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Abstract

In this paper we are interested in a free boundary problem whith a motion law involving

the mean curvature term of the free boundary. Viscosity solutions are introduced as a

notion of global-time solutions past singularities. We show the comparison principle for

viscosity solutions, which yields the existence of minimal and maximal solutions for given

initial data. We also prove uniqueness of the solution for several classes of initial data and

discuss the possibility of nonunique solutions.

0 Introduction

In this paper we introduce a method to study existence and uniqueness properties of viscosity
solutions for the free boundary problems of the following form:

(P0)











ut − F (x, t,Du,D2u) = 0 in {u > 0},

V = G(n, ∂u
∂n
, κ)

Here V is the normal velocity of the free boundary ∂{u > 0} at (x, t), n is the inward normal
vector of Γt := ∂{u(·, t) > 0} at x with respect to {u(·, t) > 0} and κ is the mean curvature of
Γt at x (taken positive if Γt is convex in the direction of n.) We assume that (i) F and G are
continuous, (ii) F is uniformlly elliptic and (iii) G is increasing in ∂u

∂n
and decreasing in κ.
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A two phase version of (P0) with F = F (D2u) = ∆u and with G depending also on (x, t) (see
remark) has been introduced in a recent paper [ACS], where the authors prove that Lipschitz
free boundaries of viscosity solutions are C1,α.

To keep the idea simple we investigate a special case of (P0):

(P )











ut − ∆u = 0 in {u > 0},

V = ∂u/∂n(x, t) − κ on ∂{u > 0}

An elliptic version of (P ) was introduced in [ACKS] as a minimizing problem for the energy
function

E(v) =
∫

D
|Dv|2 + Area {v = 0}.

in a given domain D.

The purpose of this paper is to prove the global-time existence and uniqueness of the viscosity
solution of (P). Typically for viscosity solutions, the main tool to derive such results is the
comparison principle : Roughly speaking, viscosity solutions are defined by comparison with
classical solutions of (P) in local domains (see Definition 1.1). Observe that if u and v are
smooth solutions of (P) then the comparison principle holds: in other words if u < v in {u > 0}
at t = 0, then u ≤ v for t > 0. The main theorem of this paper says that the comparison
principle also holds between two viscosity solutions of (P). It follows that for a given initial data
there exists the maximal and minimal viscosity solutions of (P). Uniqueness of the viscosity
solution only holds with additional conditions on initial data. In fact nonuniqueness is expected
to occur in general setting, which will be discussed in the last section.

The difficulty in the analysis lies in the free boundary condition. Let us explain this more
precisely with the following two examples. (a) Without the curvature term on the free boundary
condition (P) becomes the Stefan problem, for which sub- and inf- convolutions were used to
prove the comparison principle (see [K1]). The advantage of these convolutions is that they
provide a smooth approximation of the free boundary with appropriate ’first-order’ information:
roughly speaking, when the free boundaries of these two convolutions contact each other, it
follows from the definition that both free boundaries are ’almost’ C1 in space and time at the
contact point, and hence this helps estimating first order terms of the solutions near the contact
point. Nevertheless we still need better approximations for second-order terms such as the mean
curvature term κ in (P). (b) On the other hand, without the gradient term on the free boundary
condition the two equations in (P) are decoupled and the evolution of the free boundary is the
mean curvature flow: V = −κ. For the mean curvature flow Evans and Spruck [ES] have proved
the comparison principle by another kind of convolutions, which has been used in standard
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viscosity solutions arguments for fully nonlinear PDEs (see [CL],[CIL].) These convolutions do
provide good estimates for the second order terms, but they might approach boundary points
from interior points and vice versa. This becomes a problem in our case since we have two
different equations on the boundary and in the positive set.

Therefore it is necessary to develop a new approach to study viscosity solutions of (P) or more
generally free boundary problems with second order terms. In the following sections we combine
both approaches discussed in (a)-(b) to obtain our results. In section 1 we introduce the basic
notions and define a notion of viscosity solutions. It can be easily checked that the definition we
give in this paper is equivalent to that of [ACS]. In section 2 we prove the comparison principle.
In section 3 existence and uniqueness results are proven based on the comparison principle.

Remark

1. In two-phase version of (P0) our proof for the comparison principle (Theorem 1.2) between
viscosity solutions still holds. However in this case it is not clear to the author how to construct
a supersolution and a subsolution which agrees with the given initial data at t = 0 to apply
Perron’s method for the existence result (see the proof of theorem 3.1.).

2. Our method extends to the case when G has (x, t)-dependence if one adds additional regular-
ity assumption on G in (x, t)-variable, such as uniform Lipschitz continuity of G in (x, t)-variable
independent of other variables. The difficulty lies in that the sup- and inf-convolutions intro-
duced in (2.1)-(2.2) does not preserve (P0) in general.

1 Notations and Main result

First we introduce several notations used in this paper:

• (a) D(x; r) := {y ∈ IRn : |x− y| < r} for x ∈ IRn.
(b) B(x, t; r) = {(y, s) ∈ IRn+1 : |(x, t) − (y, s)| < r} for (x, t) ∈ IRn+1.

Given B = B(x, t; r), we denote kB as a ball with the same center as B and radius kr.
Similarly we define kD for D = D(x; r).

• Let u, v : Q = IRn × [0,∞) → IR and let D ⊂ Q.

(a) u is touching v from below at P0 in D if u − v has a local maximum zero at P0 in a
parabolic neighborhood of P0 in D.

(b) u is touching v from above at P0 in D if u−v has a local minimum zero at P0 in a parabolic
neighborhood of P0 in D.
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• For u : Q→ [0,∞),
(i) u∗(x, t) := lim sup(y,s)→(x,t) u(y, s);

(ii) u∗(x, t) = lim inf (y,s)→(x,t) u(y, s).

