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Abstract

We study a free boundary problem describing the propagation of laminar flames. The

problem arises as the limit of a singular perturbation problem. We introduce the notion

of viscosity solutions for the problem to show the maximum principle-type property of

the solutions. Using this property we show the uniform convergence of the approximating

solutions and the uniqueness of the viscosity solution under several geometric conditions

on the initial data.

0 Introduction

In this paper we consider a free boundary problem for the heat equation. The classical
formulation is as the following. Consider Ω0: an open subset of IRn and a nonnegative initial
data u0 ∈ C(IRn) with its nonempty bounded positivity set {u0 > 0} = Ω0. The problem
consists in finding a nonnegative continuous function u in Q = IRn × (0,∞) such that

(P )































ut − ∆u = 0 in {u > 0},

|Du| = 1 on ∂{u > 0},

u0(x, 0) = u0(x) ≥ 0

We may also write the condition on the free boundary Γ in the form uν = −1, where ν denotes
the derivative of u with respect to the outward spatial normal ν to ∂{u > 0}. Formally the
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velocity Vn of the free boundary in the direction of ν is given by

(0.1) Vn = ut/|uν| = ut = ∆u,

due to the boundary condition.

This problem (P ) occurs in combustion theory in the analysis of the propagation of curved
flames, where u denotes the minus temperature λ(Tc − T ), where Tc is the flame temperature
and λ is a normalization factor. It is derived in the theory of equidiffusional premixed flames
analyzed in the relevant limit of high activation energy, as developed for instance in Buckmaster
and Ludford [BuL] (For further details see [CV1] and the survey paper [V].) After convenient
simplifications the limit situation is reduced to solving the problem

(P ε)











uε
t − ∆uε = −βε(uε),

uε(·, 0) = u0,ε

as ε → 0.

Here βε(s) = 1/εβ(s/ε) with the following assumptions:

(i) β is positive in the interval I = {0 < s < 1} and 0 otherwise;

(ii) it is a C∞ function in [0,∞);

(iii) it is increasing for 0 ≤ s < 1/2, decreasing for 1/2 < s ≤ 1;

(iv)
∫ 1
0 β(s)ds = 1/2.

We also assume the following on the initial data of uε
0:

(0.2) u0,ε are nonnegative C∞ functions uniformly converging to u0 with

d({u0,ε > 0}, {u0 > 0}) → 0 as ε → 0,

where d(X, Y ) = inf{|x − y| : x ∈ X, y ∈ Y } for sets X, Y ⊂ IRn.

Note that with above assumptions on the initial data (Pε) admits a unique solution uε ∈
C∞(IRn × (0,∞)).

The existence and regularity of classical solutions of (P ) were proved in [GHV] when the
initial data u0 is radially symmetric, by using the elliptic-parabolic approach. When the initial
data is smooth enough (C3,α), [BL] proved the short-time existence, uniqueness and regularity
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results for smooth solutions. The classical solutions of (P ) in special settings were constructed
in [Me] and [AG].

Various concepts of generalized solutions have been introduced in the literature in order to
justify the limit process and to obtain global time solutions of (P) for general data. In [CV1] it

is proved that uε converges along subsequences to a function u in C
1,1/2
loc ). We call such functions

u as a limit solution of (P). Here a concept of weak solution is introduced to clarify the nature
of the limit solutions with strictly superharmonic initial data. On the other hand the concept of
viscosity solution for (P) was introduced by [LVW] with the same purpose. Assuming that u0 is
monotone in one direction, [LVW] shows that three concepts of solutions of (P), limit, viscosity
and classical, agree with each other and yield a unique solution as long as classical solutions
exist. [P] shows the uniqueness of the limit solutions as a minimal viscosity supersolution when
u0 is starshaped (see Corollary 2.6).

In general we should not expect any uniqueness result unless we impose some geometrical
conditions on the initial data (see [V] for an example where non-uniqueness occures.) In this
paper we introduce a notion of viscosity solution of (P ) to prove the global uniqueness and
existence result for solutions of (P) for several classes of the initial data (see Corollary 2.6
and 3.5.) It follows that in these cases the whole sequence (uε)ε given above locally uniformly
converges to the unique viscosity solution of (P). We point out that our notion of viscosity
solutions is a class of viscosity solutions introduced in [LVW].

In section 1 we introduce a definition for viscosity solutions of (P ). By definition it follows
that classical solutions of (P) are viscosity solutions of (P). In Theorem 1.3 we also show that
limit solutions are viscosity solutions of (P).

In section 2, we show that a comparison principle holds for the viscosity solutions of (P ).
As in the Hele-Shaw problem studied in [K], the difficulty comes from (a) the presence of a
free boundary, (b) non-geometric nature of the problem and (c) lack of local classical solutions
as test functions. Moreover, additional difficulty comes from the fact that the free boundary
of solutions of (P ) might propagate with infinite speed. To overcome this technical difficulty
we adopt a double sup/inf-convolution. (see section 2.) Based on the comparison principle,
uniqueness results are proven for the class of initial data studied in [CV1] and [P]. In such cases
it follows that uε, the solutions of (P ε) locally uniformly converge to the unique viscosity solution
u of (P ) as ε → 0.

In section 3, we study the problem (P ) in a domain Ω × [0,∞) with the Neumann boundary
data on ∂Ω. Assuming that ∂Ω is smooth, we locally transform Ω onto a half-plane by a local
parameterization of the boundary. Then by reflection argument we can avoid dealing with the
boundary condition. We also show a uniqueness and convergence result for the class of initial
data studied by [LVW].
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1 Definition of the viscosity solutions

Extending the notion in [K], we define viscosity solutions of (P ) as follows.

Definition 1.1 (1) A nonnegative continuous function u defined in Q is a viscosity subsolution
of (P ) if (i) {u > 0} ∩ {t = 0} = {u0 > 0} and (ii) for every φ ∈ C2,1(Q) that has a local
maximum of u − φ in {u > 0} ∩ {t ≤ t0} at (x0, t0),

(a) (φt − ∆φ)(x0, t0) ≤ 0 if u(x0, t0) > 0,

(b) min(φt − ∆φ, 1 − |Dφ|)(x0, t0) ≤ 0 if (x0, t0) ∈ ∂{u > 0} and u(x0, t0) = 0.

(2) A nonnegative continuous function v defined in Q is a viscosity supersolution of (P ) if for
every φ ∈ C2,1(Q) that has a local minimum zero of v − φ in {v > 0} ∩ {t ≤ t0} at (x0, t0),

(a) (φt − ∆φ)(x0, t0) ≥ 0 if (x0, t0) ∈ {v > 0},

(b) max(φt − ∆φ, 1 − |Dφ|)(x0, t0) ≥ 0 if (x0, t0) ∈ ∂{v > 0} and if

(1.1) |Dφ| 6= 0 on {φ = 0} and {φ > 0} ∩ {v > 0} ∩ B(x0, t0) 6= 0 for any ball B(x0, t0).

We say that u ∈ C(Q̄) is a viscosity solution of (P ) if it is both a viscosity sub- and superso-
lution.

Remark.

* Condition (i) in (1) is to control the behavior of u at t = 0. Without this condition the
solution of the heat equation with the initial data u0 is a viscosity solution and therefore the
uniqueness does not hold.

* Condition (1.1) is to insure that the zero level set ∂{φ > 0} is smooth and φ+ = max (φ, 0)
is nontrivial in {v > 0} near (x0, t0).

A smooth function u ∈ C2,1({u > 0; t > 0})∩C1,0({u > 0}) with Du ∈ C({u > 0}) and initial
data |Du0| = 1 on Γ0 = ∂{u0 > 0} is a classical solution of (P) if u satisfies (P) in the classical
sense. The following is clear from the definition.

Corollary 1.2 If u is a classical solution of (P) for t ≤ T , then u is a viscosity solution of (P)
for t ≤ T .
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Throughout the paper, we assume that u0 ∈ C1({u0 > 0}) with |Du0| = 1 on ∂{u0 > 0}. Let
uε is the unique classical solution of (P )ε with initial data u0,ε as given in section 1. Then along
a subsequence (uε) locally uniformly converge to a continuous limit solution u (refer [CV1].)
Note that such u need not to be unique.

Theorem 1.3 u is a viscosity solution of (P ).

Proof.

1. First we show that u is a viscosity subsolution of (P). The following test function used in [P]
is adopted for barrier arguments. Let us consider the family of functions {φε}ε > 0, φε ∈ C2(IR)
such that

(1.2) φε
ss(s) = γε(φ

ε(s)),

where

γε(s) =

{

cβε(s) in [aε, ε),
0 otherwise .

Here the constant c > 1 will be chosen later and a > 0 is chosen such that
∫ ε

aε
γε(s)ds =

1

2
.

Let us normalize φε by φε(s) = aε for s ≤ aε. Observe that φε(s) → s+ locally uniformly as
ε → 0.

2. Suppose that there is f ∈ C2,1(Q) such that u − f has its local maximum zero at (x0, t0)
in {u > 0}. If u(x0, t0) > 0 one can easily check that (ft − ∆f)(x0, t0) ≤ 0 due to the stability
property of viscosity solutions, and thus we may assume that u(x0, t0) = 0. Suppose that f
satisfies min(ft − ∆f, 1 − |Df |) > 0 at (x0, t0). By subtracting δ(x − x0)

2 − δ(t − t0 + δ) from
u − f if needed, we may assume that the maximum is strict and u crosses f from below at
t = tδ, where t0 − δ ≤ tδ ≤ t0. Then (along a subsequence) for small ε > 0 uε − φε(f) has its
local maximum zero at (xε, tε) with (xε, tε) → (xδ, tδ) as ε → 0. Since uε > 0 is a subsolution of
(P ε), we have the following inequality at (xε, tε):

φε
s(f) · (ft − ∆f) − φε

ss(f)|Df |2 ≤ −βε(uε).

Now if we choose 1 < c < 1/|Df |2(x0, t0), then above inequality leads to a contradiction.

3. Finally consider a stationary supersolution h ≥ 0 of (P). (For example consider a radially
symmetric harmonic function h in the set Dr = {x : |x − x0| > r} with h > 0 in Dr and
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h = 0 on ∂Dr. After a constant multiplication we may assume that |Dh| = 1 on ∂Dr and thus
h(x, t) = h(x) is a classical supersolution of (P) with free boundary Dr × [0,∞).) By comparing
uε with φε(h) and by applying similar arguments to uε − φε(h) as above, we can easily check
that {u > 0} ∩ {t = 0} = {u0 > 0}. Thus we conclude that u is a viscosity subsolution of (P ).

4. To prove that u is a viscosity supersolution, suppose that there is a C2,1 function g such
that u − g has its local minimum zero at (x0, t0) in {v > 0}. As before we only have to check
when u(x0, t0) = 0 and when g satisfies max(gt − ∆g, 1 − |Dg|) < 0 at (x0, t0). Without loss
of generality we may assume that the minimum is strict. Thus for small ε and for φε as given
above, (along a subsequence) uε − φε(g) has its strict minimum at (xε, tε) which converges to
(x0, t0) as ε → 0. We have the following inequality at (xε, tε):

φε
s(g)(gt − ∆g) − φε

ss(g)|Dg|2 ≥ −βε(uε).

This contradicts the definition of φε and the fact that c > 1.

2

2 Comparison principle

Definition 2.1 We say that a pair of functions u0, v0 is strictly ordered if

(i) supp(u0) = {u0 > 0} is bounded, and it satisfies

supp(u0(x)) ⊂ Int(supp(v0(x))).

(ii) inside supp(u0) the functions are strictly ordered:

u0(x) < v0(x).

We denote such ordering, or separation, by the symbol u0 ≺ v0.

Theorem 2.2 Let u and v be respectively a sub- and supersolution of the equation (P ) with
strictly separated initial data, u0 ≺ v0. Then the solutions remain ordered for all time:

u(x, t) ≺ v(x, t) for every t > 0.
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To obtain a finite propagation property, we apply inf- and sup-convolution twice, first in
Dr(x) = {y : |x−y| ≤ r} and then Br(x, t) = {(y, s) : |x−y|2 + |t−s|2 ≤ r2}. More precisely,
in the domain Qr = IRn × [r,∞) let us define functions Z and W as given below:

Z(x, t) = sup
Br(x,t)

U(y, s) where U(x, t) = sup
Dr(x)

u(y, t),

W (x, t) = inf
Br(x,t)

V (y, s) where V (x, t) = inf
Dr(x)

v(y, t).

Note that Z, U and W, V are respectively viscosity sub- and supersolution of (P ).

Since u0 ≺ v0 and {u > 0} ∩ {t = 0} = {u0 > 0}, we can take r small enough that Z ≺ W at
t = r. For such r > 0 we claim that Z ≺ W for t > r, and thus u ≺ v for t > 0.

Suppose that the claim is not true. Then for Z, W defined with r > 0 chosen small as above
we have

0 < t0 = sup{t ≥ r : Z(x, τ) ≺ W (x, τ) for r ≤ τ < t} < ∞.

By a barrier argument we can easily show that {Z > 0} ∩ {t ≤ t0} is bounded, and by
continuity of Z, W there is a point P0 = (x0, t0) where Z − W attains its maximum zero in
{Z > 0} ∩ {t ≤ t0}. If Z(P0) = W (P0) > 0, at t = t0 the we get a contradiction by the
maximum principle of heat equation. This implies that indeed Z = W = 0 and P0 belongs to
the set ∂{Z > 0} ∩ ∂{W > 0}.

By definition the set {Z > 0} has an interior space-time ball of radius r at P0, centered at
P1 ∈ ∂{U > 0}. On the other hand at P1 the set {U > 0} has an exterior space-time ball B1

of radius r centered at P0, for t ≤ t1. (From now on we set r = 1 for simplicity.) By choosing
appropriate origin and coordinates, we may assume that P0 = (0, t0) and space projection of
P0P1 = d1e1, where d1 > 0 and e1 = (1, 0, ..., 0). Similarly at P0 by definition the set {W > 0}
has an exterior space-time ball, centered at P2 ∈ ∂{V > 0}, while at P2 the set {V > 0} has
a interior space-time ball B2 for t ≤ t0, centered at P0. Observe that the space projection of
P2P0 = d2e1, d2 > 0.

Let H be the tangent hyperplane to the interior ball of Z at P0.

Lemma 2.3 H is not horizontal.

Proof.

1. Suppose H is horizontal. Then either P0P1 = (0, ..., 0, 1) or P0P1 = (0, ..., 0,−1). (Recall
that we fixed r = 1 for simplicity.)
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Figure 1.

2. We first consider the case P0P1 = (0, ..., 0, 1). Then at P1 = (x1, t1) the set {U > 0} has
an exterior ball B1 with horizontal tangency. By definition, u = 0 in the region L1 = {(y, s) :
|y − x| = 1, (x, s) ∈ B1}. In particular at p1 ∈ ∂{u > 0}, the set {u > 0} has an exterior ball
B′

1: a translate of B1 with horizontal tangency and the set {u(·, t1) > 0} has an exterior disk
D1 with center P1. Let us set P1 − p1 = e1. After comparing u with a caloric function in the
region 2D1\D1 × [t1 − τ, t1] with lateral boundary data zero on ∂D1, max2D1

u on ∂(2D1) and
with a smooth nonnegative initial data, we can check that

α = lim sup
(x,t)→p1

u(x, t)

|x| < ∞.

3. Suppose α > 0. Our goal here is to derive a contradiction by constructing a local superso-
lution φ, which crosses u from above at p1 with |Dφ|(p1) < α.

For a technical reason we replace balls which are used in the definition of Z by ellipsoids. In
fact all our previous arguments work with Z replaced by

Z ′(x, t) = sup
Er(x,t)

U(y, s),

where Er(x, t) = {(y, s) : |y − x|2 + k2/2(s − t)2 = k2/2r2} with k = 64(n − 1). More precisely,
for the sake of simplicity we are using the standard notation of Z defined thru balls instead of
Z ′ except at this point, where the properties of ellipsoids are necessary. Therefore it should be
pointed out that the function Z we have been using and will use in the proofs is actually Z ′

defined above thru ellipsoids.

4. Recall that we fix r = 1 for simplicity. By a change of coordinate we can set p1 = (0, 0).
Now near p1 we have u = 0 in the set Γ = {(x, t) : |x|2 ≤ −k2t}. Furthermore, u = 0 in the
union of translates of Γ by points in D1. Therefore after scaling u(x, t) → ε−1u(εx, ε2t), for any
δ > 0 we can construct a subsolution ω in a cylinder C = {|x| ≤ k,−1 ≤ t ≤ 0} such that
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ω = 0 at {t = −1} ∩ C,

ω = 0 in Σ = {(x, t) : |x + k/4e1|2 ≤ k2/16 − k2t} ∩ C, and

ω ≤ (α + δ)k on |x| = k.

(see Figure 2.) Consider φ: a smooth function given by

(2.1)











φ(x, t) = f((1 + 1/2t)|x + k/4e1|),

f(r) = 1/4β(r − k/4)2 + (β − δ)(r − k/4)

where β = α. Observe that in the set Σ, φ satisfies

φt − ∆φ ≥ (1/2 − 4(n − 1)/k)f ′ − f ′′ > 0 if δ << α.

One can easily check that φ ≥ 0 on ∂Σ. Moreover, on |x| = k

φ > 1/64αk2 + 3/4(α − δ)k > (α + δ)k

if δ << α (for example if δ < 1/4α). Therefore w ≤ φ in the parabolic boundary of {w > 0} in
C, and by the maximal principle of the heat equation u ≤ φ in C. But then we have

α < lim sup
(x,t)→p1

φ(x, t)

|x| = α − δ,

which is a contradiction.

5. Thus α = 0. Now we can construct φ in (2.1) with β = 1/4, δ = 0, which crosses u from
above at p1 with (φt − ∆φ)(p1) > 0, |Dφ|(p1) = 1/4. This contradicts the definition of u as a
viscosity subsolution of (P ).
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6. Thus P0P1 = (0, ...,−1) and we have P0P2 = (0, ..., 0, 1). At P2 = (x2, t2) the set {V > 0}
has an interior ball B1 with horizontal tangency. By definition, v > 0 in the region L2 = {(y, s) :
|y − x| = 1, (x, s) ∈ B1}. In particular at p2 ∈ ∂{v > 0}, the set {v > 0} has an interior ball
B′

1: a translate of B1 with horizontal tangency and the set {u(·, t2) > 0} has an interior disk D1

with center P2. A parallel argument as in the previous steps, by investigating the behavior of v
near the point p2, leads to a contradiction.

2.

Due to Lemma 2.3, if H is the tangent hyperplane to the interior ball to {Z > 0} at P0, we
can write (e1, m), −∞ < m < ∞ : the internal normal vector to H with respect to {Z > 0} at
P0. We call m as the advancing speed of H (with respect to Z) at P0.

The following lemma is based on the corresponding result of [K] and [CV1] and thus we only
present a brief version of the proof. For details, see [CV1]. For a constant 0 < c < 1 we consider
a nontangential cone K defined as below:

K = {x ∈ IRn :
x

|x| · e1 ≥ c}.

Lemma 2.4 In any nontangential cone K,

(2.2) lim inf
x→0,x∈K

Z(x, t0)

(x1)+

≥ 1.

Sketch of the proof.

1. Suppose that (2.2) is not true. Then for a sequence of points An = (x1n, x′
n) converging to

0 ∈ IRn and lying in a nontangential cone K we have

(2.3) Z(Qn) ≤ (1 − ε)(x1n)+ for some ε > 0

with Qn = (An, t0).

2. By arguments based on the definition of Z (see [CV]) and taking x1n = λ > 0 small
in (2.3) we conclude that there is a set L = Lλ in space-time as portrayed in Figure 3 where
U ≤ µλ = (1 − ε)λ. The boundary of Lλ contains a concave part closer to the origin, which
contains P1 and exterior to B1, and there we have U = 0. By straightforward computation it
turns out to be that Lλ is (in space) of depth λ and width O(

√
λ). Let Lτ = L∩{t1−τ ≤ t ≤ t1}

for τ > 0.
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Figure 3.

3. Consider a space-time ball B̃1 such that B̃1 ∩ {t = t1} = B1 ∩ {t = t1} with the advancing
speed of its tangent hyperplane at P1 equal to m − ε. (Here m is the advancing speed of the
tangent hyperplane of B1 at P1.) We compare U in Lτ with a radially symmetric C2,1 function
φ such that































φt − ∆φ = 1 in (2B̃1 − 1
4
B̃1) ∩ {t1 − τ < t ≤ t1},

{φ(·, s) > 0} = B̃c
1 ∩ {t = s} for t1 − τ < s ≤ t1,

|Dφ| = 1 − ε/2 on ∂B̃1 ∩ {t = t1}.

(Such test function φ can be obtained from a slight modification from Appendix B in [K].)
If we choose λ small compared to ε and τ , then it follows that φ is bigger than (1 − ε)λ on
Lτ ∩ {t = t1 − τ.}. Moreover by computations as in [K] it turns out that U ≤ φ in the lateral
boundary of Lτ for τ, λ small compared to ε, and thus U crosses φ from below at P1. This leads
to a contradiction since φ satisfies

min(φt − ∆φ, 1 − |Dφ|)(P1) > 0.

2

Proof of Theorem 2.2

1. By a change of coordinates, we set P0 = (x0, t0) = (0, 1). At P0, the set {Z(x, t0) > 0} has
an interior space-time ball B with its inward normal vector (e1, m), |m| < ∞. Note that since
|m| < ∞ we have B ∩ {t = 1 − τ} 6= ∅ for 0 < τ < τ0 = τ0(m).

Next we consider h: a C2,1 solution of heat equation in the domain B ∩ {1− τ ≤ t ≤ 1} with
h(·, 1− τ) ≥ 0 and h = 0 on ∂B. Since Z < W at t = 1− τ in {Z > 0}, there is ε > 0 such that

Z + εh < W in {Z > 0} ∩ {t = 1 − τ}.
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Moreover, Z + εh = 0 ≤ W on ∂B. Thus by maximum principle of heat equations, Z ≤ W
on B ∩ {t = 1} and for any nontangential cone K we have

(2.4) lim inf
x→0,x∈K

W (x, t0)

(x1)+

≥ 1 + εDh · e1 > 1 + δ,

where δ > 0 is a constant. The last inequality comes from the Hopf’s formula.

2. At P2 = (x2, t2), due to the definition of W the set {V > 0} has an interior space-time ball
B2 with radius 0 < h ≤ 1/2 such that B2 has a tangent hyperplane at P2 with advancing speed
equal to m (When h = 1/2, B2 has its center at P3 = (x3, t3) = (P0 + P2)/2 and P0, P2 ∈ ∂B2.
See Figure 4.)

If (x, s) ∈ B2 and if d(x, ∂B2 ∩ {t = s}) = k then it follows that d((x, s), P0 + ke1) ≤ 1 and by
definition of W we have V (x, s) ≥ W (P0 + ke1).

Thus if h is small enough, due to (2.4) the following holds for (x, s) ∈ intB2:

(2.5) (1 + δ/2)d(x, ∂B2 ∩ {t = s}) < V (x, s).

( Observe that from the proof of Lemma 2.3 we have B2 ∩ {t = t2} 6= ∅. )

3. Consider a smooth function ϕ given by































ϕt − ∆ϕ = −1 in (2B1 − 1
4
B2) ∩ {t2 − τ < s <≤ t2},

{ϕ(·, s) > 0} = B2 ∩ {t = s} for t2 − τ < s ≤ t2,

|Dϕ| = 1 + δ/4 on ∂B2 ∩ {t = t2}.
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( After translations in space and time, ϕ = −cφ where φ as in Lemma 2.4 and c > 0 is a
constant.) It follows from (2.5) that φ ≤ V and therefore v − φ has a local minimum zero at P2

in {V > 0} ∩ {t ≤ t2}. But this leads to a contradiction since ϕ satisfies

max(ϕt − ∆ϕ, 1 − |Dϕ|)(P2) < 0.

2

Corollary 2.5 For a given nonnegative initial data u0 ∈ C(IRn) with bounded support, there
exist the minimal and maximal viscosity solution of (P) with initial data u0.

Proof.

1. Suppose that (uε
0)ε > 0 satisfy (0.2) with uε

0 ≺ u0. (This could be done, for example by
taking uε

0: a smooth, nonnegative and close enough approximation of u0 − ε.) Fix ε > 0 and
uδ be the smooth solution of (P δ) with initial data uε

0. Due to [CV1] and Theorem 1.2, along a
subsequence uδ uniformly converges to a viscosity solution u(x, t; ε) of (P ) with initial data uε

0.
Therefore for any ε > 0 there is a δ = δ(ε) > 0 such that uδ ≤ u(x, t; ε) + ε.

2. Again Due to [CV1] and Theorem 1.3, along a subsequence (uδ(ε))ε uniformly converges as
ε → 0 to a viscosity solution U of (P ) with initial data u0. By above arguments, if v is any
other viscosity solution of (P ) with initial data u0, then u(x, t, ε) ≤ v from Theorem 2.2, and
thus U ≤ v. Thus U constructed as above is the minimal viscosity solution of (P ) with initial
data u0. The maximal solution can be constructed in a parallel way.

2.

The uniqueness of the viscosity solution of (P ), as mentioned earlier, does not hold in general.
However under certain conditions on the structure of the initial data, one can show the unique-
ness results by using Theorem 2.2 and scaling arguments. Below we consider the cases which
were studied in [P] (case a), [CV1] (case b). For these cases we first show that the comparison
principle holds between solutions with the same initial data. As we explain later, this result
immediately leads to the uniqueness of the viscosity solution.

Corollary 2.6 Suppose that u0 ∈ C(IRn), u0 ≥ 0 with bounded support and |Du0|=1 on the set
∂{u0 = 0}. In addition, suppose that one of the following properties holds for u0:

(a) u0 is starshaped, i.e. u0(αx) ≺ αu0(x) for α > 1.

(b) u0 is C2({u0 > 0}) and u0 is strictly superharmonic, i.e. inf{u0>0} −∆u0 > 0.
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Suppose that u, v are respectively viscosity sub- and supersolution of (P) with initial data u0

and v0. Then the following property holds:

If u0(x) ≤ v0(x), then u(x, t) ≤ v(x, t) for every t > 0.

Proof.

1. Let us first assume that (a) holds for u0. We observe that if u is a viscosity subsolution
of (P), then the version of (P) solved by ū(x, t; ε) = (1 + ε)−1u((1 + ε)x, (1 + ε)2t) has ū(x, 0; ε)
as initial data for any ε > 0. Moreover, by (a) ū(x, 0; ε) ≺ v0(x). From Theorem 2.2 we get
ū(x, t; ε) ≤ v. Since u is continuous, we can send ε → 0 to conclude that

u(x, t) = lim
ε→0

ū(x, t; ε) ≤ v(x, t).

2. Next we assume that (b) holds. It is clear that ut < 0 at t = 0 in the positive set {u > 0}.
We will show that in fact the free boundary of u strictly shrinks at t = 0. Since the boundary
Γ = ∂{u0 > 0} is a C2-hypersurface, at each point x0 ∈ Γ there is an exterior space ball B
such that Γ∩B = {x0}. In the domain Ω = IRn −B, we consider a radially symmetric function
ϕ ∈ C2(Ω) such that











−∆ϕ = c/2 = inf{u0>0} −∆u0 > 0 in Ω,

|Dϕ| = 1, ϕ = 0 on ∂B.

Note that
−∆ϕ(x0) = −κ(ϕ)(x0) − ϕnn(x0) and

−∆u0(x0) = −κ(u0)(x0) − (u0)nn(x0),

where κ(f, x) denotes the mean curvature of the set {f = 0} at x. (κ > 0 for convex free
boundary), and n denotes the inward normal vector of the free boundary. Since B is exterior to
{u0 > 0}, we have −κ(ϕ) ≥ −κ(u0). Furthermore −∆ϕ(x0) = c < −∆u0(x0). Therefore we have
(u0)nn(x0) < ϕnn(x0) and thus ϕ ≥ u0 in a neighborhood of B. Since ϕ is radially symmetric
superharmonic function, there is a classical solution of (P ) with initial data ϕ in short time
with strictly shrinking free boundary, (see [V]) and thus we conclude that the free boundary of
u strictly shrinks at t = 0. Now consider ū(x, t; ε) = u(x, t + ε). Since ū(x, 0; ε) ≺ u0(x), ū ≤ v
and sending ε → 0 implies that u ≤ v.

2.

By Theorem 1.3 there exists a viscosity solution of (P) given as a uniform limit of (uε)ε as ε → 0.
It follows from Corollary 2.6 that such u is indeed the unique viscosity solution of (P).
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Corollary 2.7 Assuming that one of the conditions (a)-(b) holds for u0, there is a unique
viscosity solution u of (P) with initial data u0. Moreover for these cases the entire sequence of
(uε)ε converges locally uniformly to u as ε → 0, where uε is a solution of (P ε) with initial data
prescribed as in (0.2).

3 Neumann boundary problem

In this section we study (P ) in a domain with the Neumann boundary condition. For given
domain Ω ⊂ IRn, we denote n = n(x): the outward unit normal vector w.r.t. Ω at x ∈ ∂Ω. The
problem is to find a solution u ≥ 0 in Π = Ω × (0,∞) such that

(P2)































ut − ∆u = 0 in {u > 0},

|Du| = 1 on ∂{u > 0},

∂u(x, t)/∂n(x) = 0 for x ∈ ∂Ω.

Definition 3.1 (1) A nonnegative continuous function u in Π is a viscosity subsolution of (P2)
if (i) {u > 0} ∩ {t = 0} = {u0 > 0} and (ii) for every φ ∈ C2,1(Π) that has a local maximum of
u − φ in {u > 0} ∩ {t ≤ t0} at (x0, t0),



















































(φt − ∆φ)(x0, t0) ≤ 0 if u(x0, t0) > 0, x0 ∈ Ω,

min(φt − ∆φ, 1 − |Dφ|)(x0, t0) ≤ 0 if u(x0, t0) = 0, x0 ∈ Ω,

min(φt − ∆φ, ∂φ/∂n)(x0, t0) ≤ 0 if u(x0, t0) > 0, x0 ∈ ∂Ω,

min(φt − ∆φ, 1 − |Dφ|, ∂φ/∂n)(x0, t0) ≤ 0 if u(x0, t0) = 0, x0 ∈ ∂Ω.

(2) A nonnegative continuous function v in Π is a viscosity supersolution of (P2) if for every
ϕ ∈ C2,1(Π) that has a local minimum of v − ϕ in {v > 0} ∩ {t ≤ t0} at (x0, t0) (and with (1.1)
if v(x0, t0) = 0,)
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(ϕt − ∆ϕ)(x0, t0) ≥ 0 if v(x0, t0) > 0, x0 ∈ Ω,

max(ϕt − ∆ϕ, 1 − |Dϕ|)(x0, t0) ≥ 0 if v(x0, t0) = 0, x0 ∈ Ω,

max(ϕt − ∆ϕ, ∂ϕ/∂n)(x0, t0) ≥ 0 if v(x0, t0) > 0, x0 ∈ ∂Ω,

max(ϕt − ∆ϕ, 1 − |Dϕ|, ∂ϕ/∂n)(x0, t0) ≥ 0 if v(x0, t0) = 0, x0 ∈ ∂Ω.

u is a viscosity solution of (P2) if it is both viscosity sub- and supersolution of (P2).

Theorem 3.2 Assume that ∂Ω is C3 and Ω is bounded. Let u and v be respectively a sub- and
supersolution of (P2) with strictly separated initial data, u0 ≺ v0. Then the solutions remain
ordered for all time:

u(x, t) ≺ v(x, t) for every t > 0.

Let R > 0 be small enough that in BR(x0) ∩ ∂Ω, there exists a regular C3 parameterization
σ in the variables y′ = (y1, ..., yn−1) in a neighborhood N of origin in IRn−1. Let

x = σ(y′) + ynν(σ(y′)) := h−1(y).

Then h is C2(BR(x0),N ) with nonvanishing Jacobian Dh in BR(x0) and h(Ω ∩ BR(x0)) =
N ∩ {yn > 0}.

For a function v in Ω, Let us define v′ = v(h−1(y), t) in y ∈ N ∩ {yN > 0} and

(3.1) v̄(y, t) =











v′(y, t) if y ∈ N ∩ {yn > 0}

v′(y′,−yn, t) if y ∈ N ∩ {yn ≤ 0}.

If v is a viscosity sub- or supersolution of (P2) in Π, then it is easy to check that, with a
parallel definition with Definition 1.1, v̄ is a viscosity sub- or supersolution to the following
problem in D = N × (0,∞):

(P )′































(∗) v̄t − F (D2v̄, Dv̄, y, t)

= v̄t − Σi,j(aij(y)v̄yj
(y, t))yi

= 0 in {v̄ > 0},

|Dh(h−1(y)) · Dv̄(y)| = 1 on ∂{v̄ > 0},
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where aij(y) = ∇hi(x) · ∇hj(x), h(x) = y in N .

( For example, consider the case in which v is a viscosity subsolution of (P2) in Π. We claim
that v̄ is a viscosity subsolution of (P )′ in D = N × (0,∞).

Suppose there is a smooth function φ : D → IR such that v̄ − φ has a local maximum at
(y0, t0) ∈ D. Without loss of generality we may assume that the maximum of v̄ − φ is strict.
We show that if y0 ∈ {y : yn = 0} and v̄(y0, t0) > 0 then

(3.2) φt − F (D2φ, Dφ, y, t) ≤ 0.

Let us define ϕ = φ(y, t)+φ(y′,−yn, t)+ εyn for y ∈ N and Φ(x, t) = ϕ(h(x), t) for x ∈ h−1(N ).
Then Φ is smooth in a small neighborhood M of (x̄, t0), x̄ = h−1(y0). Moreover, since v(x̄, t0) >
0, if ε > 0 is small enough then v−Φ has a local maximum at (xε, tε) ∈ M∩Π with v(xε, tε) > 0.
Since

∂Φ(x, t)/∂n = ∂ϕ/∂(yn) = ε > 0 for x ∈ ∂Ω,

the inequality (3.2) follows from Definition 3.1, (1). Other cases can be also shown by parallel
arguments as above, and thus our claim follows.)

Since aij(0) = ∇hi(x0) · ∇hj(x0) = δij, we can choose R > 0 small enough so that in
N = h(BR(x0)) we have

1/2|ξ|2 ≤ Σi,jaijξiξj ≤ 2|ξ|2
and

1/2|ξ| < |Dh(h−1(y)) · ξ| < 2|ξ| for ξ ∈ IRn.

Note that with above conditions solutions of (∗) with smooth boundary data are C2,1 up to
the boundary. (For example see [CC]).

Now we consider u and v as given in Theorem 3.2. For r > 0, we define Z and W as below:

Z(x, t; r, Q) = sup
Br(x,t)∩Π

U(y, s) where U(x, t) = sup
Dr(x)∩Π

u(y, t),

W (x, t; r, Q) = inf
Br(x,t)∩Π

V (y, s) where V (x, t) = inf
Dr(x)∩Π

v(y, t).

Note that Z, U and W, V are respectively viscosity sub- and supersolution of (P2). Suppose
the theorem does not hold. Then for r > 0 so small that Z ≺ W at t = r there is 0 ≤ T < ∞
such that
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T = sup{t ≥ r : Z(x, τ) ≺ W (x, τ) for 0 ≤ τ < t}.

Therefore Z − W has its maximum zero in {Z(·, t) > 0; t ≤ T} at P = (x0, T ). If Z(P ) =
W (P ) > 0, a standard viscosity argument leads to a contradiction. (For example see [GS]). If
P ∈ Ω, then we could argue as in section 2 to lead to a contradiction. Thus Z(P ) = W (P ) = 0
and P = (x0, T ) ∈ ∂Ω.

Defined by (3.1) with h(x0) = 0, the functions Z̄ and W̄ has a local maximum at (0, T )

in {Z̄ > 0} ∩ {t ≤ T} ∩ N . We are going to apply the sup/inf- convolutions again in the
new neighborhood N , and therefore to avoid confusion we denote Z̄ by ũ and W̄ by ṽ. Let
Z̃ = Z̃(y, t; δ,N ) and W̃ = W̃ (y, t; δ,N ) be the corresponding sup- and inf-convolution of ũ and
ṽ as above. Then for small δ > 0, Z̃ − W̃ has its maximum zero at P0 = (y0, t0) in the domain

{Z̃ > 0} ∩ {t ≤ t0} ∩ N at t = t0, where

t0 = sup{t ≤ r : Z̃(y, τ) ≺ W̃ (y, τ), 0 < τ < t}

By definition of Z̃, at P0 there is a interior ball B1 to the set {Z̃ > 0} with center P1 ∈ ∂{Ũ > 0},
where Ũ = supDr(x)∩Π ũ(y, t). Let H be the tangent hyperplane to B1 at P0.

Lemma 3.3 H is not horizontal.

Proof.

1. H is horizontal when P0P1 is either (0, ..., r) or (0, ...,−r). We only prove that P0P1 6=
(0, ..., r). The other part can be shown similarly.

2. Suppose P0P1 = (0, ..., r). By definition there is a point p1 = (x1, t1) ∈ ∂{ũ > 0} where
the set {ũ > 0} has an exterior ball B1 with horizontal tangency and the set {ũ(·, t1) > 0}
has an exterior disk D1 with center P1. A parallel argument as in Lemma 2.4 implies that
ũ(P1) = 0. Let us set P1 − p1 = e1. After comparing ũ with a solution of (∗) in the region
(2D1 −D1)× [t1 − τ, t1] with boundary data zero on ∂D1 and max2D1

ũ on ∂(2D1), we can easily
check that

α = lim sup∗
(x,t1)→p1

ũ(x, t)

|x| < ∞.

3. Assume that α > 0. Observe that for x ∈ N and ε > 0 ũε = ε−1ũ(εx, ε2t) solves

(P )′ε































(∗)ε ut − F ε(D2u, Du, y, t)

= ut − Σi,j(aij(εy)uyj
(y, t))yi

= 0. in {u > 0},

|Dh(h−1(εy)) · Du(y, t)| = 1 on ∂{u > 0}.
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Consider φ given by (2.1) with β = α and δ << α. since φt − ∆φ > 0 and aij(0) = δij, φ
is indeed a strict supersolution of (P )′ε for small ε > 0 with |Dφ|(p1) = β − δ. Thus a parallel
argument using φ as a barrier function leads to a contradiction.

4. Thus α = 0. Since 2|Dũ| > |Dh(h−1(y)) · Dũ| > 1, we can conclude by comparing ũ with
φ in (2.1) with β = 1/4, δ = 0.

2

To prove Theorem 3.2, it is enough to construct a classical, (strict) sub- and supersolution
near































(3.3) φt − F (D2φ, Dφ, y, t) = c > 0 in (2B1 − B1) ∩ {t1 − τ < s ≤ t1},

{φ(·, s) > 0} = Bc
1 ∩ {t = s} for t1 − τ < s < t1,

|Dφ| = m − λ/2 on ∂B1 ∩ {t = t1}.

Such test function can be obtained by the following steps:

a. First solve ϕ for (3.3) = 1 in (2B1 − B1) with zero boundary data on ∂B1 , a constant
positive data M on ∂(2B1), and a smooth nonnegative initial data at t = t1 − τ . Then ϕ is C2,1

up to the lateral boundary.

b. So far φ satisfies the first two conditions. Note that |Dφ| > 0 on ∂B1 by the Hopf’s
formula, and thus last condition can be obtained by simply letting φ = cϕ, where c is a proper
constant.

Note that (e1, L) is a normal vector to B1 at P1 and therefore

|Dφ|(P1) = Dφ(P1) · e1, |Dh(h−1(y0)) · Dφ|(P1) = m−1|Dφ|(P1) < 1.

Now arguments as in the proof of Lemma 2.3 leads to a contradiction since φ satisfies

min(φt − F (D2φ, Dφ, y, t), 1− |Dh(h−1(y0)) · Dφ|)(P1) > 0.

2

Proof of Theorem 3.2

1. By changing coordinates, we set P0 = (y0, t0) = (0, 1). At P0, the set {Z̃(x, t0) > 0} has
an interior space-time ball B with its inward normal vector (e1, L), |L| < ∞. Note that since
|L| < ∞ we have B2 ∩ {t = 1 − τ} 6= ∅ for 0 < τ < τ0 = τ0(L).
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Next we consider h, a C2,1 solution of (∗) in the domain B∩{1−τ ≤ t ≤ 1} with h(·, 1−τ) ≥ 0
and h = 0 on ∂B. Since Z̃ < W̃ at t = 1 − τ in {Z̃ > 0}, there is ε > 0 such that

Z̃ + εh < W̃ in {Z̃ > 0} ∩ {t = 1 − τ}.

Moreover, Z̃+εh = 0 ≤ W̃ on ∂B. Thus by the maximal principle of the equation (∗), Z̃ ≤ W̃
on B2 ∩ {t = 1} and for any nontangential cone K we have

(3.4) lim inf
x→0,x∈K

W̃ (x, t0)

(x1)+

≥ m + εDh · e1 > m + δ,

where δ > 0 is a constant. The last inequality comes from the Hopf’s formula and the uniform
ellipticity of F .

2. Let P2 ∈ ∂{ṽ > 0} be the point where the value of W̃ (P0) is obtained. At P2 = (x2, t2),
due to the definition of W̃ the set {ṽ > 0} has an interior space-time ball B2 with small radius
h > 0. If h is small enough, due to (3.4) the following holds for (x, s) ∈ intB2:

(3.5) (m + δ/2)d(x, ∂B2 ∩ {t = s}) < ṽ(x, s).

3. As before, for small τ > 0 we can construct a C2,1 function ϕ such that































ϕt − F (D2ϕ, Dϕ, y, t) = −c < 0 in (B2 − 1
4
B2) ∩ {t1 − τ < s ≤ t1},

{ϕ(·, s) > 0} = B2 ∩ {t = s} for t1 − h < s ≤ t1,

|Dϕ| = m + δ/4 on ∂B2 ∩ {t = t2}.

It follows from (3.5) that φ ≤ ṽ and therefore ṽ − ϕ has a local minimum zero at P2 in
{ṽ > 0} ∩ {t ≤ t2}, which leads to a contradiction. We proved that Z ≤ W for any r > 0, and
this leads to u ≤ v as r → 0.

2

Corollary 3.4 Suppose that Ω = IR × Σ, where Σ is a bounded domain with ∂Σ : C3. In
addition assume that u0 ∈ C1(Ω) with (u0)x1

> 0 in {u0 > 0}. If u, v are viscosity sub- and
supersolutions of (P2) with u0 ≤ v0), then u ≤ v for all t ≥ 0.

Proof.
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1. The assumption of Ω being bounded in Theorem 3.2 is only to guarantee that the set
∂{u > 0} is bounded locally in time, and therefore to guarantee the contact point of u and
v to exist. By comparing to a traveling wave solution w(x, t)) = 1/c(1 − e−cx1), c > 0 with
u0(x) ≺ w(x, 0), we can easily prove that for each T > 0 the set ∂{u > 0}∩ {t ≤ T} is bounded
if u is a subsolution of (P2) with the initial data u0. Thus Theorem 3.2 still holds for our case.

2. Next we observe that if u is a viscosity subsolution of (P2) with the initial data u0, then
the same holds for ū(x, t; ε) = u(x1 − ε, x2, ...xn, t) with ū(x, 0) ≺ u0(x). This and Theorem 3.2
implies that ū(x, t; ε) ≤ v for t > 0. Now we can conclude by sending ε → 0. 2

Next we prove a uniqueness and convergence result for solutions in a cylindrical domain with
a monotonicity condition on the initial data. For ε > 0 and βε given as in (P ε) we consider the
approximating equation:

(P ε
2)











uε
t − ∆uε = − 1

ε2
u exp(−1

ε
u) = −βε(u), in Q,

∂u(x, t)/∂n = 0 for x ∈ ∂Ω

Let uε be a solution of (P ε
2) with initial data uε

0 satisfying (0.2). For discussions on the
convergence properties of uε with additional assumptions on uε(x, 0) we refer to [LVW]. Here we
only state that if a limit solution of (P ε

2) exists then it is the unique viscosity solution of (P2).

Corollary 3.5 Let Ω and u0 satisfy conditions in Corollary 3.4. Suppose that along a subse-
quence (uε)ε given above locally uniformly converges to u as ε → 0. Then such u is unique.
Moreover u is the unique viscosity solution u with u0 as initial data.

Proof A parallel argument as in Theorem 1.3 implies that u is a viscosity solution of (P2) with
initial data u0. Now we can conclude from Corollary 3.4.

2.
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