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Abstract

We introduce a notion of viscosity solutions for the two-phase Stefan problem, which
incorporates possible existence of a mushy region generated by the initial data. We
show that a comparison principle holds between viscosity solutions, and investigate the
coincidence of the viscosity solutions and the weak solutions defined via integration by
parts. In particular, in the absence of initial mushy region, viscosity solution is the
unique weak solution with the same boundary data.

1 Introduction

The classical two-phase Stefan problem models the evolution of temperature in a material
with two distinct phases (solid and liquid). The solid-liquid phase transition occurs at a
given constant temperature, which we set at zero. The problem is described by an enthalpy
function h, which represents the internal energy density in each phases (see Meirmanov
[15] and Oleinik et al. [16]). More precisely, let Ω ⊂ Rn be a bounded domain in Rn

with a C2 boundary. Then h(x, t) : Ω× [0, T ) → R solves the following problem:




ht = ∆χ(h) in Ω× (0, T ),

h(x, 0) = h0(x) in Ω,

χ(h) = θ, on ∂Ω× (0, T ).

(ST)

In this paper we will set θ(x, t) as a continuous function on ∂Ω× [0, T ] and h0 as a bounded
measurable function with χ(h0) continuous on Ω, such that χ(h0) = θ(·, 0) on ∂Ω. Here
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u(x, t) := χ(h)(x, t) describes the evolving temperature, where χ is defined by

χ(h) =





h, h > 0,

0, −1 ≤ h ≤ 0,

h + 1, h < −1.

(1.1)

Note that h is determined by u almost everywhere if Γ(u) := {u = 0} = {−1 ≤ h ≤ 0} is of
measure zero, but not in general. The interior of zero temperature set Γ(u), if exits, is called
a mushy region. It is well known that mushy region might appear in a Stefan problem with
heat sources, see Bertsch et al. [4]. When there is no heat source, if |{−1 ≤ h0 ≤ 0}| = 0
(here | · | denotes the Lebesgue measure in Rn), it is shown in [17] (see also [12] and [1] ) that
|{−1 ≤ h(·, t) ≤ 0}| = 0 for all t > 0 and (ST) can be written in terms of the temperature:





ut −∆u = 0 in {u > 0} ∪ {u < 0},

Vn = |Du+| − |Du−| on Γ(u) = ∂{u > 0} = ∂{u < 0},

u(x, 0) = u0(x) := χ(h0(x))

u = θ on ∂Ω× (0, T )

(STu)

Here u+ and u− denotes respectively the limit taken from {u > 0} and {u < 0}, and Vn is
the outward normal velocity of the free boundary with respect to {u > 0}.
For both (ST) and (STu), a smooth initial free boundary may develop singularities in finite
time, due to topological changes of the free boundary. Thus it is necessary to introduce a
generalized notion of global-in-time solutions.

The first global notion of solutions for (ST) has been derived by a weak formulation via
integration by parts: see Ladyženskaja et. al. [14] or Friedman [11]. This approach
allows the presence of initial mushy region. It was shown there that a unique weak solution
exists for bounded measurable h0 and θ. Moreover the temperature u(x, t) turns out to
be continuous when h0 and θ are sufficiently smooth – see Caffarelli & Evans [6] and
DiBenedetto [9].

More recently, the notion of viscosity solutions, first introduced by Crandall & Lions
[8], has been proved useful in the qualitative study of free boundary problems, due to its
flexibility with nonlinear PDEs and free boundary conditions: see e.g., [2]–[3] and [5] which
address a general class of free boundary problems including (STu), and also see [10] where
the heat operator is replaced by a class of uniformly parabolic operators. However, the
equivalence between viscosity solutions and weak solutions, and in particular the uniqueness
of the viscosity solutions of (ST), has not yet been investigated, even in the case of (STu).
In this paper we address precisely this point. We introduce a notion of viscosity solutions
for (ST), to derive the following theorem:
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Theorem 1.1. (a) There exists a viscosity solution of (ST) in Q. Furthermore, a com-
parison principle holds between viscosity solutions and thus maximal and minimal
viscosity solutions exists. They respectively corresponds to weak solutions of (ST)
with maximal and minimal initial enthalpy for given temperature u0.

(b) Any weak solution of (ST) in the sense of [6] is also a viscosity solution.