• For u : Q→ [0,∞), x ∈ IRn and t ∈ [0,∞) we denote

Γ(u) = ∂{u > 0}; Γt(u) = {x : (x, t) ∈ Γ(u)}.

Ω(u) = {u > 0}; Ωt(u) = {u(·, t) > 0}.

When Γt(u) is C2, let κp0
(Γt(u)) be the mean curvature of Γt(u) at p0, taken positive if Γt(u)

is convex with respect to Ωt(u).

• We say that a pair of functions u0, v0 is strictly ordered (u0 ≺ v0) if

(i) supp(u0) = {u0 > 0} is bounded, and it satisfies

supp(u0(x)) ⊂ Int(supp(v0(x))).

(ii) inside supp(u0) the functions are strictly ordered:

u0(x) < v0(x).

• We define S(n) to be the set of symmetric n × n matrices. For X, Y ∈ S(n), X ≤ Y means
that

vXvT ≤ vY vT for any vector v ∈ IRn.

Next we define viscosity sub- and supersolutions of (P) for a given initial data u0 : IR →
[0,∞)..

Definition 1.1 (a) A nonnegative upper-semicontinuous function u in Q is a viscosity subso-
lution of (P) with initial data u0 if (1) u(x, 0) = u0, (2) Ω(u)∩{t = 0} = Ω̄(u0) and (3) for any
C2,1-function φ which touches u from above at (x, t) in Ω̄(u), the following holds:

(i) φt − ∆φ(x, t) ≤ 0 if u(x, t) > 0;

(ii) min(φt − ∆φ, φt − |Dφ|2 + κ|Dφ|)(x, t) ≤ 0 if u(x, t) = 0 and |Dφ|(x, t) > 0;
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where κ denotes κx(Γt(φ)).

(b) A nonnegative lower-semicontinuous function v in Q is a viscosity supersolution of (P) with
initial data u0 if (1) v(x, 0) = u0, (2) Ω(v) ∩ {t > 0} ∩ {t = 0} ⊇ Ω̄(u0) and (3) for any
C2,1-function ψ which touches v from below at (x, t) in Ω̄(v), the following holds:

(i) ψt − ∆ψ(x, t) ≤ 0 if v(x, t) > 0;

(ii) max(ψt − ∆ψ, ψt − |Dψ|2 + κ|Dψ|)(x, t) ≥ 0 if v(x, t) = 0 and |Dψ|(x, t) > 0.

We define u to be a viscosity solution of (P) if u = u∗ is a (viscosity) supersolution and u∗ is
a subsolution of (P). Below we state our main theorem in this paper:

Theorem 1.2 (comparison principle) Let u and v be respectively a sub- and supersolution of
(P ) with strictly separated initial data, u0 ≺ v0. Then the solutions remain ordered for all time:

u(·, t) ≺ v(·, t) for t > 0.

Proof in the case of smooth solutions:

If u,v and their free boundaries are smooth (C2 in space-time), then theorem 1.2 can be proven
easily as follows: Let t0 to be the first time u touches v from below, that is

t0 = sup{t : u(·, t) ≺ v(·, t)}.

From the maximal principle for heat equations, it follows that then Γ(u) and Γ(v) touches for
the first time at P0 := (x0, t0).We call such point (x0, t0) as the ’contact point’ of u and v. Since
u ≤ v at t = t0 and Γt0(u) touches Γt0(v) with Γt0(u) ⊂ Ω̄t0(v), it follows that

(1.1)
∂u

∂n
<
∂v

∂n

and

(1.2) −κ1 := −κx0
(Γt0(u)) ≤ −κx0

(Γt0(v)) := −κ2

where n is the inward normal vector of Γt0(u) (and Γt0(v)) at x0, and κx(Γt) denotes the mean
curvature of Γt at x. ((1.1) is due to Hopf’s lemma and the regularity of Γt(u).) On the other
hand by the definition of contact point, Γ(u) has to ’touch’ Γ(v) for the first time at (x0, t0),
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and thus Γ(u) propagates faster than Γ(v) at (x0, t0) in the normal direction. Since Ω(u) and
Ω(v) are respectively the positive set of u and v, the normal velocity of Γ(u) and Γ(v) are equal
to ut/|Du| and vt/|Dv| respectively, and thus

(1.3)
ut

|Du|
≥

vt

|Dv|
at (x0, t0)

This leads to a contradiction since

(1.4)
ut

|Du|
≤ |Du| − κ1 < |Dv| − κ2 ≤

vt

|Dv|
at (x0, t0)

due to the free boundary condition.

2.

For nonsmooth solutions we pursue above arguments by a series of approximations as sum-
marized below:

1. First we introduce sup- and inf- convolutions Z and W , respectively of u and v, for which
the mean curvature and the gradient terms in (P) are bounded.

2. Next we use the main lemma of [CIL] to approximate the contact point P0 by nearby pairs
of ’regular’ points (P ε, Qε) respectively on Ω̄(Z) and Ω̄(W ). At these regular points Z and W
can be approximated by smooth C2,1 functions. Here we consider the characteristic functions
of Ω(Z) and Ω(W ) instead of the original functions to ensure that the ’regular’ points lay on
the free boundary of Z and W (otherwise we cannot argue as in (1.4)). Note that by taking
characteristic functions we preserved geometric quantaties of the free boundary such as mean
curvature κ or the normal velocity V . Roughly speaking by this process we have obtained
smooth hypersurfaces respectively approximate to Γ(Z) and Γ(W ) in small neighborhoods of
P ε and Qε.

3. Based on these hypersurfaces, next we construct the barrier functions for Z and W to
compare DZ(P ε) and DW (Qε) as P ε, Qε → P0. Here we strongly use the interior- and exterior-
ball property (see section 2) of Z and W .

4. Finally to prove theorem 1.2 we send ε → 0 and argue as in (1.1)-(1.4) to obtain a contra-
diction.
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2 Comparison Principle

Regularizing the free boundary

We begin with inf- and sup-convolutions which are used, for instance, in [K2]. For given
r > γ > 0 let us define

(2.1) Z(x, t) = sup
B(x,t;r)

U(y, s) where U(x, t) = sup
D(x;r)

u(y, t),

(2.2) W (x, t) = inf
B(x,t;r−γt)

V (y, s) where V (x, t) = inf
D(x;r)

v(y, t).

for r ≤ t ≤ r/2γ. We mention that we apply the convolutions twice in above definitionof Z and
W to guarantee the semi-finite speed of propagation property of Γ(Z) and Γ(W ) (see Lemma
1.3). From the definitions it is not hard to check that Z, U and W,V are respectively viscosity
sub- and supersolution of (P ). Indeed W is a ’strict’ supersolution of (P ) in the sense that it
satisfies

Wt/|DW | = |DW | − κ+ γ on Γ(W ) for r ≤ t < r/2γ

in the viscosity sense: that is, in the context of Definition 1.1.

Since u0 ≺ v0 and Ω̄(u) ∩ {t = 0} = {u0 > 0}, we can take r > 0 small enough that Z ≺ W
at r ≤ t ≤ 2r. For such r > 0 and 0 < γ << r we would like to show that

(2.3) Z(·, t) ≺ W (·, t) for r < t < r/2γ.

Then by sending γ to zero in (2.3), it follows that u ≺ v for t > 0.

Before proving our claim, we observe some properties of Z and W :

Interior and exterior ball property

Let Ω be a bounded domain in Q. We say that Ω has the interior (exterior) ball property at
P = (x, t) ∈ ∂Ω if there is a closed n + 1 dimensional (space-time) ball B ⊂ Ω (resp. Ωc) such
that B ∩ Ωc(resp. Ω̄) = P. We then say that B is interior (exterior) to Ω at P . Similarly we
define interior(exterior) ellipsoid property.
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Figure 1.

From definition of Z and W it follows that on Γ(Z)( resp. Γ(W )) the positive set Ω(Z)( resp.
Ω(W )) has the interior ball ( resp. exterior ellipsoid ) property. For example, at α0 ∈ Γ(Z), the
set Ω(Z) has an interior space-time ball of radius r, centered at α1 ∈ Γ(U), while at α1 the set
{U > 0} has an exterior space-time ball of radius r at α0 (see figure 1.)

Semi-finite propagation property

At P ∈ Γ(Z), consider the tangent hyperplane H to the interior ball of Ω(Z) at P . The
inward normal vector to H with respect to Ω(Z) at P can be written as (ν,mP ) where ν is a
unit vector in IRn and −∞ ≤ mP ≤ ∞, where (ν,±∞) denotes the vector (0,±1), 0 ∈ IRn.
We then call mP as the advancing speed (or slope) of Γ(Z) at P . Similarly one can define the
advancing speed nQ of Γ(W ) at Q.

Lemma 2.1 Let mP , nQ be as defined above. Then mp <∞, nq > −∞ for t ≥ 2r.

Proof.

1. Suppose mP = ∞. Then by definition there is a ball B1 of radius r/2 and P1 ∈ Γ(U) such
that

(i) B1 is exterior to {U > 0} at P1

(ii) PP1 = (0, ..., 0, r) (see figure 2.)

By definition of U there exists p1 = (x1, t1) ∈ Γ(u) where |p1 − P1| = r. Moreover u = 0 in
the region L1 = {(y, s) : |y − x| = r, (x, s) ∈ B1}. In particular at p1, the set Ω(u) has an
exterior ball B′

1: a translate of B1 with horizontal tangency and the set Ωt1(u) has an exterior
disk D1 = D(P1; r) ( see figure 3.)

Observe that 2D1 ⊂ L1 ∩ {t = t1 − r}. For given ε > 0 let us consider the domain

Σ = {(x, t) : x ∈ (2D1 − L2(t)), t ∈ (t1 − r, t1)
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where L2(t) = (1 + f(t))D1 where f(t) =
√

(t1 − t)/2 for t ∈ (t1 − r, t1 − ε), f(t1) = 0 and f is

C1 and f ′ is monotone decreasing in [t1 − r, t1].

Note that L2(t) lies outside of Ω̄(u) for t ∈ (t1 − r, t1). (see figure 3.) Next we consider the
function ω in Σ satisfying







































−∆ω = 1 in Σ,

ω = supΣ u on ∂2D1,

ω = 0 on ∂L2(t)

Since ω(x, t) is increasing,

(2.4) ωt − ∆ω > 0 in Σ.

Note that |Dω| on Γ(ω) is uniformly bounded in Σ only depending on r and on the supremum
of u on Σ because of the exterior disk condition. Moreover the mean curvature κ of Γ(ω) at p1

is −1/r. Therefore if we choose ε small enough, then
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(2.5) ωt/|Dω|+ κ ≥
√

r/ε− 1/r > |Dω| on Γt1(ω),

and therefore ω is a supersolution of (P ) near t = t1. Moreover ω is C2,1 in Σ.

Note that u = 0 ≤ ω at t = t1 − r. Furthermore u ≤ ω on ∂2D2 and u = 0 on L2(t) for
t ∈ (t1 − r, t1). Therefore it follows from (2.4) that u ≤ ω for t < t1 and u touches ω from below
at t = t1, which contradicts (2.4)-(2.5). Hence we obtain mP <∞.

3. Next suppose that nQ = −∞. Then by definition of W there is a ball B1 of radius r/4 and
Q2 ∈ Γ(V ) such that

(i) B1 is interior to Ω(V ) at Q2.

(ii) PP2 = (0, ..., 0, r).

By definition, v > 0 in the region L2 = {(y, s) : |y − x| = 1, (x, s) ∈ B1}. In particular at
p2 ∈ Γ(v), the set Ω(v) has an interior ball B ′

1: a translate of B1 with horizontal tangency and
the set Ωt2(v) has an interior disk D1 with center P2. A parallel argument as in the previous
steps, by constructing a test function in a parabolic neighborhood of p2, leads to a contradiction.

2.

Remark

Indeed for any T <∞, from the proof Lemma 2.1 indicates that mP ≤ M for
P ∈ Γ(Z)∩{t ≤ T}, where M depends on r and the supremum of u for t ≤ T +r. Similarly one
can also check that nQ ≥ −N for Q ∈ Γ(W )∩ {t ≤ T} where N depends on r and the infimum
of v(x, t) where t ≤ T + r and (x, t) ∈ Ω(v) is more than r-away from Γ(v).

Perturbation of the contact point

From now on we fix r > 0 and begin our analysis on Z and W . Suppose that the claim (2.3)
is not true. Then for γ > 0 chosen small we have

2r ≤ t0 = sup{Z(x, τ) ≺ W (x, τ) for r ≤ τ < t} < r/2δ.

By Lemma 1.3 it follows that there is a point P0 = (x0, t0) where Γ(Z) intersects with Γ(W )
for the first time. Moreover observe that nP0

≤ mP0
by definition. Hence due to Lemma 2.1

(2.6) −∞ < nP0
≤ mP0

<∞.
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For any ε > 0 we consider

Φε(x, y, t) = Z̄(x, t) − W̄ (y, t) −
|x− y|2

2ε
−

ε

(t0 − t)
,

where Z̄ = 1⊥Ω̄(Z) − 1 and W̄ = 1⊥Ω(W ). Observe that Z̄ is upper-semicontinuous and W̄ is
lower-semicontinuous in Q. Also note that Z̄(x, t) − W̄ (x, t) ≤ −1 for t < t0 and Z̄ − W̄ = 0
at (x0, t0). Thus for any ε > 0 there is (x̃ε, ỹε, t̃ε) where Φε(x, y, t) has a local maximum in
Q ∩ [0, t0).

Moreover due to (2.4) there exists (x, t) ∈ Ω̄(Z) and (y, t) ∈ {W = 0} such that t = t0 − 2ε
and |x− y|2 < ε/4. It follows that (x̃ε, t̃ε) ∈ Ω̄(Z) and (ỹε, t̃ε) ∈ {W = 0} with

(2.8) |x̃ε − ỹε| = O(ε1/2)

and t̃ε → t0. In particular we have

(2.7) (x̃ε, ỹε, t̃ε) → (x0, x0, t0) as ε→ 0.

Note that |xε − yε| > 0 for each ε > 0 since tε < t0.

Next we apply theorem 8.3 in [CIL], which yields for ε > 0

(ãε, p̃ε, X̃ε) ∈ P̄ 2,+(Z̄)(x̃ε, t̃ε) and (b̃ε, q̃ε, Ỹε) ∈ P̄ 2,−(W̄ )(ỹε, t̃ε)

with

p̃ε = q̃ε = (x̃ε − ỹε)/ε 6= 0, X̃ε ≤ Ỹε and ãε − b̃ε ≥ ε/(t0 − t̃ε)
2.

Here P 2,±(u)(x, t) denotes the ’parabolic superjet’ and ’subjet’ of u at (x, t) and P̄ 2,±(u)(x, t)
denotes their closures: For example, (a, p,X) ∈ IR× IRn × S(n) lies in P 2,+(Z̄)(x, t) if

Z̄(y, s) ≤ Z̄(x, t) + a(s− t)+ < p, y − x > +
1

2
(y − x)X(y − x)T + o(|s− t| + |y − x|2)

as (y, s) → (x, t). We refer to section 8 of [CIL] for the full definitions.

From the above result, it follows that for every ε > 0 we can pick (a) a pair of points (xε, tε)
and (yε, sε) respectively on Γ(Z) and on Γ(W ); (b) a small neighborhood N ε

1 and N ε
2 around

each point; and (c) aε, bε ∈ IR, pε, qε ∈ IRn, Xε, Yε ∈ S(n) such that
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(i) ϕε(x, t) := [aε(t− tε) + pε · (x− xε) + 1
2
(x− xε)Xε(x− xT

ε )]+ ≥ Z̄(x, t) in N ε
1;

(ii) φε(y, s) := [bε(s− sε) + qε · (y − yε) + 1
2
(y − yε)Yε(y − yε)

T ]+ ≤ W̄ (y, s) in N ε
2;

(iii) aε − bε ≥ 0, Xε − Yε ≤ ε|p̃ε|I and

|pε − p̃ε|, ||pε| − |qε||, |pε − qε| ≤ ε2 min[1, |p̃ε|
2];

(iv) xε = x̃ε +O(ε2), yε = ỹ +O(ε2) and tε, sε = t̃ε +O(ε);

(v) Z(·, tε) ≤ W (·, sε) +O(ε2).

Remark (i) - (ii) means that (aε, qε, Xε) ∈ P 2,+(Z̄)(xε, tε) and (bε, qε, Yε) ∈ P 2,−(W̄ )(yε, sε).
(iii)-(iv) means that for example aε, bε are close enough to ãε, b̃ε and so on. (v) is possible since
tε, sε is very close to t̃ε, Z ≤ W at t̃ε < t0 and Z −W is upper-semicontinuous.

From now on we will analyze these test functions φε and ϕε and send ε to zero to derive a
contradiction. There are two main difficulties involved. First of all, note that the test functions
are comparable to the characteristic functions Z̄ and W̄ , not to Z and W . As a result what we
obtained is smooth ’test sets’ which are locally interior to Γ(Z) and exterior to Γ(W ) (see figure
4.) Thus for our analysis on Z and W we need to construct a new pair of test functions (ψε, ξε)
based on the ’test sets’ so that ψε is comparable to Z and ξε is comparable to W . For technical
reasons, instead of Z and W we consider U and V at the corresponding free boundary points.
More precisely, we will construct the test functions so that ψε is bigger than and comparable to
U and ξε is less than and comparable to V (see (2.14) and (2.16)).

Secondly since we would like to compare the gradient sizes of test functions Dψε and Dξε

respectively at (xε, tε) and (yε, sε) using (2.9)(v). Heuristically speaking, we would argue that
for (y, tε) in a neighborhood of (x0, t0),
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(2.10) |Dψε|(xε, tε) ∼
Z(y, tε)

d(y,Γtε(W ))
≤
W (y, sε) +O(ε2)

d(y,Γsε
(Z))

∼ |Dψε|(yε, sε) +O(ε).

For above argument to hold, the test functions have to be smooth enough and comparable to Z
and W respectively in domains D1 and D2. Also the domains should be big enough: for example
we should be able to pick (y, sε) ∈ D2 such that d(y,Γsε

(Z)) >> ε2. Below we construct such a
domain by extending N ε

i , i = 1, 2. (For technical reasons our test functions will be comparable
to U and V instead ot Z and W (see (2.1)-(2.2) for definition)

Extending domains

Let us fix ε > 0 and let en denote pε/|pε|: the normal vector of Γtε(ϕ
ε) at xε and let xn =

x · en, x
′ = (x1, ...xn−1). Observe that en is also the inward spatial normal vector of the ball Bε

1

of radius r which is interior to Ω(Z) and touches Γ(Z) at (xε, tε). For 0 < C < 1 to be chosen
later, there is a space-time ball Bε

2 of radius Cr which touches Γ(U) at (x1
ε , t

1
ε) from outside

and Bε
1 at (xε, tε) has the same normal vector as Bε

2 at (xε, t
1
ε). Let Dε

2 = Bε
2 ∩ {t = t1ε}. Due

to (2.1), the hyperplane of the interior ball (with radius r) of Γ(Z) at (x0, t0) is not horizontal
at the contact point (x0, t0). Moreover it follows from this fact that the corresponding interior
balls (with radius r) of Z at (xε, tε) cannot be horizontal if ε is small enough. (Otherwise the
limiting space-time ball (with radius r) with horizontal tangency is an interior to Z at (x0, t0)
which leads to a contradiction.)

Indeed the same argument shows that, the slope of Γ(Z) at (xε, tε) is uniformly bounded by
m + 1 and m − 1 if 0 < ε << 1, where m is the slope of Γ(Z) at (x0, t0). Now it follows that
Dε

2 has a positive radius kr, 0 < k < 1/2 where k depends only on m, r and thus independent of
ε > 0.

Next we observe that Γ(ϕε) has its slope aε/|pε| at (xε, tε), which is bigger than than O(ε)+bε/|qε|
by (2.9)(iii). But bε/|qε| is the slope of Γ(φε) at (yε, sε), which is bigger than that of Γ(W ) at
(yε, sε). By arguing as in the previous step, one can easily see that the slope of Γ(W ) at (yε, sε)
is bigger than n − 1 at (sε, yε) for small ε > 0 where n is the slope of Γ(W ) at (x0, t0). Hence
for small ε > 0 we have

(2.11) n− 2 ≤ bε/|qε| ≤ aε/|pε| ≤ m+ 1.

Hence we can ’tilt’ Bε
2 : namely, we consider B̃ε

2: a space-time ball so that B̃ε
2 = Bε

2 at t = t1ε
and the slope of B̃ε

2 at (x1
ε , t

1
ε) is smaller than that of Γ(ϕε) at the point by ε1/4. (This is possible

because aε/|pε| is bounded from below due to (2.10).)

Lemma 2.2 For each ε > 0 There is a hypersurface Σε = ∂Sε in IRn+1 such that
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Sε ⊂ B̃ε
2 ∩ {t ≤ t1ε}, (x1

ε , t
1
ε) ∈ Σε;

Σε is locally Lipschitz in space and time ;

Σε ⊂ Ω(U)C

Moreover at (x1
ε , t

1
ε) Σε has the same mean curvature and slower advancing speed by ε1/4 compared

to those of Γ(ϕε) at (xε, tε).

Proof

1. From the construction of ϕε, there is h > 0 such that ϕε ≥ Z̄ in a cylindrical domain
N = Dh(xε) × [tε − h, tε] (We may pick h = o(ε) for later use.)

On the other hand Γ(φε) (locally) lies in Ω̄(W ) and touches Γ(W ) at (yε, sε) from inside. Thus
it follows that

κ(yε,sε)(Γ(φε)) ≥ κ(yε,sε)(Γ(W )) ≥ −C/r, C = C(r) > 1.

where the last inequality is due to Lemma 1.3. Also due to (2.9)(iii) we have

(2.12) Xε/|pε| − Yε/|qε| ≤ εI,

and from above two inequalities it follows that

(2.13) κxε
(Γtε(ϕ

ε)) ≥ κyε
(Γsε

(φε)) ≥ −C/r +O(ε)

2. Hence if we choose C in the defition of B2
ε the same as that in (2.13), after a translation of

(xε, tε) to (x1
ε , t

1
ε), Γ(ϕε) lies outside of B2 in Dh(x

1
ε) if h << r (see figure 5.) Let us denote

Γ′(ϕε) as the translated version of Γ(ϕε).

3. Let us divide Dε
2 into two halves Dε,±

2 cutting by the hypersurface normal to en, where
Dε,+

2 is the one closer to (x1
ε , t

1
ε). Now we consider Γ1(t

1
ε) = Γ′

t1
ε

(ϕε) ∩ {|x′| = h} and

Γ2(t
1
ε) = Dε,+

2 ∩ {|x′| = h} (see figure 5.)

We consider

S(tε1) = {sx + (1 − s)y : x ∈ Γ1(t
1
ε), y ∈ Γ2(t

1
ε), s ∈ [0, 1].}
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Figure 5.

Then the region surrounded by

Σ(tε1) = [Γ′
t1
ε

(ϕ) ∩ {|x′| ≤ h/2}] ∪ S(t1ε) ∪ [Dε,+
2 ∩ {|x′| > h}] ∪Dε,−

2 .

includes Dε
2.

4. Next for t ∈ [t1ε −h, t
1
ε), we translate Γ′

t(ϕ
ε) toward the −en direction so that Γ′

t(ϕ
ε) touches

B̃ε
2 at a point. Let us denote Γ′′

t (ϕ
ε) as the translated version of Γ′

t(ϕ
ε), and let h(t) = (t−t1ε +h).

We then proceed as in the previous step to connect Γ1(t) = Γ′′
t (ϕ

ε) ∩ {|x′| = h(t)/2} and
Γ2(t) = D̃ε2,+(t) ∩ {|x′| = h(t)} where D̃ε

2(s) = B̃ε
2 ∩ {t = s}. Then the region surrounded by

Σ = {(x, t) : x ∈ Σ(t), t ∈ [t1ε − h, t1ε ]}.

includes B̃ε
2 ∩ [t1ε − h, t1ε ] and Σ = Γ′′ in a small parabolic neighborhood of (x1

ε , t
1
ε).

Note that Σ(t1ε − h) = B̃ε
2 ∩ {t = t1ε − h}, and hence we can extend Σ by defining Σ = B̃ε

2 for
t2ε ≤ t ≤ t1ε − h, where t2ε is chosen such that D̃2(t

2
ε) has a positive radius. (Note that t1ε − t2ε

depends only on r.)

Now for each ε > 0 we have constructed a hypersurface Σ(= Σε) of size independent of
ε > 0, which lies outside of Ω(U) and coincides with Γ′′(ϕ) in a parabolic neighborhood Ñ of
(x1

ε , t
1
ε). Moreover it follows from the construction that Σ is locally representable as a Lipschitz

continuous graph in space-time.

2

Next we construct a local barrier function based on Σε.

Constructing the barrier function

Consider a space-time ball Bε
3 = (1 + δ)B̃ε

2. , where δ = O(ε1/3). We consider a solution ψ of
the Stefan problem in the region Π = (Bε

3 −Σ)∩ [t2ε , t
1
ε ] with ψ = 0 on Σ and ψ = M on ∂Bε

3. If

15



we choose the initial data to be harmonic in Π ∩ {t = tε2}, then we obtain a unique function ψ
which is continuous up to Π̄ and smooth up to Π̄ in Ñ . Moreover by comparing with a solution
ψ̃(x, t) of the Stefan problem in the region (Bε

3 − B̃ε
2) ∩ [tε2, t

ε
1] with ψ̃ = 0 on ∂B̃ε

2 and ψ̃ = M
on ∂Bε

3 and ψ̃ = ψ on t = tε2, we obtain that

|Dψ|(x1
ε , t

1
ε) = en ·Dψ(x1

ε , t
1
ε) ≤ |Dψ̃|(x1

ε , t
1
ε) ≤

M

r1δ
(1 +O(δ)).

where r1 is the radius of B̃ε
2 ∩ {t = t1ε}.

Lemma 2.3 We can choose M in the definition of ψ such that U ≤ ψ in Π and

(2.14) |Dψ| ≤
Z(xε + δ1r1e

′
n)

r1δ1
(1 +O(δ1))

where e′n := (yε − xε)/δ1r1 + qε/|qε|

1. We compare U and ψ in Π. From the construction of B̃ε
2, it follows that Bε

3 ∩ {t = tε2} will
lie outside of Ω(U) since δ << ε1/4, and thus U = 0 ≤ ψ at t = tε2. Since U = 0 ≤ ψ on Σ, if we
choose M > 0 such that U ≤ M on ∂Bε

3, then it follows that U ≤ ψ in Π.

2. Now we proceed and choose M > 0 for the construction of ψ. Let δ1 = O(ε1/3). Observe
that by definition of Z, U ≤ Z(xε + δ1r1e

′
n, tε) on Br(xε + δ1r1e

′
n) for any vector e′n in IRn. We

choose

e′n := (yε − xε)/δ1r1 + qε/|qε| = qε/|qε| +O(ε1/6) = en +O(ε1/6).

( The first equality holds since |xε − yε| = O(ε1/2) and the second holds since
|pε/|pε| − qε/|qε|| = O(ε) due to (2.7) (iii).)

3. Since B̃ε
2 ∩ [t2ε , t

1
ε ] ⊂ Br(xε) and B̃ε

2 has radius strictly smaller than r, for sufficiently small
ε > 0 we have (1 + δ1)B̃

ε
2 ⊂ Br(xε + δ1r1en) in [t2ε , t

1
ε ].

Since Br(xε + δ1r1en) is at most δ1r1|en − e′n| away from Br(xε + δ1r1e
′
n), it follows that

(1 + δ1 − σ)B̃ε
2 ⊂ Br(xε + δ1r1e

′
n) where σ = δ1(1 − en · e′n) = o(δ1). Thus if we let M be the

supremum of U in (1 + δ1 − σ)B̃ε
2 and consider δ = δ1 − σ in the construction of ψ in step 1.

then M ≤ Z(xε + δ1r1e
′
n, tε), U ≤M on ∂Bε

3 and

(2.15) U ≤ ψ in Π, |Dψ|(x1
ε , t

1
ε) ≤

M

r1δ1
(1 +O(δ1)).
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4. Observe that M/δ1r1 is bounded independent of ε > 0. To see this let us we consider a
solution χ of the heat equation in D = (2B̃ε

2 − B̃ε
2) ∩ [t2ε , t

1
ε ] with



















































χ = S = sup2Bε

2

U on ∂(2Bε
2);

χ = 0 on ∂B̃ε
2;

χ(x, t2ε) = S in 2B̃ε
2 − Bε

2;

−∆χ(x, t2ε) = 0 in Bε
2 − B̃ε

2

Then U ≤ χ in D and hence M is less than the supremum of χ in (1 + δ)Bε
3, which is of size

r1δ1|Dχ|(x
1
ε , t

1
ε) + o(δ)|Dχ|. Note that |Dχ| is bounded, whose bound depend only on r and S.

(We used the fact that D is a domain of size only depending on r.)

Hence M/r1δ1 ≤ |Dχ| + o(1).

2

Finally we are ready for proving the main theorem.

Proof of theorem 1.2

1. Applying a symmetric argument as above to φε and V , one can construct a domain Π2

which coincides with a translate of Γ(φε) in a small neighborhood of (y1
ε , s

1
ε) ∈ Γ(V ) and a

barrier function ξ in Π2 such that for δ2 = O(ε1/3)

(2.16) V ≥ ξ in Π2, |Dξ|(y1
ε , s

1
ε) ≥

W (yε + δ2r
qε

|qε|
, sε)

δ2r
(1 +O(δ2)).

2. By the definition of U and V we have at (x1
ε , t

1
ε)

ψt/|Dψ| − |Dψ| + κ1 ≤ 0,

and at (y1
ε , s

1
ε)

ξt/|Dξ| − |Dξ| + κ2 − γ ≥ 0.

where κ1 is the mean curvature of Γt1
ε

(ψ) at x1
ε and κ2 is that of Γs1

ε

(ξ) at y1
ε . But from the

construction of ψ and ξ, κ1 is the mean curvature of Γtε(ϕ
ε) at xε and κ2 is that of Γsε

(φ) at yε.
Hence due to (2.13)
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(2.17) κ1 ≥ κ2 +O(ε).

Furthermore ψt/|Dψ|(x
1
ε , t

1
ε) equals the slope of Γ(ϕ) at (xε, tε), which is equal to aε/|pε|−ε

1/4,
and similarly ξt/|Dξ|(y

1
ε , s

1
ε) = bε/|qε| + ε1/4. Due to (2.8), (2.9) (iii) and (2.11),

(2.18) aε/|pε| ≥ bε/|qε|(1 +O(ε)) ≥ bε/|qε| +O(ε).

Therefore subtracting the second line from the first and applying (2.17)-(2.18), we obtain

|Dξ|(x1
ε , t

1
ε) − |Dψ|(y1

ε , s
1
ε) + γ ≤ O(ε) + 2ε1/4.

Hence to obtain a contradiction, it is enough to show that

|Dψ|(y1
ε , s

1
ε) ≤ |Dξ|(x1

ε , t
1
ε) + o(1).

3. By the definition of e′n, we have yε + δ1r1qε/|qε| = xε + δ1r1e
′
n. Since

Z(·, tε) ≤ W (·, sε) + O(ε2), ((2.9)(v)), if we choose δ2 such that δ2r = δ1r1 it follows from
(2.14)-(2.16) that

|Dψ|(y1
ε , s

1
ε) − |Dξ|(x1

ε , t
1
ε) ≤ O(δ)M/r1δ1 +O(ε2)/r1δ1.

Since δ1 = O(ε1/3) and M/r1δ1 is uniformly bounded independent of ε > 0 (shown below (2.15)),
we can conclude.

2

3 Existence and Uniqueness

Theorem 3.1 For a given initial data u0 ∈ C+(IR) with compact support, there exist the mini-
mal and maximal viscosity solution of (P ) with initial data u0.

Proof

1. We apply the Perron’s method, which is often used to prove the existence of viscosity
solutions. The main step for this method is to construct a viscosity sub- and supersolution of
(P) with given initial data u0.
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2. We first construct a subsolution of (P). Let α0 ≥ 0 be the unique continuous viscosity
solution of the motion by mean curvature

(MC) V = −κ,

with initial data u0 (see [ES],[ESS] for comparison principle and further properties of viscosity
solutions of (MC).) For (x, t) ∈ Ω̄(α0), let us define

(3.1) α(x, t) = sup{γ(x, t) : γt − ∆γ ≤ 0 in Ω(α0) with γ = 0 on Γ(α0), }

and let us define α to be zero elsewhere. Then α∗ is a viscosity subsolution of (P) with
Ω̄(α∗) = Ω̄(α0).

Moreover α satisfies

(3.2) α∗(x, 0) = α∗(x, 0) = u0(x).

In fact, if β0(x, 0) is a smooth initial data with |Dβ0(x, 0)| 6= 0 on Γ(β0(x, 0)) and u0 ≺
β0(x, 0), then due to the comparison principle of (MC) β0(x, t): the corresponding solution of
(MC) satisfies α0 ≤ β0. Moreover by the short-time existence result of (MC) (see [ES]), β0

and Γ(β0) is smooth for small time. Therefore β, correspondingly defined as α in (3.1), is
smooth for small time and α∗ ≤ β. It follows from this argument that α∗(x, 0) ≤ u0(x) and
Ω̄(α∗) ∩ {t = 0} = Ω̄(u0). It also follows from a parallel argument that α∗(x, 0) ≥ u0(x).
Therefore (3.2) holds and α∗ is a viscosity subsolution of (P ) with initial data u0.

3. Next we construct γ: a supersolution of (P) with initial data u0. We let γ(x, t) solve the
heat equation with initial data u0. Note that γ is continuous. Now we consider

U(x, t) = sup{h(x, t) : a visc. subsolution of (P), h(x, 0) = u0(x) and α∗ ≤ h.}

Then U∗ satisfies (3) of Definition 1.1 (a) and U ∗ ≤ γ∗ = γ, and thus U∗(x, 0) = u0(x, 0).
Moreover by a barrier argument, one can easily show that Ω̄(U∗) ∩ {t = 0} = Ω̄(u0). Hence U∗

is a subsolution of (P) with initial data u0 and hence U = U∗ by definition.

4. Due to (3.2), it follows that U∗(x, t) = u0(x) and Ω(U∗) ∩ {t > 0} ∩ {t = 0} = Ω̄(u0). Now
one can proceed as in the proof of Theorem 4.7 in [K1] to show that U∗ satisfies (3) of Definition
1.1 (b) and therefore U∗ is a supersolution of (P ) with initial data u0.
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5. Now consider v: a viscosity solution of (P) with initial data u0. If we approximate u0

by smooth initial data βε
0(x, 0) ≺ u0 which increases as ε → 0 and let βε

0(x, t) be the solution
of (MC) with initial data βε

0(x, 0), then by comparison principle of (MC) βε
0 is increasing with

respect to ε at any fixed (x, t). Moreover β0(x, t) := (limε→0 β
ε
0(x, t))∗ is a supersolution of (MC)

with initial data u0 by the stability property of the viscosity solutions. Hence by the comparison
principle of (MC) α0 = β0 and Γ(βε

0) converges to Γ(α0). Hence if we define βε as in (3.1) with
βε

0, then we have

(3.3) α∗ ≤ lim
ε→0

βε.

by the stability property of the heat equation with respect to the domain variance. On the other
hand βε ≤ v due to Theorem 1.2 , and hence it follows from (3.3) that α∗ ≤ v∗.

It follows that v∗ ≤ U by definition of U and hence U is the maximal viscosity solution of (P).

6. Similarly one can show that

V (x, t) = inf{h(x, t) : a viscosity supersolution of (P), h(x, 0) = u0 and h ≤ γ}

is the minimal viscosity solution of (P).

2.

Next we show that there is a unique solution of (P) when the initial data satisfies several
additional conditions.

Theorem 3.2 For u0 ∈ C+(IR) with compact support, suppose that either (i) u0 is radially
monotone, that is u0(x) ≺ u0(x/1 + ε) for any small ε > 0 or (ii) Γ(u0) is smooth and u0 is
strictly concave in Ω̄(u0) with |Du0|(x) < κx(Γ(u0)) on Γ(u0). Then there is a unique viscosity
solution u of (P) with initial data u0.

Proof.

Let u and v be viscosity solutions of (P) with initial data u0. In case of (i), observe that

vε(x, t) := v(x/(1 + ε), t/(1 + ε)2)

is a viscosity supersolution of (P) with u(x, 0) ≺ vε(x, 0). Thus Theorem 1.2 yields that u ≺ vε

for any small ε > 0, and thus u = u∗ ≤ v = v∗. Similarly it follows that v ≤ u and the
uniqueness follows.
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In case of (ii) it is easy to check by a barrier argument that v decreases at t = 0 since, formally
speaking, vt(x, 0) = ∆u0(x, 0) < 0 and V = |Du| − κ < 0 on Γ(u0). Thus v(x, ε) ≺ u0(x) for
small ε > 0. Now one can apply Theorem 1.2 to

vε(x, t) = v(x, t + ε) and u(x, t)

and proceed as in case (i).

2

Remark

We also expect the uniqueness result to hold for directionally monotone solutions in cylindrical
domains with Neumann boundary condition on the boundary of the domain. We refer to [K2]
where the assertion is proved for the flame propagation model

(FP )











ut − ∆u = 0 in {u > 0},

|Du| = 1 on ∂{u > 0}.

The problem of nonuniqueness

In general uniqueness of the solution is not expected, as the following example in IR2 indicates.
Consider radial symmetric initial data u0 in the form of a hump with compact support and a
bell-shaped form. If the initial gradient is larger than the mean curvature of the free boundary
than the support of the solution of (P) with initial data u0 begins its evolution by expanding.
However one can easily check with barrier functions - for example one can use the self-similar
solutions of (FP) given in [V] - that there is a time t0 where the free boundary radius begins
shrinking for the first time. Let r0 be the free boundary radius at t = t0.

Now if we start with two humps, that is if we consider the initial data

v(x) = max[u0(x), u0(x + x1e1)]

where e1 = (1, 0) and x1 = 2r0, then the solution of (P) with the initial data u0 has two separate
components for its support till they contact each other at t = t0(see figure 6.) Now if we
superpose the separate evolution of the two humps for t > t0, then the support separate and
begin shrinking in the form of two separate balls at least for a small time.

However if we consider the initial data with x1 < 2r0, then the supports contact at a point x0

at t = t1 < t0 when the supports are still expanding. In this case the supports must merge into
one after t > t1. Moreover we expect the narrow neck formed near x0 for t > t1 to expand out
very quickly due to the mean curvature term in the free boundary motion law in (P). Indeed the
concave part of the merged free boundary will keep expanding until it becomes convex. Thus if
we take the limit x1 → 2r0, it is conceivable that we will get a different solution than the simple
superposition discussed above.
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u0 > 0

0t = t
t > t 0

Figure 6.
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