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Abstract

In this paper we consider homogenization of oscillating free bound-
ary velocities in periodic media, with general initial data. We prove
that there is a unique and stable effective free boundary velocity in the
homogenization limit.

0 Introduction

Consider a compact set K C IR" with smooth boundary K. Suppose
that a bounded domain §2 contains K and let y = Q@ — K and 'y = 9.
We also assume that Int(Q) = Q.

Note that 09y = I'o UK. For a continuous function f(z,t) : R™ x
[0,00) — (0,00), let ug satisfy

—Aug=01in Qy, wug=fon K, andwuyg=0onTy.

(see Figure 1.)
Let us define e; € IR",i = 1, ...,n such that

(0.2) e1 = (1,0,..0),e2 = (0,1,0,..,0),..., and e, = (0,..,0,1).
Consider a Lipschitz continuous function
g:R" —a,b], g(x+e)=gx)fori=1,..,n

with Lipschitz constant M. In this paper we consider the behavior, as € — 0,
of the nonnegative (viscosity) solutions u¢ > 0 of the following problem

—Auc=0 in {u® > 0},

(P)e
ug = [Du|(|Duf| = g(z/€))  on 0{u® > 0}



Figure 1: Initial setting of the problem

in Q@ = (R"— K) x (0,00) with initial data u¢ and smooth boundary data
f(z,t) > 0o0n 0K x [0,00). Here Du denotes the spatial derivative of u. For
simplicity in the analysis we will work with a =1, b =2 and M = 10 in the
definition of g, but the method in this paper applies to general a,b and M.
We refer to I'y(u) := 0{u(-,t) > 0} — OK as the free boundary of u*
and to Q(u®) := {u(-,t) > 0} as the positive phase of u¢ at time t. Note
that if u€ is smooth up to the free boundary, then the free boundary moves
with outward normal velocity V = ‘Du—q’;', and therefore the second equation

in (P). implies that
V = [Du| = g(%) = Dut - (~v) = g(=)

€

where v = v(, ;) denotes the outward normal vector at z € I';(u) with respect
to Qt (U)

(P). is a simplified model to describe contact line dynamics of liquid
droplets on an irregular surface ([G]|.) Here wu(z,t) denotes the height of
the droplet. Heterogeneities on the surface, represented by g(2) in (P)e,
result in contact lines with a fine scale structure that may lead to pinning
of the interface and hysteresis of the overall fluid shape. We refer to [G]
for numerical experiments and asymptotic analysis on smooth solutions,
where the effective free boundary velocity is implicitly derived by solving an
integro-differential system.

Below we state our main result (see Corollary 4.3 and Corollary 4.4):

Theorem 0.1 (main theorem). Let u¢ be a viscosity solution of (P). with
initial data uy and boundary data f. Then there exists a continuous function

r(q) = R™ — {0} — [~2,00),7 increases in |q|



such that the following holds:

(a) If uc, locally uniformly converges to u as € — 0, then u is a viscosity
solution of

—Au=0 in {u > 0},
(P)
ug = |Du|r(Du)  on d{u > 0}

in Q with initial data ug and boundary data f on OK.

(b) If u is the unique viscosity solution of (P) in @ with initial data ug and
boundary data f on 0K, then the whole sequence {u.} locally uniformly
converges to u.

The uniqueness of u holds for example if f = 1 and both K and g
are star-shaped with respect to the origin, or if €y immediately expands or
shrinks (Theorem 1.8.)

We refer to section 1 for definition of viscosity solutions. The notion
of viscosity solutions for either (P). and (P) is necessary since, even with
smooth initial data, one cannot expect classical solutions to exist in global
time. In fact solutions may develop singularities in finite time due to collision
or pinch-off of free boundary parts.

In section 4 we will show that r(¢) may not strictly increase in |g|. In
fact we will give an example where the pinning interval

I(v) :=={a : r(av) = 0} for a unit vector v € IR"

has varying size depending on the normal direction v (Lemma 3.15). On
the other hand r(q) strictly increases with respect to |¢| in {q : r(¢) >
0} (Lemma 3.16). Pinning intervals have been observed in physical and
numerical experiments (See [G] and the references therein). The effect of
the structure of g on the size of pinning interval, as well as on other features
of 7(q), is an interesting open question.

There are extensive amount of literature on the subject of homogeniza-
tion. For detailed survey on different approaches we refer to Caffarelli-
Souganidis-Wang [CSW]. The very first paper on homogenization of parabolic
equations is by Spagnolo [S]. Papanicolaou and Varadhan [PV] and Kozlov
[Ko] were the first to consider the general problem of homogenizing lin-
ear, uniformly elliptic and parabolic operators. The first nonlinear result
in the variational setting was obtained by Dal Maso and Modica [DM]. For
fully nonlinear, uniformly elliptic and parabolic operators, Evans [E] and



Caffarelli [C] derived convergence results using maximum-principle type ar-
guments.

Very little has been known for homogenization of free boundary prob-
lems due to the difficulties arising from the lower-dimensional nature of the
interface: for example the periodicity of g in (P). does not guarantee the
interface I';(u) to be periodic in space. Caffarelli, Lee and Mellet ([CLM1]-
[CLM2]) studied the homogenization of traveling front-type solutions of the
flame-propagation type problem. Here the free boundary problem is inves-
tigated as the sharp interface limit of a phase-field Variational arguments
have been used in [CM1]-[CM2] to study homogenization of stationary liquid
drops given as energy minimizers.

In [K3] we studied the Stefan-type free boundary problem

(uf) —Auc =0 in {u¢ > 0},
(H)e
uf — g(£)|Duf* =0 on d{u* > 0}

and showed the existence of a unique motion law in the homogenization
limit. The main idea in the analysis of [K3] is that, to describe the limiting
problem, it is enough to decide whether a given ’test function’ is either a
subsolution or a supersolution of the problem. Such 'perturbed test-function
method’ has been previously taken first in [E], [C] and then more extensively
in [CSW] for the homogenization of fully nonlinear equations in ergodic
random media.

In this paper we extend the method introduced in [K3]. The challenge
in our analysis is twofold. Besides the lower-dimensional structure of the
free boundary. In particular the effective velocity depends on the normal
direction of the interface. In stationary setting this is the main reason for the
existence of the non-round drop (see [CL],[CM1]). The second, new challenge
is that the free boundary I'y(u) associated with (P)¢ does not always have
positive velocity. This makes the problem considerably more unstable in
the homogenization limit. The underlying intuition in [K3] is that the free
boundary I'y(u€) associated with (H). averages out in the limit € — 0 since
it propagates in the medium with strictly positive velocity V' = g(Z)|Duc|.
In the case of (P). this is no longer true. On the other hand the outline of
the analysis performed in [K3] still applies to our case as long as the free
boundary keeps moving, and we obtain a unique effective velocity r(Du),
either positive or negative. The pinned free boundaries, if they stay stalled
as € — 0, obviously have zero velocity in the homogenization limit. This
observation suggests that the method in [K5] would apply to our case given
that I';(u€) evolves in a locally uniform manner.



Below we give the outline of the paper.

In section 1 we introduce the notion of viscosity solutions for (P) and
their properties.

In section 2, we study properties of maximal sub- and minimal superso-
lutions of (P). with given obstacle P, ,. An obstacle P, is a ’subsolution’
for the limit problem if the maximal subsolution below F;,, converges to
the obstacle as € — 0, and similarly an obstacle P, , is a ’supersolution’ for
the limit problem if the minimal supersolution above F,, converges to the
obstacle in the limit. The goal is to find a unique obstacle P, , which serves
for both sub- and supersolution of the limit problem, for each given ¢ € IR™.
We show the flatness of free boundary of the maximal sub- and minimal
supersolution, with a ’good’ obstacle.

In section 3, we prove that this is possible. In other words, we show
that, for given ¢ € IR", there is a unique speed r = r(gq) such that both the
maximal sub- and minimal supersolution of (P), with obstacle P, , converge
to Py, as € — 0. This r(¢) will be our candidate for the function given in
the effective free boundary velocity in (P). Proposition 3.8 and 3.11 are
central in proving the uniqueness of r(q).

In section 4, it is shown that r(¢) obtained in section 3 indeed yields the
effective free boundary velocity in (P). The uniform convergence of {u€}
then follows from the comparison principle (Theorem 1.7) for (P), as long
as the uniqueness result holds for the initial data wy.

1 Viscosity solutions and preliminary lemmas

Consider a space-time domain ¥ C IR" x [0, c0) with smooth boundary. Let
Y(s):=Xn{t=s}

For a nonnegative real valued function w(z,t) defined for (z,t) € 3,
define

Qu) = {(z,t) € X ulw,t) > 0}, Quu) ={z: (z,t) € X : ulw, t) > 0};
D(u) = 9Q(u) — 05, Ty(u) = 0 (u) — O5(E).
Let us consider a continuous function
F(gy) : (IR" —{0}) x IR" — [-2,00)

which is increasing in |q|, |¢| — 2 < F(q,y,v) < |q| — 1, and F(q,y + ex) =
F(q,y) for k =1,...,n. We also assume that F' is Lipschitz continuous in y
with Lipschitz constant 10.



Consider the free boundary problem

—Auc =0 in {u® > 0},
(P)e
u; — |Duf|F(Duf,£) =0 on 0{u® > 0}

in ¥ with appropriate boundary data. We prove existence and unique-
ness of the solution in this generality to apply the results to both (P). and
(P), and to various local barriers constructed in the analysis.

We extend the notion of viscosity solutions of Hele-Shaw problem in-
troduced in [K1]. Roughly speaking viscosity sub- and supersolutions are
defined by comparison with local, smooth super and subsolutions ( we call
such functions barriers ). Viscosity solutions were first introduced by Cran-
dall and Lions for studying Hamilton-Jacobi equations (see [CIL]).

Definition 1.1. A nonnegative upper semicontinuous function u defined in
Y is a viscosity subsolution of (P). if

(a) for each a < T < b the set Qu) N{t < T} N3 is bounded; and

(b) for every ¢ € C**(X) such that u — ¢ has a local maximum in Q(u) N
{t <to} N at (zg,to) then

(Z) — Aqb(xo,to) <0 if u(xo,to) > 0.

(1) if (wo,t0) € I'(u),[D¢|(x0,t0) # 0 and
_Asp(xO)tO) > 0)

then

T
Note that because u is only upper semicontinuous there may be points
of I'(u) at which u is positive.

Definition 1.2. A nonnegative lower semicontinuous function v defined in
¥ is a viscosity supersolution of (P)¢ if for every ¢ € C*1(X) such that
v — ¢ has a local minimum in ¥ N{t <t} at (zo,to), then

(4) — Ag(wo,t9) > 0 if v(wo,t0) > 0,

(i) if (zo,to) € T'(v),|Dg[(z0,t0) # 0 and
—A(p(xo,to) < 0,



x
(60 — |DGIF (D¢, =) (w0, t0) = 0.
Let K,Qq, g, f,up and @ be as given in the introduction.

Definition 1.3. u is a viscosity subsolution of (P). in Q with initial data
ug and fized boundary data f > 0 if

(a) u is a viscosity subsolution of (P). in Q,

(b) u is upper semicontinuous in Q, u=1ug att =0 and u < f on OK.

(c) Qu)N{t =0} = Q(up).

Definition 1.4. wu is a viscosity supersolution of (15)5 in Q with initial data
ug and fized boundary data f if u is a viscosity supersolution in Q, lower
semicontinuous in Q with u=wug att =0 and u > f on 0K.

For a nonnegative real valued function u(z,t) in ¥ we define

u*(z,t) := limsup u(E,s).
(&,5)€X—(a,t)

and

wilwt) = liminf a6, s)

Note that u* is upper semicontinuous and u, is lower semicontinuous.

Definition 1.5. u is a viscosity solution of (P). (in Q with boundary data
ug and f) if u is a viscosity supersolution and u* is a viscosity subsolution

of (P)e (in Q with boundary data ug and f.)

Definition 1.6. We say that a pair of functions ug,vg : D — [0,00) are
(strictly) separated (denoted by ug < vg) in D C IR™ if

(i) the support of ug, supp(ug) = {ug > 0} restricted in D is compact and
(ii) in supp(ug) N D the functions are strictly ordered:

up(x) < vo(z).

Theorem 1.7. (Comparison principle) Let u,v be respectively viscosity sub-
and supersolutions of (P). in X. If u < v on the parabolic boundary of ¥,
then u(-,t) < v(-,t) in X.



Figure 2: Geometry of positive phases at the contact time.

The proof is parallel to the proof of Theorem 2.2 in [K1]. We only sketch
the outline of the proof below.

Sketch of the proof

1. For r,§ > 0 and 0 < h << r, define the sup-convolution of u

Z(z,t):=(140) sup  u(y,(1+0)s)
|(,5)— ()| <r

and the inf-convolution of v

Wiz, t):=(1-9¢ inf v(y, (1 —98)s
(@.8):=0-0  mof . 001=0s

in XN {r<t<r/h},X:={(z,t)€X:dx,d8(t)>r}

By upper semi-continuity of u —wv, Z(-,7) < W(-,r) for sufficiently small
r,0 > 0. Moreover a parallel argument as in the proof of Lemma 1.3 in [K1]
yields that if r << J¢, then Z and W are respectively sub- and supersolutions
of (P)..

2. By our hypothesis and the upper semi-continuity of u —v, 2 < W
on 0% and Z < W on 9% N Q(Z) for sufficiently small § and 7. If our
theorem is not true for u and v, then Z crosses W from below at Py :=
(z0,to) € N [r,T]. Due to the maximum principle of harmonic functions,
Py e I'(Z)NT'(W). Note that by definition (Z) and Q (W) have respectively
an interior ball By and exterior ball By at Py of radius r in space-time (see
Figure 2.)

3. Let us call H the tangent hyperplane to the interior ball By at Fj.
Since Z < W for t <tgand Py € I'(Z) NT'(W), it follows that

Bin{t<to} CUAZ)NQW); Byn{t<to} C{Z=0}n{W =0}

with By N BoN{t <to} = {P}.



Moreover, since Z and W respectively satisfies the free boundary motion
law 7
t x
—(z,t) < F(DZ, — t I'(Z
‘DZ‘(x’ )— ( ’6)(1.’ )On ( )

and
Wi

[DW|
the arguments of Lemma 2.5 in [K1] applies for Z to yield that H is not
horizontal. In particular By N {t = to} and By N {t = ¢y} share the same

normal vector 1, outward with respect to By, at Fy.
Formally speaking, it follows that

Z
|DZ|

(z,t) > F(DW, %)(m,t) +hon T(W),

(Ry) < F(DZ,20)(Py) < F(DW, “0)(Py) < b (o)

- |DW
where the second inequality follows since both DZ(Py) and DW (F,) is par-
allel to —vp, F(q,y) in increases in |q|, and Z(-,ty) < W (-, ) in a neigh-
borhood of zg. Above inequality says that the free boundary speed of Z is
strictly less than that of W at Py, contradicting the fact that I'(Z) touches
(W) from below at Fy.

For rigorous argument one can construct barrier functions based on the
exterior and interior ball properties of Z and W at Py. For details see the
proof of Theorem 2.2 in [K1].

O

For x € IR", we denote B,(z) :={y € R" : |y — x| < r}.

Theorem 1.8. (a) There exists a viscosity solution u of (P). in Q with
wniatial data ug and fixed boundary data f.

(b) u(-,t) is harmonic in Q(u), w*(,t) is harmonic in Q(u*), and T'(u*) =
I(u).

For (¢) — (d) we remove the space dependence in F, that is we assume
F = F(Du).

(c) If Q and K are star-shaped with respect to the origin, then there is a
unique viscosity solution u of (15) with boundary data ug and f = 1.
Moreover in this case Q(u) is star-shaped with respect to the origin
for all t > 0.



(d) If K is star-shaped with respect to the origin and |Dug| > 2 or |Dug| <
1 on Ty, then there is a unique viscosity solution u of (P) with bound-
ary data ug and f = 1.

Proof. 1. For (a), let us consider ¥: the viscosity solution of (15)6 with
F(Du,y) = |Du|, with initial data uy and fixed boundary data f on 0K.
Such solution exists in @ and is unique due to [K1]. Note that ¥ is a
supersolution of (P), in Q. Define

P = {z: z is a subsolution of (P).,z < f on K,To(z) =T, and z < ¥},
Note that P is not empty. Let us define

gb(x,t) = inf ’U,Q(y), t S d(ro,K)/Q,
ly—a|<2t

and let to be the first time I';(¢) hits K. Let h(-,¢) be the harmonic function
on 4(¢) with h =0 on I'y(¢) and h = f on K for 0 <t < g, and h(-,t) =0
for t > to. Then z = h(x,t) € P.

Next define

U(z,t) :=sup{z(x,t) : z € P}.

Arguing as in Theorem 4.7 in [K1] will yield that U, is in fact a viscosity
solution of (15)6 with boundary data I'g and f on K. We mention that the
continuity of f and F' is necessary for the argument.

2. For (b) parallel arguments as in the proof of Lemma 1.9 of [K2]
applies. In particular

u(-,t) =inf{a(z) : —Aa>01in Q(u) — K,a= f on 0K,a > 0 on I'y(u).}
and
u*(-,t) =sup{f(z) : — AL <0 in Y (uv*)—K,f = fin 0K, <0 in I't(u*).}

3. To prove (c), let u; and wup be two viscosity solutions of (P) with
initial data ug. By our hypothesis, for any 0 < 6,

u1(z,0) < uz((1+6)"",0),
Since F'(Du) is increasing with respect to |Dul, )
(x,t) = up((1 4+ 8)~tz, (1 + 6)~'t) is a supersolution of (P€). Thus by
Theorem 1.7

(1.3) (ur)*(x,t) < a(z,t).

10



Since 6 > 0 is arbitrary, we obtain u; < wus. Similarly us < wuy , and
thus u; = uy. In particular (1.3) with u; = uy implies that Ql/gc(U1) is
star-shaped with respect to the origin.

4. To prove (d), first suppose |Dug| > 2. Then Q(u) immediately ex-
pands at t = 0 for any viscosity solution u. It follows that for any 0 < § << €
and for any two viscosity solutions u; and us of (]5)6 with initial data g,
there exists a constant C' > 0 such that

ui(z,0) < ug((1 4+ 6) "z, Co) in R™ — (1 + )K.

Hence by Theorem 1.7,

(uy)*(z,t) < ug((1 4+ 6) e, (1 4+ 6) "1t + C9) for t > 0.

We now send § — 0 to obtain u; < us, and similarly us < w1, and thus
u1 = ug, yielding uniqueness. U

For later use we state that the free boundary of a viscosity solution u
of (P)¢ in @ with initial data uy and and fixed boundary data f does not
jump in time. The proof is parallel to that of Lemma 1 in [K3].

Lemma 1.9. I'(u) does not jump in time, in the sense that for any point
xo € Ty (u*) (zo € Ty, (u)) there exists a sequence of points (xy,t,) € I'(u*)
((xn,tn) € T'(w)) such that t,, < to, (xn,tn) — (x0,to).

2 Defining the limiting velocity

In this section we extend the notions introduced in [K3] to define the limiting
free boundary velocity of the solutions of (P), as € — 0.

For given nonzero vector ¢ € IR" and r € [—2,00), we denote v =
and define

q
|q|

Py(z,t) :=lq|(rt—1)—z-v)y, lg,t)={zcR":r(t—1)=x v}

Note that the free boundary of P, ., I'\(P,,) = l4(t), propagates with
normal velocity r with its outward normal direction v, and with
lgr(1) ={z-v =0}

Next we construct a domain with which the obstacle problems will be
defined. In e; — e,, plane, consider a vector u = e, + v/3e1. Let [ to be the
line which is parallel to p and passes through 3e;. Rotate [ with respect to
ep-axis and define D to be the region bounded by the rotated image and
{r:—-1<=x- e, <6} (see Figure 3). For any nonzero vector g € IR", let us

11



D(q)

>/ W(ey)
]

Figure 3: The spatial domain for test functions

define D(q) := ¥(D), where V¥ is a rotation in IR" which maps e, to ¢/|q|.
Let us define

0= |J ((1+30D(g) x {t}).

0<t<1

Let us define the space-time domain @ := D(q) x [0,1] for » > 0, and
Q1 :=0 for r <0.

Definition 2.1. Let us define
Ueqr = (sup{u : a subsolution of (P)c qin Q1 with u < Py, })*

= (inf{v : a supersolution of (P). in Q1 with u > Py, }).

EE?‘LT

Note that then tcq (-, t) and u.,,(-,t) are both harmonic in their pos-
itive phases. The reason for defining rather complicated domain ) is to
guarantee that the free boundary of u.., , and g, does not detach too fast
from P, , as it gets away from the lateral boundary of Q1. (see Lemma 2.4).

The following lemma is due to the fact that 1 < g < 2.

Lemma 2.2. Forr > |q|—1, Py, =u., . Forr <l|q| =2, P, = tcq,-

Lemma 2.3. For r > |q| — 1, Ucq, < Py, in the interior of Q. For
r<lql =2, Py < Uy, in the interior of Q1.

Proof. For r > |q| — 1+ ~ for v > 0, note that P, , is a strict supersolution
of (P)e, i.e., the normal velocity V' = r of [, satisfies V' > |DF, .| — 1+ ~.
Thus by definition of viscosity subsolution, it follows that

ae;q,r < Pq,r in Ql-

For r < |g| — 2 parallel argument applies. O

12
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Figure 4: Barriers for lateral boundary control

For the rest of section 2 and section 3 we will restrict the analysis to
the cases r € [—2,2] N [|¢| — 2,|g| — 1]. For the remaining cases, r > 2,
corresponding results can be proved by parallel, in fact easier, arguments.

In e; — e, plane, for each 0 < ¢ <1 consider a line [(¢) which is parallel
to the vector e; + v/3e, and passes through —e; + te,,. Now rotate
I(t) N {x - e1 < 0} with respect to e,-axis to obtain a hyper-surface L(t) in
IR™. Let L(t) be the region whose boundary is L(¢) and contains —e,,. For a
nonzero vector ¢ € IR" let us define £,(t) = ®(L(t)) where ® is the rotation
map in IR" such that ®(e,) = ﬁ. Let us define U, to be the harmonic
function in the region

(2.1) L,(2V3rt) N D(q),

with boundary data zero on 9L,(2v/3rt) N D(q) and P, on the rest of the
boundary. To define Uy, we replace [(t) by k(t), where k(t) is parallel to the
vector 2v/3e; — e, and passes through —e; + te, and replace 2v/3 in (2.1)
by 1/2 (See Figure 4).

Lemma 2.4. %, = P, and Uegr = Pyr on the parabolic boundary of Q1.

Proof. 1. We will make use of the fact that
] 1
|DUq.r| > 2lg| and |DU,,,| < 5ldl

on their respective free boundaries. (Above inequalities follow from com-
parison with planar solutions at each time.)

We first prove the lemma for » > 0. Then we will find that, if » > 0,
Ugr(z,t) is a subsolution of (P). since, on the free boundary, the normal

velocity V' of I'(U,,,) satisfies
V=r/2<]q|/2-1/2<2|q| -2 < |DUy,| -2

13



if [¢| > 1, which is our case since r > 0. Similarly for » < 0 U, ,.(7,1) is a
supersolution of (P) since

V:2T22‘q,_42‘q’/2_12’ng,r‘_l

if |¢| < 2. The lemma then follows from the comparison principle.

2. For =2 < r < 0 and r € [|g| — 2,|q| — 1], choose a = a(r) such
that [, (t) meets 0L,(a(r)t) on the lateral boundary of (1 + 3t)D(q). A
straightforward computation then yields a(r) > —1/2. For 0 <t <1 define
V., +(-;t) to be the harmonic function in the region £, (a(r)t) N (1 + 3t)D(q)
with boundary data zero on 9L,(a(r)t) N (14 3t)D(q) and P, on the rest
of the boundary of O.

We claim that V. .(7,t) is a supersolution of (P)c in @1 = O.

Indeed one can verify that, by comparing V,, ,.(, ) with planar harmonic
functions at each t € [0,1], [DV, | < q|/2 on its free boundary. Since r < 0
and |g| < 1, we conclude that the normal velocity V of T'(V,, ,.) satisfies

X
V> —1/2>ql/2 = 1> [DVy,| = g(2).

Similarly one can construct a subsolution V,, of (P). in O, by modifying
the supersolution U, , constructed above. Now our conclusion follows by
comparing u., , with V., ., and ¢, with V.

U
Lemma 2.5. For ¢ € R" and r € [-2,2] N [|q| — 2, |q| — 1],

(a) teqr is a subsolution of (P)e in Q1 with teq,r < Py in Q1 and teq,r =
P, on the parabolic boundary of Q1. Moreover (teqr)s« is a solution
of (P)e away from I'(te,qr) Nilgy.

(b) u is a supersolution of (P). in Q1 with u

=64,

Uegr = Py in Q1 and

= Py on the parabolic boundary of Q1. Moreover u..,, is a

Leq,r ar

solution of (P) away from T'(u, ) Nl

(¢c) Ueyq,r decreases in time if r < 0. .., , increases in time if r > 0.
)

q,r
Proof. 1. (a)-(b) of Lemma 2.5 can be proved as arguing in the proof of
Lemma 4 in [K3], using Lemma 2.4.

2. To prove (c), note that by definition of @,q and w.,, . respectively as
the maximal subsolution and the minimal supersolution in )1 with obstacle
Pq,ra

leyq,r (2,6 + T) < Ugq,r(, 1)

14



for any 7 > 0 when r < 0, and

Ueg (Xt +7) > gs;w(x, t)

=64,

for any 7 > 0 when r > 0. This yields (c). O

The following corollary is due to Lemma 2.4 and by definition of g,
and U, .
Corollary 2.6. For any given nonzero vector q € IR", v = % and for
any a € [0,1], there is n € IR" such that av +n € €Z™, n-v > %]n\ and
€ < |n| < 3e. For this n the following holds:

(a) Forr >0

af;QW(x +av + 77’t + T) S af;QW(x’ t)
foro<tT<rYa+n-v)and
Qe;q,r(x +av + 77,t + T) > Qe;q,r(‘r’ t) in Ql'

for>r"Ya+n-v).
(b) For r < 0 the above inequalities are true with v,n and r replaced by
—v, —n, and |r|.

For a nonzero vector ¢ € IR" define

A (t) - Ft(ﬂe;q,r) N lq,T’(t) N B1/2(0)

Leq,m
and

Aciqr(t) = Ti(Tesq,r) Nlgr(t) N Byya(0).
where 0 < ¢t < 0o. Also define the contact sets

Ay = U Acyr(t), Acgy = U Acgr(t).

1/2<t<1 1/2<t<1

Note that if Aeq, (A ) is empty, then Aegr(t) (Ac.q (1)) is empty for

t > 1 due to Corollary 2.6.
Lastly define

r(q) =inf{r: A, , # 0 for e < ¢y with some ¢y > 0},

7(q) = sup{r : Aeq, # 0 for € < ¢y with some €y > 0}.

Note that by Lemma 2.3 7(q) < |¢| — 1 and r(¢) > |q| — 2. Below we
show that the contact sets are empty or non-empty in a monotone fashion
in r and €.
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Lemma 2.7. (a) Let v # 0 and € < |r|/8. For r <11, if Ageyr, (Ac.qr)is
empty, then Acq, (Aeqr ) is empty. )

(b) Suppose r # 0 and e < |r|/8. If Acyiqr (Aeyiqr) 15 €mpty, so is Aeqyr
(Ac,yr) for 0 <e<ep/2.

Proof. 1. Let r < ry and assume Ay, . = 0. We compare u; = u.,,
with a minimal supersolution ug of (P). in the domain @); with obstacle
P := P, ,, — av, where a > 0. Note that for any a > 0 there exists { € eZ"

such that |€ — av| < 2e. Let us choose 7 € [0,2r~!¢] such that
lgr(T) —av =13,(0) — & - v.

By comparison between ug and uy.., . (2(x+&),2(t—7)) in 5Q1 x [7,1] and
using the fact that A, . is empty, it follows that I'(ug) is away from [y,
in By4(0) x [1/4 + 2~ Te, 1],

2. By definition of ug, ug is a solution of (P). away from P. Thus by
Theorem 1.7, uy < uy in Qq as long as Py, (- + av,t) < Py,(-,t). Let T'(a)
be the time at which P, (- + av,t) = P, .(-,t). For each ¢, € [1/2,1], one
can choose a appropriately so that T'(a) = tg. From previous argument on
ug and from the fact that e < |r|/8, it follows that A, is empty.

3. The rest of (a) and (b) follows from parallel arguments.

U

Next proposition states that for » > 0 the free boundaries of .4, and

Ue.qr With "good” obstacles are relatively flat up to the order of e.

q

Proposition 2.8. Fix a nonzero vector q € IR" and
r € [lgl —2,|q| — 1] N [—1/2,2]. Then there exists a dimensional constant
M > 0 such that

(a) If Aeqr is nonempty then

d(w,lq,(t)) < Me for x € T'i(tizeqr) N Byy2(0),0 <t < 1.

(b) If A..,, is nonempty, then
d(w,1gr(t)) < Me for v € Ty(ugey,) N B12(0),0 <t < 1.
Proof. 1. The proof of (b) is parallel to that of Lemma 7 in [K3].

2. To prove (a), Let v = ‘—g‘. For simplicity we drop ¢,r in the notation
of Uge.q,r. First observe that, if zg € T'y(u2.) with d(xo,l;,(t)) > €, then

(22) QTLQE(-,t) < Cein BQE((L‘Q — 361/).
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If not a barrier argument using Corollary 2.6(a) yields that xg € Q4(u.), a
contradiction.

3. Let yo be the furthest point of I'y, (tiac) from Iy -(to) in By/2(0). If (b)
is not true, then

(2.3) d(yo,lq,r(to)) = do > Me

for some tg € [5¢,1]. By definition of .,

(2.4) %a%@(x — ) 2(t = to) + to) > e(x,t) in %Ql + (. 10/2)

when 7 € eZ™ satisfies || < 1/2 and n-v > r(tp — 1) . It then follows from
(2.2) and (2.4) that

(2.4) (- to) < Ce on By4(0) N (I (to) — (do + 3e)v).

(2.5), (2.3) and the fact that u(-,t) is subharmonic yields that, if M is
chosen large enough,

(2.6) (- t0) < €/10 in Byg(0) N (g (to) — 2v).

Since r > —1/2, a barrier argument using (2.6) and Corollary 2.6(a)
yields that I', (o) is away from [, ,(t9) for to € [1/2,1], a contradiction to
our hypothesis. O

For r < —1/2 the argument in [K3] no longer applies, due to the fact
that (2.6) does not guarantee that I'(ug) recedes faster than [, .. Below we
state a weaker result on the flatness of the free boundary.

For any v > 0, define the sup-convolution of i, , on the spatial ball of
size e,

Ve (T, 1) == SUP  Teigr(y,t)-
YEBye ()

Proposition 2.9. Fiz a nonzero vector ¢ € IR" and r € (=2, —1/2).
(a) If Ac.qr is nonempty, then for any v > 0, there exists M = M(y) > 0
such that, for any e >0

d(w,lgr(t)) < Me for x € Ty (V2e;g,y) N B1y2(0),0 <t < 1.

(b) There exists a constant M = M(|q|) > O such that, if A.., . is nonempty,
then
d(w,1qr(t)) < Me for v € Ty(ugey,) N Bi12(0),0 <t < 1.
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Proof of Proposition 2.9 (a):

1. Let v = ﬁ. For simplicity we drop ¢, in the notation of ueq.r, ©
and ¥¢q.r~ in the proof.

2. Let x¢ to be the furthest point of Ty, (V2 4) from I (to) in By/2(0).

We may assume that

€4,

d(an lq,T‘(tO)) > ME,
where M = M (~y) > 0 is a constant to be determined. We claim that
(2.7) @25(-,150) < Cein Bge(.%'() — 36(]).

where C' is a dimensional constant to be chosen.
To show the claim, note that s, is strictly decreasing in time when r < 0
and in particular, due to Lemma 2.5,

Uge(,t + 7) < (U2e)s (2, t) for any 7 > 0.
Hence if the claim is not true, then
(t2¢)+(yo,t) > Coe for some yo € Bac(ro — 3eq) and for 0 <t < 1

for sufficiently large Cyp > 0. Since (uge)«(-,t) is lower semicontinuous,
Uge(v,to —€) > 0 in B,(yo) for some 0 < r < € for 0 < t < ty9. More-
over, by Harnack inequality ug(-,t9 — €) > Cie in B,(yo) for a sufficiently
large Cp > 0.

Let us define

r(t) = /12 + aCre(t —to +¢).

with a sufficiently small such that xg € B, ,)(y0) and r(to) < 5e.
Next construct a function ¢ in IR"™ x [tg — €, o] such that

—Ap(t) =0 in  Bay)(¥0) — Br)(¥o);
¢ = Che in - By (yo) x [to — €],

¢(-t) =0 in - IR" — By (20)-

If a is sufficiently small and if C; is sufficiently large such that |D¢| > 3 on

I'(¢), then
on aCre

= T, t _=
gl =" =)
Hence ¢ is a subsolution of (P), in

2= J (B"=B,u) xt.

to—e<t<tg

1
< 5IDg| < |Dg| -2

18



Now we compare ug. and ¢ in X. First observe that ¢ < g in XN {t =
to — €}. Next observe that, if ug.(-,) is positive in By,.;)(yo), by Harnack
inequality applied to g,

Uze(+,t) > Cre = ¢ on 9B, ;) (yo).
On the other hand, as long as above inequality holds for tg —e <t < 5 < ),
Q(d) C Q(uge) in XN{tg—e <t <s}

due to Theorem 1.7. Hence it follows that ¢ < g in 3. In particular,
xo € Q4 (tge), yielding a contradiction.
3. Observe that, by definition of e,

(28) %27/26(2(1' — 77), Q(t - to) + to) > ﬂe(fb,t) in %Ql + (n,t0/2)

when 7 € €Z" satisfies |n| < 1/2 and 1+ v + 3 > |r[to . It then follows from
(2.7) and (2.8) that

(2.9) Q_Le(-,to) < Chye in {(.%' — .%'0) ‘U= —36} N B3/4(0).

where (5 is a dimensional constant.
4. Due to (2.8) for any e-neighborhood of a point in

S:{x:%637“(150—1)—%'V§%5}033/4(0)7

there exists 2o € {Uc~(+,t0) = 0}.
Due to (2.9) and the fact that u. is subharmonic,

€ .
G- to) < 35 in Bac(z0)

if M = M(v) is chosen sufficiently large. Moreover by definition of v,
e = 0 in Byc(2p). Thus a barrier argument using the fact that . decreases
in time would yield that (-, o + 3¢) = 0 in Bac(2p). In particular

(2.10) Uie(- o+ 3¢) =0 in S.

6. (2.10) and Corollary 2.6(a) with 7 = 0 yields A, = 0, contradicting
our hypothesis.
O

We proceed to prove (b).
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Proof of Proposition 2.9 (b):
1. Let v = L. Let us define [, = [, (t) such that
‘q‘ q, q,

lyr(t) ={x:d(z,ly,(t)) =2ceand x-v <r(t—1)}.

Let (zo,t9) € A

_6;q7,r :

We claim that

(2.11) SUP Uy (1) < Ch,
yEBQE(Z‘O)

where C' is a dimensional constant. Otherwise a barrier argument using
Corollary 2.6 will yield a contradiction to the fact that u.,, > Py, and
(xo,t0) € A By comparison with translated versions of 2u,.,,.(7/2,1/2)

—=€q,r’

and as in (2.8), it then follows that

(2.12) Usy.

(1) < Coe on Iy, (to) N By j5(0).

where Cy = Cy(n), for 0 < ¢ < 1. On the other hand,
(2.13) Upeqr(T,8) > Pyp(w,t) > dlg| on Iy, — dv.
2. Now we take

ui(x,t) =4 sup Uoe.q.r (Y5 4t — o) + to).
yEB(t7t0)+(z)

Then for t > ty, uy is a subsolution of (P). with normal velocity
(2.14) V < |Duy| - g(%) —1
away from [1, where

Lto+71)=0n{t=to+71}=13,(to+7) + trr.
Due to (2.12) and (2.13),

(2.15) uz(z,t) == ur(z — &, t) <wug(w,t) = inf uy.,.(v,1)
yEBe(x) T

on lo N{ty <t < ty+ 2¢}, where Iy =11 + £ and £ € €Z" such that

Me _
- < Il < Me, M = M(jg]) = 4Colq| " and ¢ = (- v)v| < €.

Let

Iy = {(x,t) :x-v>1y-v}, where y is the projection of x on la(t).
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By Theorem 1.7 applied in the domain
Yi=QiN (I x {to <t<to+e})
using (2.14) and (2.15), we obtain that
ug(z,t) < ug(z,t) in 3.

3. Note that, due to comparison with translated versions of 2u,., ,.(/2,1/2)
using the fact A, # 0, for every point (z,t) in the zero set of P, for Q1,
there is a free boundary point of I'(uy,, ) in Bac(z). Hence ug(x,t) = 0 in
{Pyr=0}NX%.

Hence it follows that the free boundary of ug at t = tg is Me-flat. Since
0 < tg <1 is arbitrary, our conclusion follows. O

3 Uniqueness of the limiting velocity

Suppose ¢ is a nonzero vector in IR".
Lemma 3.1. Suppose —2 < r < 2.

(a) Suppose 0 <r1(q) <r. Then u,,, has its free boundary velocity bigger

TE
than -

(b) Suppose r < r(q) < 0. Then Uegq, has its free boundary velocity less
than 5.
Proof. 1. Note that u,., . increases in time for r > 0. In particular, formally
|Du,., .| > 1 on the free boundary. This and the fact that the Lipschitz
constant of g is less than 10 yield that

h
up(,t) i = (1= )ty gz + grevst + r~1h)

is a supersolution of (P), with P, ,(-,t) < ua(-,t) for any small A > 0. Hence
due to Theorem 1.7 u, (-, ) < uz in Q1, which yields (a).
2. Similarly, e, decreases in time for r < 0, yielding |De.qr| < 2 on

the free boundary. Parallel arguments as above then yield the inequality

(3.1) (L4+h)  sup  Gerg(y,t + 17 h) < depg(z,t)
YEBpe/10(7)

in @ for any small A > 0, from which (b) follows.
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Corollary 3.2. For any v > 0,

ty(z,t) = (1 +7rye) inf  we . (y, (14 207)t).
yeB, a(x) 7

TYE

s a supersolution for 0 < r < 2 and

ﬂQ(IE, t) = (1 - T’VG) Sup ae;q,r(y’ (1 + 207)1;)
YeB, 2 (7)

TYE

is a subsolution of (P). for =2 <r < 0.

n

eqr a0

For n € N, let us define corresponding maximal subsolution w

minimal supersolution wy., . of (P). in the "strip” domain
b 5

Qn =ni1N{-2<z-v<2}

with boundary data P, ,. Parallel arguments as above then yields the fol-
lowing:

Corollary 3.3. Lemma 3.1 also holds for wg, . and wg, .
Next let us define, for r < 7(q),
gy, += (limsup g, )"
n—oo
where P
_ _ xr tU—
ugq’r(x,t) = n'l,Li;q7T(E’ T + 1)
and for v >0
ﬁg;oq,r,'y(x’ t) ‘= Sup ﬂ?;oq,r(y’ t)'
YEBre(z)
Let us also define, for r > r(q),
Ueryr = (iminful).
T n—oo
where P
x p—
Ugrgr(T,1) 1= ng%;q’r(g, — +1).

Let v = v(q) = %, and let M(~) and M(|q|) be the constants given

respectively in Proposition 2.9 (a) and (b).

Lemma 3.4. Suppose r < 0. Then
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(a) uZ, . is a subsolution of (P). and
Py (x4 Mev,t) < 02 q“/( t) < (1 +~€e) Py, (x — vev,t),

with M = M (7y), in IR™ x [0, 00).

(b) u,, is a supersolution of (P)e such that
Pyr(z,t) Sugy(w,t) < Pyp(z — Mev,t)

with M = M (|q|), in IR™ x [0,00).

(¢) Forr >0, (a)-(b) holds with M as given in Proposition 2.8.

(d)
a?%,r(x + My t) - _6 i, r(x t)
for any lattice vector p orthogonal to q.

(The same equality holds for u..,..)

(e) for any u € Z™ such that p-v >0,

flj’g;oq,r(:C + €, t+ Tﬁlelul : Q) < ﬂ?%,r(fﬂa t)

and
W (o et e v) > 0 (2, 1),

Proof. 1. We will only prove the lemma for ugy . with r < 0 and r < 7(qg),
since parallel argument holds for the rest of the cases.

2. Note that ug, , is the maximal subsolution which is smaller than F; .
in @, := nQ1 with boundary data P, ,. Therefore @, is decreasing in n

€;q,T
and thus converges to 42 . Moreover due to Propositions 2.8 (a) and 2.9
(a)

q,7r°

M
(1- (V)E)qur(x + M(’y)el/,t) < sup ag;q,r(yvt)a
yGBwe(z)
and thus (a) holds.
3. We claim that
(3.2) P(igy,) C limsupT(ag,,).

n—oo
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If (3.2) is false, then there exists (z,t) € I'(ug, ) and h > 0 such that

€;q,T
Bp(z) x [t — h,t + h] € Q(ug, ) for all n > 0.

Choose (y,s) € Byj2(z) x [t — h,t + h] such that ¢y = gy, ,(y,s) > 0. Due
to Harnack’s inequality it follows that
g,y +(-;8) > Cco in By, jo(z) for any n,

where C' is a dimensional constant. This contradicts the fact that (x,t) €
L(ugy .-

Now standard viscosity solutions argument will prove that ugy , is a
viscosity subsolution of (P)..

4. Suppose p € Z"™ with p-v = 0. Observe that, for any n such that
lul < N <n,

gy (@t ept) < aly (o) < agy (@ +ept) in Qn,
Hence taking n — oo it follows that
Ugry (T + €, t) = ugy, . (z,1).

5. (e) follows from the fact that, for any p € Z™ such that p-v >0,

g (@ ept +rtep v) < Ay (2, t)
it N > |pl.
O
Let wg, , and wg, , as given in Corollary 3.3 and define
wgﬁl,r = (nh_{go w?;q,r)*
and
Wey = (lim wg, )"

n—~o0

Note that the limit exists since wg., , is decreasing and w¢', ,. is increasing
in n. Also note that

=T < " n n
u5§q77' - wE?‘]ﬂ" wE?‘LT - Qﬂ‘]ﬂ"

Above inequality and parallel arguments as above then yields the follow-
ing:
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Corollary 3.5. (a)-(e) holds for wgy,, and wg;,

—6,(1,7"

Lemma 3.6. For r = r(q) # 0 and for 0 < € < 1, there exists Ueqr, a
subsolution of (P) in IR"™ x [0, 1] with the following properties:

(a) Uegr = Py
(0) Uegr(x + p,t) = Uegr(2,t) for any p € €Z™ orthogonal to q.
(c) for any u € eZ™ with p-v > 0,

Ue?qu(x +pt+ Tﬁlu : V) > Ue;%r(xa t)'

(d) d(Tt(Ueigr),lgr(t)) < Me for 0 <t <1,
where M is the constant given in Propositions 2.8 and 2.9 (b).
Proof. 1. Take r(0) = r(q) — ¢ for any small § > 0. Then by definition of
r(q), there exists ey > 0 such that

1
(33) d(Ft(geo;qua) N Bl/Q(O), lqm(t)) > 0 for 5 <t< 1.

Take the supremum of € satisfying (3.3) which is less than |r|/8 and

denote it by €(d). From Lemma 2.7 (b) it follows that for 0 < e < %,
Ue.q r(5) 18 @ solution of (P) in By»(0) x [1/2,1].

2. Suppose € = e(g’“) — €1 > 0 along a subsequence 6 — 0. One can
check that
Ue, .q.r,, l0cally uniformly converges to u, ., ,
as k — oo, where 7 := 7(d;). It follows that u.,, with ¢ < ¢ is a so-

lution of (P)e in By/5(0) x [1/2,1]. Moreover due to the definition of r(q)
and Propositions 2.8 and 2.9, I'(x,,, ) stays in Me-neighborhood of [, in
By/2(0) x [1/2,1]. Using above properties of v, similar arguments as in
the proof of Lemma 3.4 yields that

€;q7,r’

rz t—1
;q,r(_ — + 1))*

Uegr = (lim nuc —

n—oo n
satisfies (a)-(d) in above lemma ( Note that the limit exists since the se-
quence is increasing in n.)

3. When €(d) — 0 as § — 0, observe that at € = 2¢(d) with sufficiently
small 4, the free boundary I'(u, ) has a contact point with I . in
By/5(0) x [1,2]. Due to Propositions 2.8 and 2.9, I'(u,,(5)) then stays
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within Me-neighborhood of [, .5y in By /2(0) x [1/2,1]. Choose a sequence
0r — 0 such that ¢, decreases in k£ and define

r t—1 €
Vp(7,1) = Qpllye, g p (—>—— + 1), ap = —.

ap Qap 2¢€g
We define
Ueqr(z,t) == (lim wvg(z,t))*.

k—o0

Above limit exists since for any vy, there exists N such that vy < vy in
Qq, if I > N, due to the fact that 7, and «aj, increases in k and I'(vg) stays
in Me-neighborhood of [, .
Parallel arguments in the proof of Lemma 3.4 then yield that Ue,, sat-
isfies (a)-(d) in our lemma.
O

Let ¢ € IR", |q| # 0. We call g a rational vector if
qg=m(aje1 + ...a1e,), m € IR and a; € Q.

Lemma 3.7. 7(q) = r(q) for rational vector ¢ € IR"™.

Proof. 1. First we show that 7(q) < r(q). If 0 > r = 7(q) > (1 — 207)r(q)

[e.°]
for some v > 0, we compare uZy, , and

vi(z,t) == (L—rye) sup we,,(y,(1+207)t),
ly—z|<rye

using Corollaries 3.3 and 3.5 and argue as in the proof of Lemma 10 in
[K3] to draw a contradiction. Similar argument applies to yield a contradic-
tion for the case 0 < r(q) < 7(q).

2. Suppose 11 = 7(q) < ro = r(q). Then for any € > 0 there is a global
subsolution Uegqr, of (P)c given in Lemma 3.6. In particular U, is peri-
odic with respect to a direction perpendicular to ¢, according to Lemma 3.6
(b). On the other hand at r3 = (11 + r2)/2 there is ¢y > 0 for which g,
is a solution in By /5(0) x [1/2,1]. Now we compare a translation of Ueg .,
and Ue,q, in Q1 such that Uegy, crosses from %eyq, at t € [1/2,1]. From
the periodicity of Ueq.r, and the boundary data of #.q.r, it follows that the
first contact point is at the intersection of the free boundary points of U4 r,
and tey,q,r in Byp(0) x [1/2,1]. This contradictions Theorem 1.7. O

We will next prove that, for a nonzero vector qy € IR™ and r # 0, if
r > r(qo) and if ¢ = agp with a < 1 then for sufficiently small e the free
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boundary of .4, falls behind [y, , by a positive distance after a positive
amount of time. (Corresponding result for u.., . will be proved in Proposition
3.11.)

Later we will prove r(q) := 7#(q) = r(¢q) in Lemma 3.12. In this case
Proposition 3.8 and 3.11 suggests a "robust” uniqueness for the effective
free boundary speed r(q), as long as r(q) # 0: that is, with other choices
of r and with a slight perturbation on the size of ¢, the free boundary of u¢
moves significantly slower or faster than r, detaching itself from the obstacle
lgr- For r(¢) = 0, such uniqueness is no longer true (see Lemma 3.15).

q

Proposition 3.8. Suppose that q is a nonzero vector in IR"™. Then there
exists a dimensional constant C(n) > 0 such that for sufficiently small~y > 0,
r1=(1—C(n)y)r and ¢ = (1 — C(n)vy)q the following holds:

10

(a) Suppose r >1(q) > 0. Then for {5 < € < €0 = g7
d(Lt(tegy 1 )5 lgr (£) N Brya(0)) > Meg

for % <t <1, where M 1is the constant given in Proposition 2.8.

(b) Suppose r(q) <r < 0. Then for ey as above and for {g5 < € < €,
d(Lt(te;qy,1 )5 lgr (1) N Byya(0)) > Meg

for ‘]1\0/[‘% <t <1, where M = M(|q|) is the constant given in Proposi-
tion 2.9 (b).

Proof. Let us denote N = 78, Then there exists ¢ € Z" depending on v
such that

0§‘§’SN7 —f"/:me[172]-

(See Figure 5.)
Proof of Proposition 3.8 (a).
1. Consider the domain

2M
= {(2,1) : [2] <1/2+ (n+ 1)Nt,0 < t < —2L}.
Yy

Observe that II C @ by definition on €. Let C(n) > 0 be a dimensional
constant and define

(3.5) @1 = (1—C(n)y)q and uy = Ueygy 1y,
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[v-&] ~1

Figure 5: A slightly downward translation by a lattice vector

where g, », is the maximal subsolution below F;, ,,, defined the same as
Ue;qy 1 in the domain IT instead of Q1. A parallel argument as in Lemma 2.4
yields that u; = P, , on the parabolic boundary of II. Note that @4 ,, < u1
since IT C Q.

It follows from (3.4), the definition of II, u;, and Theorem 1.7 that

(3.6) uy(z + €€, t 4+ m(r) " te) <uy(x,t),

in By/4(0), where 1 is any lattice vector orthogonal to ¢ such that |u| < nN.
Let us choose a € [@’y, C(n)y] such that

1+a)ry—(1—a)r= rv2.

Next we define

(3.7 ug(x,t) := (1 —20)u (x, (1 — a)t +r (M + C1v)e)

—&q,T

where C'; > 0 is a dimensional constant to be chosen later.
Parallel argument as in the case of u; yields that

(3.8) ug(z + €€, t +m(l —a) trte) > uo(x,t).

in By/4(0), where p is as given in (3.6).
3. Finally, set

ty(z,t) == (1+2a) sup wui(y, (1+a)t); tg(x,t) := inf  wug(y,t).
YEBye () YEBCy ve(T)

Note that @; and g are respectively a sub- and supersolution of (P), if
C(n) is large with respect to Cy. Our goal is to prove that

2M€0 2

oal

(3.9) Q(iiy) C Qiiy) in 3 == By 4(0) x [0,
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if C; and C(n) is sufficiently large.
Due to Lemma 3.4, I'(u2) stays within the Me-strip of [, ,(¢). This and
the fact that

I+a)r—(1—a)r= r’yQ and Ueq,r < U

yields our theorem for % <t< 2110\/1750 once (3.9) is proved. For J‘T/{/ 0 <t <1,

the theorem holds due to Corollary 2.6, (a) for te.q .
4. Suppose that I'(@1) contacts I'(d2) from below at (zg,%o) for the first
time in Y. By definition of us, tg > Mey. Let us define

S :={y € B1;2(0) : |(y — o) - v| < Ne for any v orthogonal to q.}
Due to (3.6) and (3.8) we have
(3.10) Q92 (1) C Q(T2) in S x [to — 1~ ' Me, tog + Me].
To see this, let ®(u) be the characteristic function of the support of u. Then
O(t1)(z,t — 27%€) < ®(a1)(z + €&t — 292 — me(1 + )L (r)) ™)

< B(ag)(x + €€, t — 29%e —me(1 4+ o) (r) )
< O(ag)(z,t —29%e +me((1 — ) tr=t —=m(1 + )~ (r1) ™)
< B(ug)(x, 1),

where the first inequality is due to (3.6), the second inequality due to the
fact (1) < Qi(tg) in By/4(0) x [0,%0], the third inequality due to (3.8),
and the last inequality holds due to (3.4) and the fact that 4y increases in
time.

D.
Lemma 3.9. If C; = Ci(n) in (3.7) is sufficiently large, then

(3.11) ay(z,t) < inf  uo(y,t)
YEBaye ()

on T(@y) N (S X [to — 7~ Meg, to]) and

(3.12) iz, t) < inf  wa(y,t)
YEBrye()

m Q(ﬁl) N (BgMe(.%'()) X [t() — TﬁlMeo,to]).
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Proof. Let ug :=infycp (2)u2(y,t). (3.11) holds due to (3.10) and the fact
that

do(z,t +27%) < inf  ua(y,t),
YEBaye ()

if (' is sufficiently large dimensional constant, which can be proven as in the
proof of Lemma 12 in [K3]. In fact, since ug; , increases in time, formally
|Dug| > 1 on I'(ug). Thus (3.11) yields

Gy < uz +ve on T'(@1) N (S x [tg — r 1 Meg, to)).
Note that by definition of uq and wus,
1 <wugon (lg, —tor)N{0 <t <ty}.
Let h(z) be the harmonic function in
D=8Sn{-ty<(xr—uzp) v<2Mey}

with h =0on {(x —xg) -v = —to}, h =yeon {(x —xp) v =2Mey} and
h = —M]|qlep on OS. Since I'(ug) is Me-flat and u; — ug is subharmonic,

U —ug < hin D x [to — ’I“_lMEO,to].

Due to the fact that the width of S is Ne with N > (r248)~1 and € > ¢,/100,
h > 0 in 3Mep-neighborhood of zy. Hence (3.12) follows if 0 < v < |¢|. O

The rest of the proof is parallel to that of Proposition 1 in [K3], using
(3.11) and (3.12).
O

Proof of Proposition 3.8(b)
1. Consider the domain

2M e

1
II={(z,t): x| <=+ (n+1)Nt,0<t < ——
{(@t): |z < 5+ +1) 2

2

where M is the constant given in Proposition 2.9 (a).

Let uy := eygq,r, as in the proof of (a). Since r < 0, u; decreases in time.
Moreover note that te.q,, < u; since I C Q1.

Let ¢1 as in (3.5) and choose o € [2C(n)v, C(n)v] so that

(1+a)r = (1= a)r = |r}y?,
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and define
uz(z,t) = (1 - 2a)u’y, (z, (1 —a)t - 7|7 (M + C17)e)

where C7 > 0 is a dimensional constant to be chosen later.
3. Set

ay(x,t) == (14+2a) sup wui(y, (1+a)t); to(x,t) == inf  wuo(y,t).
YE DBy ({L‘) yeBCl'ye(z)

Note that @, and 4o are respectively a subsolution and a supersolution
of (P)e. As before, our goal is to prove that

(3.13) Qi) C Q1z) in 3= By 4(0) x [0,2Meo/|r|y]

if C1 and C(n) is sufficiently large. If (3.13) holds, it follows from Lemma 3.4
applied to uy that I'y(t2e,q,r) is more than Meg-away from I, ,(t) for Meq

Irly
t < 2‘7{\‘4—;20 For 2‘7{\‘4—;20 <t <1 (b) holds due to Corollary 2.6.

4. Suppose that I'(a1) contacts I'(d2) from below at (zo,%o) for the first
time in ¥. By definition of ug, tg > Me¢y. Let p and S as before. Arguing
as before for the case r > 0, and using the fact that u; decreases in time

leads to

(3.14) Qt+2725(711) - Qt(’llg) in S x [O,to + ME]
o.

Lemma 3.10.

(3.15) ay(x,t) < inf us(y, t)
YEB(Cyy—ay2)e(®)

on I'(a1) N (S x [to/4,to]) and

(3.16) ai(x,t) < inf  we(x,t)
YEBrye()

in Q1) N (S x [to/4,to]), where

|7 |to
2

(317 §=(5(S+m) N {-Irlto < (w—0) v < 0}
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Proof of lemma 3.10:
1. The definition of us and the fact that the free boundary speed for us
is always greater than —2 yields

(3.18) inf  wa(y,t) < inf up(y,t + v%e).
?JEBCl'ye(x) 963(017_272)6(1

Now (3.15) follows from (3.18) and (3.14).
2. Note that by definition of u; and wus,

221 < (1 + 2a + ’7€|Q|)Pq,(1+a)r1

and
Gp > (1 — 200 — Cve|q|) Py.r-

It follows that

(3.19) ar(x,t) < inf  wa(x,t) + veolq
YEBye ()

in {z: (z—zo)v < —to} x [, 7).
Now (3.17) follows from arguing as in the proof of Proposition 2.9(a)
using (3.15) and (3.19), N > 1/r?4® and (&% < € < «.
O
6. Let us define

w(z,t) = inf  wy(x,t)
yEB'yegp(z) (CE)

where ¢ defined in S satisfies the following properties:
~A(p~)=0 in S;
¢ =By on  Sn{(z—mz)-v=—|rlte};
p=1 in  on the rest of 85.

(See Figure 6.)
Fix A, > 0, a sufficiently large dimensional constant. Then due to
Lemma 9 in [C1] w(+, t) is superharmonic in Q;(w)NR for 0 < t < 2Meg/|r|7.

Choose By, sufficiently large that ¢(z¢) > C;i. Note that |Dyle < Cy where
Cy depends on A,,, M and Cy, where C is given in (3.7).
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r(w)

S < (@)

Figure 6: The strip domain for barrier argument

7. Now we compare w and 4 in
<> = g X [t0/4,t0].

where S is as given in (3.17). At t = to/4, @iy < w in S since Ly a(w) is
more than |r|ty/2-away from S due to definition of ty and the Me-flatness
of T'(ug). Moreover due to (3.16) and (3.19) w < @; on S X [tg/4, to].

8. However since ¢(zg) > C1, 4y crosses w from below in ). This will
be a contradiction to Theorem 1.7 if we show that w is a supersolution of
(P)¢ in . By arguing as in the proof of Lemma 12 in [K3], one can check
that w is a supersolution if C'(n) in (3.5) is sufficiently large.

O

Parallel arguments yield the corresponding result for u., ,:

Proposition 3.11. Suppose that q is a nonzero vector in IR"™. Let C'(n),, €
given as in Proposition 3.8 and let r1 = (1 4+ C(n)y)r, g1 = (1 + C(n)v)q.
Then the following is true:

(a) Suppose 0 < r < 7(q). Then for ey/100 < € < ¢y and

ATt (tesqy i, )» g (8) N B1ya(0)) > Meg

for % <t <1, where M is the constant given in Proposition 2.8.
(b) Suppose r < 7(q) < 0.

ATt (Uesgy iy )5 lgr(t) N B14(0)) > Meg

for Mo < ¢ <1, where M = M(~) > 0 is the constant given in Proposi-

Irly
tion 2.9(a).

Now we will use Lemma 3.7, Propositions 3.8 and 3.11 to prove that
7(q) = r(q) for any nonzero g € IR". For given nonzero vector ¢ € IR", take
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a sequence of rational vectors g which converges to ¢ as k — oco. Choose
qr such that there exists

r*(q) = lim 7(qx).
k—o0
Lemma 3.12.

(3.20) 7(q) = r*(q) = r(q).

Proof. 1. Let v = %. Arguing as in the proof of Lemma 14 in [K3] using
Proposition 3.8 and 3.11, One can prove that

21 = 1 r <r*(q) < I =T1.
(3.21) ro:= lim 7ag) <ri(q) < lim  r(ag) =

2. Next we prove that

(3.22) r(q) = r1 when r*(q) > 0.
and
(3.23). ro = 7(q) when r*(¢) <0

Suppose 0 < r; < r(q) := rq with (1 + 10y)r; = r4. and consider

(3.24) W, t) = (147)  inf ey, (4, (1+29)0).
ly—z| <55

By Corollary 3.2, 4 is a supersolution of (P), with

w(z,t) > Pi(,t) := Pyy)g,1427)r (T +117€0,1).

for any € > 0.
Moreover due to the definition of 7 and Lemma 2.7, I'(2) and P;(z,t)
has a contact point at

Py = (z0,t0) € B12(0) x [1/2,1].
Let Us c be the smallest supersolution of (P), in (1—2¢)@Q; with obstacle
Py(x,1) = Pq7sr4($+f,t), s€[(1—-27),(1—-9)

where £ € €Z, £ -v > 0 and | — (€ - v)v| < 2e. Due to the definition of r(q)
and Lemma 2.7, U, ¢ is a solution of (P). away from I'(P,) and in particular
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F(py)

G

Figure 7: Comparison of minimal supersolutions with different obstacle
speed.

in the domain By /5(0) x [1/2,1] for € < €, €9 = €(7y) > 0. For sufficiently
small € we can choose s, £ such that Ps hits P; from below at ¢t = ¢y (see
Figure 7).

Due to Theorem 1.7, Uy < 4 for t < tg. Since Ug > Ps, it follows that

PyeT(Us)NT(a) NP N Ps.

Note that Us is a solution in a neighborhood of Fy. Arguing as in the
proof of Theorem 1.7 will then yield a contradiction, and we obtain (3.22).

(Here @ instead of u.., . is used since to proceed as in the proof of The-
orem 1.7 since we need interior and exterior ball properties at the contact
point Py of the two free boundaries. Interior ball property follows from the
fact that Py € I'(P;). Exterior ball property is obtained by definition of @
in (3.24).)

3. Parallel arguments as above proves (3.23),

(3.25) lim i{lf r*(aq) > r(q) for r(q) >0

and

(3.26) limsupr*(aq) < 7(q) for 7(¢q) <0
a—)l

4. Lastly we show that
(321)  r(g) < ((L+R)g), 7 ((1—h)g) < 7(g) for any A >0
This follows from parallel arguments as in step 2 using the fact that

(1—=h) inf w.,,(y, (1 —h)t)

Zeiq,r
ly—e|<{fge
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and

ly—z|<{ge
are respectively sub- and supersolutions of (P)..
Due to (3.25)-(3.27) we have

r(g) < lim r*((1 — h)q) < 7(q) for r1 >0

—0

which yields r(q) = 7(q) due to (3.21) and (3.22), and

7(q) > ]gir% (1 +h)q) > r(q) for ro < 0

which yields r(q) = 7(q) by (3.21) and (3.23). Since ro < 71 by definition,
this covers all cases except rg = r; = 0, for which 7(¢q) = r(q) = 0.

O
Let us now define
r(q) :=7(q) = (q)
Corollary 3.13.
(3.23) a<11igl_)1 r(aq) =1r(q) = a>lliyr;1_)1 r(aq).
Proof. This follows form (3.21), (3.22) and Lemma 3.12. O

Corollary 3.14. r(q) is continuous in q in IR" — {0}.

Proof. By Proposition 3.8 and (3.20), arguing as in the proof of Lemma 14
in [K3] yields that for any nonzero g € IR" and ~ > 0, if |u — ¢| < rv1° then

r(L=")q) —v <r(p) <r(1+7)9) +7-
Now due to (3.27), it follows that r(u) — r(q) as p — gq. O

For a unit vector v € IR", we define the pinning interval in the direction
of v as below:
I(v) :={a>0:7r(av) = 0}.

Lemma 3.15. Let eq,...,e, an orthonormal basis in IR". Let x1 = x - €1
and suppose g(z) = g(z1) € [1,2] and g(z1) is periodic with period 1. Then
I(e1) = [1,2]. On the other hand I(e;) consists of a single point if i # 1.
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Proof. 1. First let us prove that 1 € I(e;). Observe that r(e;) < 0 since
P., o is a supersolution of (P).. If r(e;) < 0 then for sufficiently small
€ > 0 the contact set fle;ew(el)/z should be empty due to Proposition 3.8.
Comparing

ui(x,t) == Uesey,r(e1)/2 with ug(x,t) := P, o(x + (a+ Ne)ey),

where a € [0, 2] is chosen such that g(ae;) = 0 leads to a contradiction,
if we choose the integer N such that ug hits uy from below at ¢ € [1/2,1].

Parallel argument as above yields that 2 € I(e;). Since r(g) is monotone
in increasing in |¢|, it follows that [1,2] C I(e;). By Lemma 2.7, I(e;) =
[1,2].

2. Let 7(q) = 0 for ¢ = ae;,i # 1. First note that u,,,, ( increases in
time. In particular |Du., o] > 1 on the free boundary. It follows that for
any a > 0 and b

€;a;,0

u1(2,t) = (1 + a)ueqo(r — (at — be;, t)

is a subsolution of (P). away from [y, + be;. Moreover I'(ug) is in Me-
neighborhood of [, , due to Proposition 2.8. It then follows from compar-
with appropriate b and arguing as in the proof of
is empty for small € = ¢(7), and thus

ing w1 and Ue,(144)q,a

Lemma 3.12 that Ae(1+a)ga—r

r((1+a)g) =r((1+a)qg) > a.
3. Similarly, note that for any a > 0 and b
uz(x,t) = (1 — a)u, . (x + (at +be;, t)

is a supersolution of (P). and has contact points with I, o in By/3(0) x
[1/2,1]. Hence it follows that r((1 — a)q) = r((1 — a)q) < —a. O

Lemma 3.16. For any nonzero unit vector v € IR", r(av) is strictly in-
creasing in a in the set {a : r(av) > 0}.

Proof. 1. Suppose not. Then for some a,b > 0, r(av) = r(bv),(1 +
C(n)y)a = b for some v > 0, where C(n) is a dimensional constant to
be determined later.

2. Suppose r(av) > 0. Note that for any r

ul(:v,t) (1 + 'Y)ue aur( (1 + ’Y) )

is a subsolution of (P).. If we choose (1 + 7))~ !r(av v) <r < r(av) then by
definition of r(aq) and Lemma 2.7 the contact set Acqy,r is nonempty for
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any € > 0. It follows from comparison with u; that the same is true for
b, (14+)r- Lhis contradicts the fact that r(bv) = 7(bv) < (14 v)r.
O

Remark
It is not clear to the author whether or not r(av) is strictly increasing
in a in the set {a : r(av) < 0}.

4 Convergence to the limiting problem

Recall that the choice of domain 2 € IR" containing K determines the initial
data ug of (P),, which is harmonic in g = Q — K with boundary data zero
on 'y = 9Q and f > 0 on OK. Also recall that f € C(IR" x [0,00)), K

satisfies (0.1) and Int(2) = Q.
Consider the free boundary problem

—Au =0 in {u >0}
(P)
ut — |Dulr(Du) =0 on 0{u > 0}

in Q = (IR" — K) x[0,00), with initial data up and with boundary data f on
OK. Here r(q) is the continuous function defined in (3.26) for ¢ € IR™ —{0}.
Note that the existence and uniqueness theorems in section 1 applies to
both (P) and (P).. In particular due to Theorem 1.8 there exists a viscosity
solution u, of (P). with initial data uy and fixed boundary data f.
Let us define
ui(z,t) ;= lim sup{u(y,s): e < eo,|(z,t) — (y,8)| <r,s >0}

€o,r—0

and

ug(x,t) = lim inf{u(y,s) : € < eo,|(z,t) — (y,5)| <r,s > 0}.

€o,r—0

One can check via a barrier argument using that
(4.1) ui(x,0) = ug(x,0) = ugp(x).

Our goal in this section is to prove that u; and wug are respectively sub- and
supersolutions of (P).

Lemma 4.1.

Q(up) = limsup Q(u).

e—0
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Proof. 1. It is straightforward from definition of u; that

Q(uy) C limsup Q(uf).
e—0
2. For any r > 0, we will show that the Q!(r) is in 4r-neighborhood of
lim sup,_,o Q(u¢, ), where Q(r) and Q(u€,r) are given by

QL (r) :={y € Qu1) : d(y,Ts(w1)) > 7}, Qe(us,r) = {y : d(y, Quu)) < r}.

Since r is arbitrary, our conclusion will follow.

3. Fix T'> 0, ¢ > 0 and for 0 < s < T let x.(s) be the furthest point
in Q(u¢,r) N {t = s} from Q!(r) N {t = s} with distance d’(s). A barrier
argument yields that the characteristic functions of Q!(r) and Q(u¢,r) is
continuous in time, and thus d(¢) is continuous in time. Also observe that
d’(0) — 0 as r— 0, by (4.1) and the fact that

ITLt(Qo) = Qo.
If € is sufficiently small with respect to 1" and r and if
d.(t) > m(r) := max 2r,d,(0),

(u€)* is less than /10 in a space-time neighborhood of By, (z(t)). Moreover
by definition of Q(uf,r) there is the ball B,(x.(t)) touching Q;(uf) from
outside. By a barrier argument with a radially symmetric function, we
obtain that df (¢) decreases in time if d] (t) > m(r). Since d(t) is continuous
in time, it follows that dl(¢) < m(r) for 0 < ¢ < T, if € < ¢o(T,r). Since
r > 0 is arbitrary and m(r) — 0 as » — 0, we can conclude. O

Proposition 4.2. u; and ug are respectively a subsolution and a superso-
lution of (P) with initial data ug and fixed boundary data f.

Proof. Suppose ¢ touches uy from above at Py = (zo,tp) € I'(u1) with
IDE|(Py) # 0 and

max(—Agp, ¢ — r(q)|Do|)(Po) = C(n)vy|D¢|(Py) > 0 for some v > 0,
where ¢ = —D¢(xp, o). Let

r=£%mmZ@HWMW%V=f
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clh

Figure 8: Zoom-up at the contact point of e-solutions

Without loss of generality we may assume that the maximum is zero and
strict: otherwise consider, with small § > 0,

P(x,t) == p(x,t) — ¢(x0,t0) + 6(x — 20)* + 6(t — to)*.

Since ¢ is smooth with |D¢|(Fy) # 0, ©(¢) has an exterior ball B at Fj.
Without loss of generality we assume the radius of B equals 1. Let us fix
0 < h < €€ and consider B: a translation of (1 — h)B which is inside of B
and touches Py (see Figure 8.) Since, for small h,

S = (B, — B2)(Po) N{to—h <t < to}) U (B (Ro)N{t =to—h}) & B,

due to Lemma 4.1 Q(u,) lies strictly away from B — h*v in S for suffi-
ciently small € > 0.

On the other hand by definition of u; and by Lemma 4.1, for sufficiently
small 0 < e < h'/2¢y Ty(uc) contacts (9B — h'v) for the first time at P, =
(e, te) in

Y= B\/E(PO) X (to — h,to].
Note that ue < f in ¥ N {t < t.}, where f(-,s) is the harmonic function in
(X — (B — h*v)) N {t = s} with boundary data zero on d(B — h*v) and ¢ on
the lateral boundary of 3. Observe that, due to the regularity of ¢,

fi

— _ 1/2 —
a=~Df(P) =a+ O0'), re= 5

(P) =7+ O(/2).

Now let

Veo (T, 1) = oflue(ax + ye,at +t.), «o=¢€/e,
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where |y — x| < 2, ye € €Z". Then v, is a solution of (P), in
B1(0) x [~1,1] with

o Hze — ye) € To(vey) N Baey (0).

Moreover, since h < eg, the tangent plane to B at P. has its normal direction
v+ O(ep), and thus

Ve (1) < (L + O(h'2)P, . oz (@ — 260w, t) in By(0) x [1,0],
which contradicts Proposition 3.8 if ¢j is sufficiently small. U

Corollary 4.3. (a) If any subsequence of {uc} locally uniformly converges
to u as € — 0, then u is a viscosity solution of (P).

(b) If there is a unique viscosity solution u of (P) for given initial positive
domain Qg and boundary data f > 0 , then the whole sequence {u}. locally
uniformly converges to u in space-time as € — 0.

(c) In general uy and ug lies between mazximal and minimal viscosity
solutions of (P).

(d) For given sequence of smooth domains 3 CC Qa... CC Qq, there
exists a sequence € — 0 such that the viscosity solution ue, of (P), with
initial domain Qy uniformly converges to the minimal solution of (P) with
initial domain .

(e) Corresponding statement holds for mazximal solution of (P).

Proof. 1. (a) follows from Proposition 4.2.
2. Let us consider a sequence of smooth domains {Q} such that

Q1 CC Q... CC Ny,
and a sequence of smooth domains {2} such that

0y CcC Q1 CC M.
To prove (b), let us define w; and wy of (P) by

wy = lim v, wo = lim 74,
k—o0 —00

where vy and 0 solve (P) with initial domain €} and Q). Note that vy
and ¥y, respectively increases and decreases in k. Arguing as in the proof of
Proposition 4.2 it follows that (wj)« and (w2). are respectively minimal and
maximal viscosity solutions of (P). By Proposition 4.2 and Theorem 1.7

wy < up <up < wy,
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and thus if w; = we, then uq = us.
3. Note that for given k, one can choose € such that

Vg — 1/]{: < e, < Uk+1/k:
due to Proposition 4.2. Now we obtain (c) by sending k — oo. O
Due to Theorem 1.8 (c) and (d), the following holds:

Corollary 4.4. Let K be star-shaped with respect to the origin and let the
fized boundary data f = 1. Then the whole sequence {u¢} locally uniformly
converges to a unique viscosity solution w of (P) with initial data ug and
if (a) Q is star-shaped with respect to the origin or if (b) |Dug| > 2 or
|Dug| < 1 on Tg. In the case of (a) Qu(u) is star-shaped for all times.
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