(c) If |{−1 ≤ h0 ≤ 0}| = 0, then there is a unique viscosity solution of (STu) which
coincides with the weak solution of (ST), and also coincides with the notion of viscosity
solutions discussed in [8] and [2].

Remark 1.2. It should be noted that our notion of solutions describes only the temperature
evolution (see section 2), and thus requires |Γt(u)| = 0 for all t > 0 for the uniqueness
result. The comparison principle and the hypothesis in (c) ensure this.

Previously, one of the authors investigated in [13] viscosity solutions theory for the one-phase
version of (STu). While one-phase Stefan problem is a special case of the two-phase Stefan
problem, this work does not immediately apply to the two-phase version: we will point out
the differences as we proceed in the proof. For example, the free boundary evolution for
the two-phase setting is no longer monotone (that is, the positive set of u may shrink or
expand over time), which requires a more careful construction of test functions. Moreover,
since we are allowing the initial data to have mushy region, Γ(u) may have positive measure
and must be treated differently.

Below we give an outline of the paper:

In sections 2 and 3 we introduce a definition of viscosity solutions for (ST), and prove that
viscosity solutions satisfy a comparison principle for strictly separated initial data. Note
that this does not immediately yield uniqueness except under some geometric conditions on
the initial data (see Corollary 3.9), however it generates a maximal and minimal viscosity
solutions (see Proposition 4.4). These maximal and minimal solutions indeed correspond
to the weak solutions with maximal and minimal initial enthalpy.

In section 4, we show that weak solutions are viscosity solutions. Using this result, existence
of viscosity solutions is established. Furthermore, using the uniqueness of the weak solutions
and barrier arguments near the parabolic boundary of Q (see Lemma 4.5), we establish the
uniqueness of viscosity solutions when |{u0 = 0}| = 0 and θ < 0.

Remark 1.3. The proof of the comparison principle (Theorem 3.1) applies to the general-
ized version of (STu) described in [2], where the second equation in (STu) is replaced by a
general free boundary velocity of the type

V = G(x, |Du+|, |Du−|, η),
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where η is the spatial (outward) unit normal vector of Γ(u), G(x, a, b, η) is continuous and

∂G

∂a
,−∂G

∂b
≥ c > 0.

As for existence, a slight modification of Perron’s method presented in [13] combined with
Theorem 3.1 yields the existence of a viscosity solution for the generalized version. This
approach is not taken here since we are also interested in the coincidence of weak and
viscosity solutions.

2 The Stefan problem

Let ∂LQ = ∂Ω × [0, T ] be the lateral boundary of Q and ∂P Q = (Ω× {0}) ∪ ∂LQ be the
parabolic boundary of Q.

We shall use two notions of generalized solutions for (ST): weak solutions and viscosity
solutions.

Definition 2.1. A bounded measurable function h is called the weak solution of (ST) with
initial data h0 ∈ L∞(Ω) and boundary data θ ∈ L∞(∂LQ) if it satisfies (see [15])

∫

Q
(hϕt + χ(h)∆ϕ) dx dt−

∫

∂LQ
θ
∂ϕ

∂ν
ds dt +

∫

Ω
h0(x)ϕ(x, 0) dx = 0 (2.1)

for all ϕ ∈ W 2,1
2 (Q) vanishing on ∂LQ and at t = T .

Due to [11, 14, 15], there exists a unique weak solution h of problem (ST), defined in Defi-
nition 2.1, with initial data h0 and boundary data θ. Furthermore a comparison principle
holds between weak solutions ([15]): see the proof of Lemma 4.1 for more precise statement.

As mentioned in the introduction, the temperature u(x, t) is related to the enthalpy h
through u = χ(h). Formal computations yield that (ST) provides the free boundary velocity

Vn = |Du+| − |Du−| on ∂{u > 0} ∩ ∂{u < 0};

Vn ≥ |Du+| on ∂{u > 0} \ ∂{u < 0};

Ṽn ≤ −|Du−| on ∂{u < 0} \ ∂{u > 0},

(V)

where Ṽn is the outward normal velocity of the free boundary of {u ≥ 0}. The inequalities
are due to the (possible) presence of the mushy region and the non-constant distribution of
h(x, t). Definitions 2.3 and 2.4 incorporate (V).
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Definition 2.2. A continuous function φ is a classical subsolution (in a parabolic neigh-
borhood Ωx0,t0 := {y : |y − x0| < r} × (t0 − τ, t0]) of (ST) if

(a) φ is C2,1
x,t in {φ > 0} and in {φ < 0},

(b) Γ(φ) = ∂{φ > 0} = ∂{φ < 0},

(c) |Dφ+| and |Dφ−| are nonzero on Γ(φ) (this makes Γ(φ) smooth),

(d) φt −∆φ ≤ 0 in {φ 6= 0},

(e) the outward normal velocity Vn of Γ(φ) with respect to {φ > 0} is less or equal to
|Dφ+| − |Dφ−|.

Similarly one can define a classical supersolution in a parabolic neighborhood.

Definition 2.3. (a) A lower semi-continuous function v is a viscosity supersolution of
(ST) in Q if (i) v(x, 0) ≥ χ(h0), (ii) v ≥ θ on ∂LQ, and if (iii) for any classical
subsolution φ(x, t) in Ωx0,t0 ⊂ Q such that φ ≤ v on the parabolic boundary of Ωx0,t0,
φ ≤ v in Ωx0,t0.

(b) An upper semi-continuous function u is a viscosity subsolution of (ST) in Q if (i)
u(x, 0) ≤ χ(h0), (ii) u ≤ θ on ∂LQ, and if (iii) for any classical supersolution φ(x, t)
in Ωx0,t0 ⊂ Q such that φ ≥ u on the parabolic boundary of Ωx0,t0, φ ≥ u in Ωx0,t0.

Observe that if u is a viscosity subsolution of (ST), then −u is a supersolution of (ST).

Definition 2.4. A continuous function u is a viscosity solution of (ST) if it is both viscosity
subsolution and supersolution.

Remark 2.5. Note that above definition of viscosity solutions, unlike that of weak solutions,
does not take into account the enthalpy function h(x, t). Such definition ensures that non-
uniqueness occurs when the initial data u0 satisfies |{u0 = 0}| > 0. A modified definition,
incorporating the presence of h(x, t) and therefore yielding a unique representation of the
interface evolution, is under investigation by the authors.
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3 Comparison for strictly separated initial data

A central property for the viscosity solution theory is the comparison principle, which
is stated in the theorem below. We mention that a corresponding result holds for weak
solutions of (ST) (see [11]). As mentioned in the introduction (see Remark 1.3), the proof
presented in this section extends to a general class two-phase free boundary problems with
nonlinear free boundary velocity.

Theorem 3.1. Let u and v be respectively a viscosity subsolution and supersolution on Q
such that u < v on ∂P Q. Then u < v in Q.

First we introduce several notations. Let Br(x, t) denote the closed space-time ball with
radius r and center at (x, t),

Br(x, t) = {(y, s) : |(y, s)− (x, t)| ≤ r},
and Dr(x, t) the closed space disk with radius r and center at (x, t),

Dr(x, t) = {(y, t) : |y − x| ≤ r}.
We also speak of the sets

∂Dr(x, t) = {(y, t) : |y − x| = r} and Do
r(x, t) = {(y, t) : |y − x| < r}

as the boundary and the interior of Dr(x, t), respectively.

For any r > 0, define the sup- and inf-convolutions (see [13])

Z(x, t) = sup
Br(x,t)

U(y, s), U(x, t) = sup
Dr(x,t)

u(y, s), (3.1)

W (x, t) = inf
Br(x,t)

V (y, s), V (x, t) = inf
Dr(x,t)

v(y, s).

Note that Z, U , resp. W , V are also viscosity subsolutions, resp. viscosity supersolutions.
For any ρ > 0, define

Ωρ = {x ∈ Ω : dist(x, ∂Ω) > ρ},

The convolutions (3.1) are well defined in Cr,

Cr = Ω2r × (r, T − r).

Moreover, we fix r > 0 small enough so that Z < W on ∂P Cr.

It will be convenient to define Φr(x, t) to be the closed set

Φr(x, t) =
⋃

(y,s)∈Br(x,t)

Dr(y, t).
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Observe that, by definition, the sets {Z ≥ 0} and {W ≤ 0} have interior balls of radius r
at each point of their boundaries. These balls are centered on the boundaries of {U ≥ 0}
and {V ≤ 0}, respectively. This property of Z and W will be essential in the proofs in this
section. It motivates the following definition:

Definition 3.2. Let E be a closed set, let P be a point on the boundary of E, P ∈ ∂E, and
let B be a closed ball containing P . The ball B will be called an interior ball of E at P if
B ⊂ E, and it will be called an exterior ball of E at P if Bo ∩ E = ∅.

To prove that u and v stay ordered, we will argue by contradiction: if u ≥ v at some time
t̃0, it must be true for Z and W even earlier. Suppose that there is a time t0 when the
functions Z and W first hit,

t0 = sup {s ≥ r : Z(·, s) < W (·, s)}.

Denote P0 = (x0, t0) the point of maximum of Z − W at t = t0. Note that Z(x0, t0) ≥
W (x0, t0). If that were not the case, we would have Z − W < 0 at t = t0 and (Z −
W )(xk, tk) ≥ 0 for some sequence (xk, tk), xk ∈ Ω with tk → t+0 . Then there is a converging
subsequence (xkj , tkj ) → (x, t0). Set ε = −(Z −W )(x, t0)/2 > 0. By upper semi continuity
there is j0 such that for all j ≥ j0

0 ≤ (Z −W )(xkj , tkj ) < (Z −W )(x, t0) + ε ≤ −ε,

a contradiction.

Note that the positive set of Z (and the negative set of W ) may expand discontinuously in
time, in the event that the zero set of Z (and W ) is of positive measure: this is because
our definition only considers test functions which are nondegenerate in both positive and
negative phases. Therefore one should put extra care in describing the location of P0 and
the geometry of the free boundaries nearby.

Lemma 3.3. The set {u ≥ 0} cannot expand discontinuously, i.e.

{u ≥ 0, t = T} ⊂ {u ≥ 0, t < T} ∀T > 0.

Analogous results hold for {v ≤ 0}, {Z ≥ 0}, {U ≥ 0}, {W ≤ 0} and {V ≤ 0}.

Proof. Suppose that for some T > 0 there is a point P ∈ {u ≥ 0, t = T} such that P /∈
{u ≥ 0, t < T}. In other words, there exists δ > 0 such that Bδ(P ) ∩ {u ≥ 0, t < T} = ∅.
For simplicity we will translate the coordinates so that P = (0, 0). Define M = maxQ u.
Note that the ball Bδ(P ) contains a cylinder

C =
{

(x, t) : |x| ≤ h + η, −η

2
min

(
η

2M
,
h

n

)
≤ t ≤ 0

}
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Figure 1: Situation at point P

with h and η small positive constants. The situation is shown in Figure 1. We will construct
a classical supersolution of (ST) in C that crosses u from above to obtain a contradiction.

Define ω = 2 max
(

2M
η , n

h

)
. Consider a radially symmetric function in C defined by the

formula

φ(x, t) =





a(|x|2 − (h− ωt)2) for |x| ≤ h− ωt,

2M
η (|x| − h + ωt) for |x| > h− ωt,

where a > 0 is a small constant specified below.

Then φ satisfies

(∂t −∆)φ = 2M
η

(
ω − n−1

|x|
)

> 0 for |x| > h− ωt

and
= 2a ((h− ωt)ω − n) > 0 for |x| < h− ωt.

Next, note that the free boundary Γ(φ) at time t is the sphere with radius h−ωt, shrinking
with normal velocity ω. Therefore we have

Vn = ω >
2M

η
− ∣∣Dφ−

∣∣ =
∣∣Dφ+

∣∣− ∣∣Dφ−
∣∣ .

Hence φ is a classical supersolution of (ST) for any a > 0.

Lastly, note that the initial boundary D = C ∩ {t = −η/ω} of the cylinder C is a closed
subset of {u < 0} and therefore maxD u < 0. We can hence take a > 0 small enough to
make φ > u on D.

Thus we have constructed a classical supersolution φ on C such that φ > u on the parabolic
boundary of C, while φ < 0 ≤ u at P = (0, 0). That shows that u crosses φ from below
inside C, which contradicts the definition of u.
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The conclusion for {v ≤ 0} = {−v ≥ 0} can be obtained by repeating the proof for −v.
Corresponding arguments apply to the sets {Z ≥ 0}, {U ≥ 0}, {W ≤ 0} and {V ≤ 0} as
well.

Lemma 3.4. The point P0 lies on the intersection of boundaries of {Z ≥ 0} and {W ≤ 0},

P0 ∈ ∂{Z ≥ 0} ∩ ∂{W ≤ 0},

and

W (P0) ≤ 0 ≤ Z(P0).

Proof. We know that W (P0) ≤ Z(P0) from the definition of P0. There are three cases:

(a) 0 < W (P0) ≤ Z(P0): in this case W > 0 in some neighborhood of P0 ({W > 0} is
open as W is a lower-semicontinuous function) and W is a supercaloric function in
this neighborhood; this contradicts the fact that Z cannot be crossed from above by
any positive caloric function φ.

(b) W (P0) ≤ Z(P0) < 0 : the same as above for Z subcaloric in a neighborhood of P0.

Therefore we arrive at
W (P0) ≤ 0 ≤ Z(P0). (3.2)

Inequality (3.2) immediately yields that P0 ∈ {Z ≥ 0} ∩ {W ≤ 0}. Now suppose that P0

lies in the interior of the set {Z ≥ 0}. That implies P0 /∈ {W ≤ 0, t < t0} since Z < W
for t < t0. But that is a contradiction with continuous expansion of {W ≤ 0}, Lemma 3.3.
The same happens when P0 lies in the interior of {W ≤ 0}. Hence the conclusion of the
lemma.

The lemma states that the situation at point P0 looks like the one shown in Figure 2. More
precisely, there exist P1 = (x1, t1) ∈ ∂{U ≥ 0} and P2 = (x2, t2) ∈ ∂{V ≤ 0} such that
U(P1) = Z(P0) and V (P2) = W (P0). At P0, B1 = Br(x1, t1) = Br(P1) is an interior ball of
{Z ≥ 0} and B2 = Br(x2, t2) = Br(P2) is an interior ball of {W ≤ 0}. Moreover, the ball
B0 = Br(x0, t0) = Br(P0) is an exterior ball of {U ≥ 0} at P1 and {V ≤ 0} at P2.

Since Z < W for t < t0, the space projections of B1 and B2 are tangent:

B1 ∩B2 ∩ {t = t0} = P0.

Therefore the space projections of P0, P1 and P2 are on a line and we can change the
coordinates so that P0 = (0, 0), P1 = (d1e1, t1 − t0) and P2 = (−d2e1, t2 − t0).
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Figure 2: Situation at P0
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Figure 3: Construction of a supersolution for the proof of non-verticality of (P1, P0)

Lemma 3.5. Suppose that Z(P0) = 0. Then the line (P0, P1) cannot be vertical (i.e., be
parallel to the time-direction) and in the future of P0. In other words, when t1 > t0 the space
projections of P1 cannot be equal to the space projection of P0 or equivalently, t1 6= t0 + r.
The same holds for (P0, P2) when W (P0) = 0.

Proof. Suppose that (P1, P0) is vertical, i.e. x1 = x0, and t1 = t0 + r. Thus there is
P ′

1 ∈ Dr(P1) such that u(P ′
1) = 0. Lemma 3.4 implies that P0 lies on the boundary of

{Z ≥ 0}. Therefore u < 0 in the interior of Φr(P0). This and Lemma 3.3 yield that
u < 0 in the interior of Dr(P1) and P ′

1 lies on the boundary of Dr(P1). In particular,
for every small ε > 0 we can find a cylinder Cε with radius ε, top at t1, height ε2 and
Cε ∩ {u ≥ 0} = P ′

1. Now we use the parabolic scaling (x′, t′) → (εx′, ε2t′), ε > 0, together
with a translation and a rotation so that (0, 0) is in the center of the top of Cε, Cε is mapped
onto {|x′| ≤ 1, −1 ≤ t′ ≤ 0} and P ′

1 = (e1, 0). The situation is shown in Figure 3. Let C ′
ε

be the cylinder with the same axis and height with Cε, but twice its radius. Since u is a
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Figure 4: Local situation at P ′
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upper-semicontinuous function with u(P ′
1) = 0, we can for any δ > 0 find ε > 0 so that

maxC′ε u < δ.

For simplicity we will drop the primes in (x′, t′). Straightforward computation gives a
formula for the distance of the lateral boundary of Φr from the time-axis, x = 0,

|x| =
√
−2rt− ε2t2 + 1, −1 ≤ t ≤ 0.

For small ε > 0 and −1 ≤ t ≤ 0, we have |x| > √−rt+1. Let ω =
√

r/3 and h = 1+
√

r/3.

Below we construct a classical supersolution of problem (ST) in a parabolic neighborhood
E of P ′

1, where

E :=
{
(x, t) : −1 ≤ t ≤ 0, 1−√r/3− ωt ≤ |x| ≤ 1 + 2

√
r/3− ωt

}
,

(see Figure 4). Note that E ⊂ C ′
ε for small r > 0.

We only show the construction for n ≥ 3. The computation is similar when n = 2. Thus
consider a radially symmetric function φ(x, t) on E of the form

φ(x, t) =

{
a(−|x|2−n + (h− ωt)2−n) when |x| ≥ h− ωt,

b(−|x|2−n + (h− ωt)2−n) when |x| < h− ωt,

where a = ω
2n−4hn−1 and b > 0 is a small constant to be chosen later.

φ then satisfies

(∂t −∆)φ = ∂tφ = c(n− 2)ω(h− ωt)1−n > 0, |x| 6= h− ωt,

where c = a or b. The free boundary of φ is the shrinking sphere Γ(φ) = {|x| = h− ωt}
and therefore the free boundary condition reads as

Vn = ω > a(n− 2)(h− ωt)1−n − ∣∣Dφ−
∣∣ =

∣∣Dφ+
∣∣− ∣∣Dφ−

∣∣ .

Now define δ = φ(x, t) for any point on the exterior lateral boundary of E (where |x| =
h − ωt +

√
r/3). Next choose ε > 0 small enough so that u < δ on the exterior lateral
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boundary of E, as was noted above. Finally we finish the construction by choosing b > 0
small enough so that φ(x, t) > u(x, t) on the part of parabolic boundary of E where φ ≤ 0.
This can be done as this is a closed subset of {u < 0} and u is upper semi-continuous.

With above choices of b and ε, φ is a classical supersolution of (ST) such that φ > u on the
parabolic boundary of E and φ(P ′

1) < 0 = u(P ′
1). Therefore u − φ has a maximum inside

E, which yields a contradiction with u being a viscosity subsolution.

The proof can be repeated for −W in place of Z and other appropriate substitutions.

With the previous results, it is now possible to establish the following lemma:

Lemma 3.6.
Z(P0) = W (P0) = 0.

Proof. It is enough to prove Z(P0) = 0 because W (P0) = 0 then follows by repeating the
proof for −W .

Due to Lemma 3.4, Z(P0) ≥ 0. Suppose Z(P0) = L > 0. As in the proof of Lemma 3.5,
there is a point P ′

1 ∈ Dr(P1) such that u(P ′
1) = L. First we discuss a couple of extreme

cases:

(a) If (P1, P0) is vertical with P1 in the past of P0, arguing as in the proof of Corollary
3.7 we see that (P2, P0) must be vertical with P2 in the future. So either W (P0) = 0,
but that cannot happen by Lemma 3.5, or W (P0) < 0. For W (P0) < 0, one could
argue as in (b) with −W in the place of Z (and other appropriate substitutions).

(b) If (P1, P0) is vertical with P1 in the future, the fact that P0 ∈ ∂{Z ≥ 0} implies u < 0
in the interior of Φr(P0), therefore u < 0 in the interior of Dr(P1) by Lemma 3.3 and
P ′

1 must be on the boundary of Dr(P1). The rest of the argument is parallel to the
one shown below.

Now suppose that (P0, P1) is not vertical and t1 ≤ t0. This allows us to find a small
τ > 0 and points Q = (x̃, t1) and Qτ = (x̃, t1 − τ) such that Dh(Q) ∩ {u ≥ 0} = P1 and
Dhτ (Qτ )∩{u ≥ 0} = ∅, where h = |P1−Q|, 0 < h−hτ << 1 (see Figure 5). For simplicity
we translate coordinates so that Q = (0, 0).

Denote M = maxQ u. We will now construct a positive classical supersolution φ of (ST) in

S = {(x, t) : −τ < t < 0, h + ωt− δ ≤ |x| ≤ h + ωt + η},
where η > 0 and δ > 0 small are to be chosen and

ω =
h− hτ + η

τ
,
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Figure 5: Construction of a supersolution when Z(P0) > 0.

so that φ will cross u at P1, yielding a contradiction.

Consider a spatially radially symmetric function

φ(x, t) = f(|x| − ωt), f(s) = − 2c

3K
(−Ks + a)3/2 + b,

where

K = 2
(

h− hτ/2
τ

+
2n− 2

hτ

)
> 0

and the constants a, b ∈ R and c > 0 are to be chosen below.

Observe that g(s) = (f ′(s)/c)2 = −Ks + a. Choose 0 < η < 1
2hτ small enough and a ∈ R

so that 1
2 < g(s) < 1 for all h − η ≤ s ≤ h + η. It is also clear that we can find c > 0 and

b ∈ R such that 0 < f(h) < L and f(h + η) > M . f is continuous and so there is also δ,
0 < δ < η such that f(h− δ) > 0.

In particular, with this choice of η, δ, a, b and c, f(s) is positive and strictly increasing in
[h− δ, h + η]. It follows that φ satisfies

(∂t −∆)φ(x, t) = −
[(

ω +
n− 1
|x|

)
f ′(|x| − ωt) + f ′′(|x| − ωt)

]

= − 1
f ′

[(
ω +

n− 1
|x|

)
(f ′)2 + f ′′f ′

]

= −c2

f ′

[(
ω +

n− 1
|x|

)
g +

1
2
g′

]

≥ 0

since ω + n−1
|x| ≤ K

2 in S. Therefore φ is positive and strictly supercaloric in S.

To conclude, we note that φ > u on the parabolic boundary of S. This is clear from the fact
that φ > 0 in S and φ > M on those parts of the parabolic boundary of S that intersect

13



{u ≥ 0}. But (u − φ)(P1) > 0 and therefore u crosses φ from below inside S. That is a
contradiction with u being a viscosity subsolution of (ST).

If t1 > t0, including the case when (P1, P0) is vertical, the construction of a supersolution
is more straightforward but we can also use the above construction with hτ = h.

Corollary 3.7. The vectors P0 − P1 and P0 − P2 cannot be vertical (i.e., be parallel to the
time-direction). In other words, the space projections of P1 and P2 cannot be equal to the
space projection of P0.

Proof. Observe that if say t1 < t0 and the line (P1, P0) is vertical, then also (P2, P0) must be
vertical and t2 > t0. This follows from the strict ordering Z(·, t) < W (·, t) for all t < t0 and
B1 being an interior ball of {Z ≥ 0} and B2 being an interior ball of {W ≤ 0}, i.e. Z ≥ 0 in
B1 and W ≤ 0 in B2 which implies B1∩B2∩{t < t0} = ∅. That is, B1∩B2 = P0 whenever
one of the balls is contained in {t ≤ t0}. But Lemma 3.5 asserts that (P2, P0) cannot be
vertical with P2 in the future of P0. Similarly when (P2, P0) is vertical with t2 < t0.

Due to Corollary 3.7, the interior ball B1 of {Z ≥ 0} has an interior normal (e1,m) at
P0 ∈ ∂B1 with |m| < ∞. Note that m denotes the (outward) normal velocity of the space-
time ball B1 at P0. Therefore, formally speaking, m is smaller than the normal velocity Vn

of {Z ≥ 0} at P0. Since Z is a subsolution of (ST) and since P0 ∈ ∂{Z ≥ 0} = ∂{Z < 0} ,
from the discussion in section 2 (see (V)) formally it must be true that

m ≤ |DZ+| − |DZ−|.

Next lemma states that this is indeed true in a weak sense.

Lemma 3.8.

lim inf
λ→0+

Z(P0 + λe1, 0)
λ

+ lim inf
µ→0+

Z(P0 − µe1, 0)
µ

≥ m.

Proof. Let us define

a := lim inf
λ→0+

Z(P0 + λe1, 0)
λ

and b := lim inf
µ→0+

Z(P0 − µe1, 0)
µ

.

Observe that b < 0. Indeed by Corollary 3.7, we can find a smaller closed ball B ⊂ B2 such
that B ∩ ∂B2 = P0 and h > 0 such that B ∩ {t = t0 − h} 6= ∅. Since Z < W for t < t0,
there is a smooth function g ≥ 0 that solves the heat equation inside B ∩ {t0 − h ≤ t ≤ t0}
such that Z + g < W on B ∩ {t = t0 − h}, g > 0 in Bo ∩ {t = t0 − h} and g = 0 on
∂B ∩ {t0 − h ≤ t ≤ t0}. As Z is subcaloric and W is supercaloric in B ∩ {t0 − h ≤ t ≤ t0}
it follows that Z + g ≤ W on B ∩ {t = t0} and

0 ≥ lim inf
µ→0+

W (P0 − µe1, 0)
µ

≥ b + |Dg (P0)| > b.

14
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Figure 6: The slice {t = t1}

Suppose a + b < m. Since b < 0, ε > 0 can be chosen sufficiently small so that

a + b < m− 6ε and b + 3ε < 0.

We will construct a supersolution of (ST) constructed in a parabolic neighborhood K of
P1, which will be specified later, which crosses U from above, to yield a contradiction. We
point out that, due to the two-phase nature of the problem, the construction of such barrier
and the domain K requires modifications from the one-phase version constructed in [7] and
[13].

From the definitions of a and b, there are sequences λk → 0, µk → 0 with λk > 0 and µk > 0
such that

Z(x0 + λke1, t0) ≤ (a + ε)λk,

Z(x0 − µke1, t0) ≤ (b + ε)µk.

In what follows, λ ∈ {λk}∞k=1 and µ ∈ {µk}∞k=1. Now denote Q = P0 + (λe1, 0), R =
P0 + (−µe1, 0) and BQ, resp. BR the balls centered at Q, resp. R, with radius r. The
situation is illustrated in Figure 6.

From the definition of Z, it follows that U(x, t) ≤ Z(y, s) for any (y, s) ∈ Br(x, t) and thus

U ≤





Z(Q) ≤ (a + ε)λ in BQ,

Z(P0) = 0 in B0,

Z(R) ≤ (b + ε)µ in BR.

In fact, U ≤ 0 on a slightly larger set. Because Z ≤ W at t = t0 and W ≤ V (P2) = 0 in B2,
we can conclude that Z ≤ 0 on D = B2 ∩ {t = t0}. It means that U ≤ 0 on Σ, the union of
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balls of radius r with a center in D,

Σ =
⋃

(x,t)∈D

Br(x, t).

Finally, we have an improved bound,

U ≤





(a + ε)λ in BQ,

0 in Σ,

(b + ε)µ in BR.

(3.3)

Now we will compare U with a supersolution in a domain K := Kλ,µ
τ . Fix τ > 0 small.

Kλ,µ
τ is the subset of {t1 − τ ≤ t ≤ t1} with the shape depicted in Figure 7 for n = 2. The

shape for each t is depicted as the thick curve in Figure 6. The boundary of the slice is
given by the arc S = ∂BQ \ Σ, the arc T = ∂BR ∩B0, and finally of the curve (surface) C
that connects S and T . C at any given time is composed of C1 = ∂L ∩ Σ \BR, where L is
a cylinder with axis e1 connecting I = ∂BQ ∩ ∂Σ with ∂B0, and C2 = ∂B0 \ (BR ∪ L).

Let φ(x, t) = φ(ρ, t), where ρ = |x− x0|. We need U ≤ φ on the parabolic boundary of
Kλ,µ

τ . By Taylor expansion in λ and (t− t1), it follows that the spatial distance of the point
of intersection I from x0 can be found explicitly for each time t as

RI(t) = d1 + λ−m(t− t1) + o (λ) + o (t− t1) ≤ d1 + λ−m(t− t1).

and RT (t) ≤ |x− x0| ≤ RS(t) in K, where

RS(t) = d1 + λ−m(t− t1) + o(t− t1) and RT (t) = d1 − µ−m(t− t1) + o(t− t1).
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Lastly, the radius of the space-ball B0 ∩ {t = t} is given by

R1(t) = d1 −m(t− t1) + o(t− t1).

Now we are ready for the construction of the supersolution. Take α = a + 3ε, β = b + 3ε,
R̃ = d1 = R1(t1) and m̃ = α + β < m. Let φ(x, t) be the function φα,β

R̃,m̃
(x − x0, t − t0)

from Appendix. Let Στ,δ be the set from Appendix where φ exists and has the required
properties.

Let R̃(t) = R̃ − m̃(t − t1) be the radius of the free boundary of φ. We claim that for
sufficiently small λ, µ and τ we have U ≤ φ on the parabolic boundary of Kλ,µ

τ .

To prove the claim, first note that for sufficiently small λ, µ > 0

Kλ,µ
τ ⊂ Στ,δ =

{
(x, t) : R̃(t)− δ ≤ |x− x0| ≤ R̃(t) + δ, t1 − τ ≤ t ≤ t1

}
.

We will compare φ with U on two parts of the parabolic boundary.

Part 1: On ