sufficiently small. The first inequality is due to Lemma 3.5 and the
last inequality holds since A > M . (For rigorous argument one needs to
use the definition of viscosity solutions of (P̃ ). See for example the proof of
Proposition 5.5 in [CJK].)

Observe that due to (6.3) and Lemma 3.5, for any l,m = 0, 1, ...

−∆ũM
k (·, t) ≥ (1 + Atn)2Nλk,M(mtk)

≥ λ(ltn) for t ∈ (mtk, (m + 1)tk] ∩ [ltn, (l + 1)tn]

Note that uM
n (·, 0) ≺ ũM

k (·, 0) since Ω0 is star-shaped with respect to
zero and contains B1(0). Thus Theorem 3.7 applied to uM

n and ũM
n on each

time interval [mtk, (m + 1)tk] gives for 0 ≤ t ≤ t0,

uM
n (·, t) ≺ ũM

k (·, t) ≤ (1 + Atn)2N+2uM
k ((1 + Atn)−1x, t).

This contradicts our hypothesis at t = t0. Similar arguments lead to a
contradiction if we assume that the first inequality breaks for the first time
at t1 ∈ [0, 1

(6N+6)A ]. Thus (6.1) holds for 0 ≤ t ≤ t1 := 1
(6N+6)A .

5. Next we show that for t1 ≤ t ≤ t1(1 + 1/2)

(1+2Atn)−2N−2uM
k ((1+2Atn)x, t) ≤ uM

n (x, t) ≤ (1+2Atn)2N+2uM
k ((1+2Atn)−1x, t)

For example if the second inequality breaks, then we compare uM
n with
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ũM
k (x, t) := (1 + 2Atn)2N+2 inf

BAtn−12(N+1)A2tnt

uM
k ((1 + 2Atn)−1x, t)

using similar arguments as in step 2. Note that due to (6.1) and the fact
that Ωt(un) is star-shaped and contains B1(0),

uM
n (x, t1) ≺ (1 + Atn)2N+2uM

k ((1 + Atn)−1x, t1) ≤ ũM
k (x, t1)

6. One can repeat the argument for each interval

[t1(1 + 1/2+, ...1/n), t1(1 + 1/2 + .. + 1/n + 1)].

This proves the lemma since

t1(1 + 1/2 + ... + 1/n) ∼ t1(log n).

Note that the proof presented above can be used as long as one of the
functions being compared, uM

k in above proof, satisfies (I). Thus we obtain
the following corollary.

Corollary 6.2. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ).

Then the whole sequence {uM
n } converges locally uniformly as n → ∞ to a

viscosity solution uM of (P )M for 0 ≤ t ≤ T with initial positive phase Ω0

and volume V0.

Remarks.

1. Besides proving the uniqueness of the limit, Proposition 6.1 provides an
estimate on differences between discrete-time approximation solutions
uM

n in terms of the discrete time interval size tn.

2. Note that we need to keep track of both inequalities in the lemma in
each time interval to guarantee that λn,M (t) and λk,M(t) stay close
together.

Now let v be any other viscosity solution with initial data u0 defined in
the previous section. Parallel arguments as in the proof of Proposition 6.1
yield the following:
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Lemma 6.3. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ). Then

for the same An(t) given in Proposition 6.1,

(1+An(t))−2N−2uM
n ((1+An(t))x, t) ≤ v(x, t) ≤ (1+An(t))2N+2uM

n (
x

1 + An(t)
, t)

for 0 ≤ t ≤ T .

Applying the same argument between two viscosity solutions uM and
vM of (PM ) ( in this case the time step size tn > 0 is replaced by arbitrary
small constants in the arguments ) yields the following corollary.

Corollary 6.4. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T with r = r(T ).

Then uM is the unique viscosity solution of (P )M in IRn × [0, T ] with initial
data u0.

Remark To prove uniqueness results for the original problem (P ), one
needs some type of bound on free boundary velocity. At least for star-shaped
spreading droplets, we expect solutions of (P ) to have smooth positive phase
for positive times and locally uniformly bounded free boundary velocity for
any positive time interval. Such results have been proved for the Hele-Shaw
problem with zero surface tension (see [CJK]).

A Comparison principle and existence for (P̃ )

Here we prove Theorem 3.7 stated in section 2 and the existence of the
viscosity solutions of (P̃ ) with star-shaped initial positive phase Ω0.

Most arguments presented here are similar to the proofs of Theorem 2.2
and Theorem 4.7 of [K1]. We only sketch the outline of the proof below.

Sketch of the proof of Theorem 3.7

1. For r, δ > 0 and 0 < h << r, define the sup-convolution of u

Z(x, t) := (1 + δ) sup
|(y,s)−(x,t)|<r

u(y, (1 + δ)3s)

and the inf-convolution of v

W (x, t) := (1 − δ) inf
|(y,s)−(x,t)|<r−ht

v(y, (1 − δ)3s)

in the domain

Σ := D̃ × [r, r/h], D̃ := {x : x ∈ D, d(x, ∂D) ≥ r}.
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Figure 3: Interior and exterior balls at the contact point P0.

By upper semi-continuity of u− v, Z(·, r) ≺ W (·, r) for sufficiently small
r, δ > 0. By our hypothesis and the upper semi-continuity of u − v,

Z(·, t) ≺ W (·, t) on ∂D̃ for r ≤ t ≤ r/h

for sufficiently small δ and r. Moreover Lemma 3.5 yields that Z and W are
respectively sub- and supersolutions of (P̃ ) in D̃ × [r, r/h].

2. If our theorem is not true for u and v, then Z crosses W from below
for the first time at P0 := (x0, t0) ∈ D̃ × [r, r/h] for h << r. Due to the
maximum principle of harmonic functions and Lemma 3.4, P0 ∈ Γ(Z) ∩
Γ(W ). Note that by definition Ω(Z) and Ω(W ) has respectively an interior
ball B1 and exterior ball B2 at P0 of radius r in space-time. (see Figure 3.)

Let us call H the tangent hyperplane to the interior ball of Z at P0.
Since Z ≤ W for t ≤ t0 and P0 ∈ Γ(Z) ∩ Γ(W ), it follows that

B1 ∩ {t ≤ t0} ⊂ Ω(Z) ∩ Ω(W ); B2 ∩ {t ≤ t0} ⊂ {Z = 0} ∩ {W = 0}

with B̄1 ∩ B̄2 ∩ {t ≤ t0} = {P0}.
Moreover, due to Lemma 3.5

(A.1)
Zt

|DZ|
(x, t) ≤ F (|DZ|)(x, t) ≤ on Γ(Z)

and

(A.2)
Wt

|DW |
(x, t) ≥ F (|DW |)(x, t) + h on Γ(W )
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In particular due to (A.1) the arguments of Lemma 2.5 in [K1] applies for Z
to yield that H is not horizontal. In particular B1∩{t = t0} and B2∩{t = t0}
share the same normal vector ν0, outward with respect to B1, at P0.

Formally speaking, it follows that Zt
|DZ|(x0, t0) < ∞ and

Zt

|DZ|
(P0) ≤ F (|DZ|)(P0) ≤ F (|DW |)(P0) ≤

Wt

|DW |
(P0) − h,

where the second inequality follows since F (r) is increasing in r and Z(·, t0) ≤
W (·, t0) in a neighborhood of x0. Above inequality says that the free bound-
ary speed of Z is strictly less than that of W at P0, contradicting the fact
that Γ(Z) touches Γ(W ) from below at P0.

For rigorous argument one can construct radially symmetric barrier func-
tions based on the exterior and interior ball properties of Z and W at P0 to
derive a version of (A.1) and yield a contradiction. For details see the proof
of Theorem 2.2 in [K1].

2

Next we prove Theorem 3.8.
Proof of Theorem 3.8. 1. We apply Perron’s method. Without loss

of generality we assume that F (r) ≥ F (0) ≥ −1. Since Ω0 is star-shaped
with respect to Bh(0), there exists C > 0 such and 0 < α < 1 such that for
any r > 0 and x0 ∈ Γ0

(A.3) sup
x∈Br(x0)

u0(x) ≤ Crα.

Let us define

U1(x, t) =











(1 − t/h2)2u0(
x

1 − t/h2
) for 0 ≤ t ≤ h2

0 for t ≥ h2

and
U2,r(x, t) = (1 + r)2 inf

y∈Br(t)(x)
u0((1 + r)−1y),

where r(t) = r − C1r
α−1t for 0 ≤ t ≤ (C1)

−1rα. Note that due to (A.3)
U2,r is a supersolution of (P̃ ) for sufficiently large C1. Moreover U1(x, t) is
a subsolution of (P̃ ) due to the fact that F ≥ −1 and Ω(u0) contains Bh(0).

Let z(x, t) ∈ P if and only if z(x, t) is a viscosity subsolution of (P̃ ) with
z(·, 0) ≤ u0(x) and U1 ≤ z in IRN × [0,∞). Let

U(x, t) := sup{z(x, t) : z ∈ P}
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Arguing as in the proof of Theorem 4.7 in [K1] yields that U∗ and U∗ are
respectively viscosity subsolution and supersolution of (P̃ ). Moreover due
to Theorem 3.7, U∗ ≤ U2,r for 0 ≤ t ≤ rα for any r > 0. In particular
U∗ = U∗ = u0 at t = 0. In other words, U∗ is a viscosity solution of (P̃ ).

2

B Global-time existence and uniqueness for solu-

tions with symmetry

The purpose of this section is to illustrate some examples where uM
n satisfies

(I) for all t ≥ 0 with r = r(t). For simplicity, we set
∫

Ω0
u = 1 and Ωt(u) ⊂

B1(0).

B.1 Reflection comparison

Lemma B.1 (Strong comparison principle). Let u, v be resp. viscosity sub-
and supersolutions of (P̃ ) in Σ = D × (a, b) with u ≤ v at t = a and on
∂D × (a, b). In addition suppose that u satisfies (I) for a ≤ t ≤ b. Then
u(·, t) ≤ v(·, t) in D for a < t < b.

Proof. For simplicity let a = 0. Let us define

ũ(x, t) := (1 + ǫ)−2 sup
y∈Brǫ(x)

u((1 + ǫ)y, t).

Observe that ũ is a subsolution of (P̃ ) due to Lemma 3.5. Also observe that,
since Ωt(u) is star-shaped with respect to Br(0) and −∆u = λ in Ω(u),

ũ(x, t) ≺ v(x, t) on the parabolic boundary of Σ.

Hence Theorem 3.7 yields that ũ ≺ v for 0 ≤ t ≤ b for any ǫ > 0, and
thus u ≤ v.

Recall that uM
n solves (PM

n ) with given initial positive phase Ω0(u
M
n ) =

Ω0. (see Definition 4.1.)

Lemma B.2. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T . Let H be any

hyperplane in IRn and let φH(x) be the reflection of x with respect to H. Let
D1 and D2 be the half-planes in IRn divided by H. If

uM
n (x, t0) ≤ uM

n (φH(x), t0) in D1

then
uM

n (x, t) ≤ uM
n (φH(x), t) in D1 for t0 < t ≤ T.
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Proof. Set v(x, t) := uM
n (φH(x), t). Then v solves the following equation in

(ktn, (k + 1)tn], k = 1, 2, ...







−∆v(·, t) = λM
n (ktn) in Ω(v)

vt = |Dv|min((|Dv|3 − 1),M) on Γ(v).

Moreover v = uM
n on H = ∂D1 = ∂D2. Since uM

n has a compact support
in any finite time period (Lemma 4.3), Lemma B.1 applies to uM

n ≤ v in D1

in (ktn, (k + 1)tn] for t0 < t ≤ T .

Corollary B.3. Suppose that Ω0(u
M
n ) ⊂ BR(0), R > 1 and uM

n satisfies (I)
for 0 ≤ t ≤ T . Then Ωt(u

M
n ) ⊂ B3R(0) for 0 ≤ t ≤ T .

Proof. For x0 ∈ (B3R(0) − B2R(0)), define

(B.1) C(x0) := {y : y · x0 ≤ −
1

2
|x0||y|}.

If we pick a hyperplane H normal to a vector y0 ∈ C(x0) containing x0, then

uM
n (φH(x), 0) = 0 ≤ uM

n (x, 0) in D1 := {ty + H, t > 0}.

Hence Lemma B.1 yields that uM
n is monotone increasing in the cone of

directions C(x0).
Suppose Γt(u

M
n ) touches ∂B3R(0) for the first time at x0 at t = t0. Then

due to (B.1) we have

(x0 + C(x0)) ∩ (B3R(0) − B2R(0)) ⊂ Ωt0(u).

Since
∫

uM
n (·, ktn)dx = 1, we obtain λ ≤ R−n−2. On the other hand

uM
n (·, t0) = 0 outside of B3R(0). Now comparing uM

n (·, t0) with f(x) :=
(3R)−n − (3R)−n−2x2 yields |DuM

n |(x0, t0) < 1. Therefore the outward
normal velocity of Γ(uM

n ) at (x0, t0) is strictly negative, contradicting the
definition of t1.

For Br(x) ⊂ Ω0, let

(B.2) t(x, r) = sup{t : Br(x) ⊂ Ωt(u
M
n )}.

Note that, due to Lemma 3.4, Br(x) is touched by Γt(u) for the first time
at t = t(x, r).
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Lemma B.4. Suppose uM
n satisfies (I) for 0 ≤ t ≤ T . Suppose Ω0(u)

was star-shaped with respect to Br(x0) with t0 := t(x0, r) ≤ T . Let y ∈
∂Br(x0) ∩ Γt0(u) and let H be the hyperplane normal to y − x0 containing
x0. Then

uM
n (φH(x), t) ≤ uM

n (x, t) in D1 × [t0, T ],

where D1 is the half-plane which is divided by H containing Br(x0).

Proof. Note that, since Ωt0(u
M
n ) is star-shaped with respect to Br(x0) with

y0 ∈ ∂Br(x0) ∩ Γt0(u
M
n ),

(B.3) uM
n (φH(x), t0) = 0 in D1.

Now we can conclude due to Lemma B.2.

B.2 Example 1: Two symmetric axis

Let e1, ..., en be an orthonormal basis in IRn.

Theorem B.5. Suppose Ω0 is star-shaped with respect to Br(0) and is sym-
metric with respect to e1 and e2-axis. Then for any T > 0, n and M , uM

n

satisfies (I) with r = r(T ) > 0 for 0 ≤ t < T .

Remark Due to Lemma B.2, Ωt(u
M
n ) stays symmetric with respect to

e1 and e2 axis.

Proof. Define t0 = t(0, r) > 0. If t0 = ∞ then we are done, so suppose t0
is finite. Then Br(0) ⊂ Ω(u0) and Γt0(u

M
n ) touches B̄r(0) at some point

x0 ∈ ∂Br(0).
Let ν = −x0 and let H be the plane which is orthogonal to ν. Let D1

be the half-plane divided by H which does not contain Br(0). Note that up
to t = t0, Ωt(u

M
n ) is star-shaped with respect to Br(0). Hence uM

n (·, t0) = 0
in D1. By symmetry, uM

n (·, t0) = 0 in the reflected image of D1 with respect
to e1 and e2-axis. Thus Ωt0(u

M
n ) lies between two parallel hyper-planes

with width at most 2r (see Figure 4). Recall that due to Corollary B.3
Ωt(u

M
n ) ⊂ BR(0) for some R > 0. Thus it follows that

V ol(Ωt0(u
M
n )) ≤ C(n)Rn−1r.

Recall that Ωt0(u
M
n ) = 0 in D1. If we choose r sufficiently small it follows

that |DuM
n |(x0, t0) > 1 (a detailed argument is given in the proof of Theorem

B.7, step 3, Case 1). This means that Ω(uM
n ) is strictly expanding at (x0, t0),

contradicting the definition of t0.
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Figure 4: Parallel hyperplanes bounding Ωt(u
M
n ).

Above theorem in particular states that a droplet with two symmetric
axis, if it satisfies (I) initially, never changes its topology at a later time,
however thin and long it is. On the contrary we will show below that a
dumbbell-shaped droplet changes its topology in finite time.

Lemma B.6. Suppose uM
n solve (PM

n ) with initial positive phase

Ω0 = B1(−3e1) ∪ B1(3e1) ∪ {x = (x1, x
′) : |x′| ≤ r, |x1| ≤ 3}.

If r is smaller than a dimensional constant, then Ω(uM
n ) changes its topology

before t = 1/2.

Proof. First observe that, since the free boundary velocity is greater than
−1, for 0 ≤ t ≤ 1/2 we have B1/2(±3e1) ⊂ Ωt(u

M
n ). Hence λ(uM

n ; t) < C(n)
for 0 ≤ t ≤ 1/2 and for some C(n) ≥ 1. Pick T = T (n) sufficiently small
Ωt(u

M
n ) ⊂ B10(0) for 0 ≤ t ≤ T . Now one can compare uM

n with

h(x, t) = C(n)min[(|x|2 − 100)+, (r(t)x4
1 − 34|x′|2 + 34r2)+]

where r(t) = (1 − (10C(n))3t)−1/3 for 0 ≤ t ≤ t0 := (10C(n))−4. One can
choose C(n) sufficiently large such that t0 ≤ T .

Observe that Ω(u0) ⊂ Ω0(h), −∆h(·, t) ≥ C(n). Also a straightforward
computation yields that

ht = 4C(n)r′(t)x3
1 ≥ |Dh|(−

1

2
+ |Dh|3) on Γt(h)

for 0 ≤ t ≤ t0, if 0 ≤ r ≤ 4−4.
Hence if we set

h̃(x, t) = inf
y∈Bt/2(x)

h(y, t),
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l 1

Figure 5: The lines l0,l1 and their reflections.

Then h̃ is a supersolution of (P̃ ) with λ = C(n). Now due to Theorem 3.7
we have uM

n ≺ h̃ in IRn × [0, t0].
If r ≤ 1

2 t0 then it follows that Ωt0(h̃) is no longer simply connected,
and therefore so is Ωt0(u

M
n )(Change of topology occurred before t = t0 ≤

1/2.)

B.3 Example 2: One axis symmetry with convexity

Here we set the dimension N = 2.

Theorem B.7. Suppose Ω0 ⊂ IR2 is convex and symmetric to e1 axis. Then
for any T > 0, n and M , uM

n satisfies (I) with r = r(T ) > 0 for 0 ≤ t ≤ T .

Proof. 1. Let

S = {Br(y) ⊂ Ω̄0 : y ∈ Ω0 ∩ {x = (x1, 0.., 0)}.

Then for each ball in S there is the first time Γt(u
M
n ) touches the ball. Let

t0 be the supremum of these times. Then Γt0(u
M
n ) touches y0 ∈ ∂Br(x0) for

some Br(x0) ⊂ S. We may assume that (y0 −x0) · e1 ≤ 0. Let l0 be the line
normal to y0 − x0 with y0 ∈ l.

2. First assume that Br(x1) ⊂ Ω0, where x1 := x0 + r1/2e1. Then
when the free boundary hits the boundary of Br(x1) for the first time at
t = t1 ≤ t0 it should not cross Br(x0). Therefore the first touching point
y1 ∈ ∂Br(x1) satisfies (y1 − x1) · e1 ≥ 0. Let l1 be the line normal to y1 − x1

with y1 ∈ l1 and let e1 point to the right, horizontally.
3. Due to (1), uM

n (·, t0) = 0 on the left side of l0. Moreover uM
n (·, t1) = 0

on the right side of l1. By symmetry uM
n (·, t1) = 0 on the right side of l̃1:

the reflection of l1 with respect to e1-axis (see Figure 5). Let θ0 be the angle
between l0 and e1, and θ1 be the angle between l1 and e1.

Case 1: θ1 < r1/2. By above argument uM
n (·, t1) = 0 outside of the cone

of angle r1/2 with e1-axis. Since Ωt(u
M
n ) ⊂ BR(0) for some R, Ωt(u

M
n ) is
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confined in a cone of angle r1/2 and height 6R. Let λ0 := λ(t1;u
M
n ) = λ0

and

h(x) :=
λ0

2
([3Rr1/2]2 − (x2)

2).

Since −∆h = λ0 and

Ωt1(u
M
n ) ⊂ Ω(h) = {x : |x2| ≤ 3Rr1/2},

we have uM
n ≤ h. Thus

∫

uM
n (·, t1)dx ≤

∫

Ωt1 (uM
n )

h(x)dx ≤ (λ0R
2r)V ol(Ωt1(u

M
n )) ≤ λ0(3Rr1/2)3.

Since
∫

uM
n (·, ktn)dx = 1, we obtain λ0 ≥ (3Rr1/2)−3 if r < (3R)−6. Note

that Br(x1) ⊂ Ωt1(u
M
n ), and thus

uM
n (·, t1) ≥ f(x) = (3R)−3r1/2 −

(3Rr1/2)−3

2
(x − x1)

2.

In particular |DuM
n |(y1, t1) ≥ |Df |(y1) = (3R)−3r−1/2 > 1 if r < (3R)−6.

This contradicts the fact that the outward normal velocity of Γ(uM
n ) at

(x1, t1) is nonnegative.
Case 2: θ1 > r1/2. Note that, up to t = t1, Ωt(u

M
n ) is star-shaped with

respect to both Br(x0) and Br(x1). Hence it follows that Ωt(u
M
n ) contains

the strip
Σ = {x : x ∈ Br(z), z = x0 + te1, t ∈ [0, r1/2]}.

Let φ be the reflection with respect to the line parallel to e2 and goes through
x1. Then

uM
n (φ(x), t1) ≤ uM

n (x, t1) in D3 = {x : (x − x1) · e1 ≤ 0.}

Hence, by Lemma B.1 we have

(B.4) uM
n (φ(x), t0) ≤ uM

n (x, t0).

If we combine (B.4) with the fact that uM
n (x, t0) = 0 on the right hand side

of l0, then it follows that Ωt0(u
M
n ) is contained in the channel of width at

most 2r1/2 and height 6R. Now the same argument as in Case 1 yields a
contradiction if r < (3R)−6.

4. Lastly suppose

y1 ∈ Br(x0 + τe1) ∩ ∂Ω0 for some τ ∈ [0, r1/2).
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Let l3 be the line parallel to e2 containing y1. Since Ω0 is convex and
symmetric with respect to e1-axis, we have u0(x) = 0 on the right side of l3.
Therefore Lemma B.1 yields that for t > 0

uM
n (·, t) ≤ uM

n (φ(x), t), on the right side of l3,

where φ(x) is the reflection of x with respect to l3. Now one can proceed as
in Case 2 to derive a contradiction.

Remark One class of initial configurations covered in above theorem
are circular sectors

Ω(u0) = {reiθ : 0 ≤ r ≤ R, 0 ≤ θ ≤ θ0}.
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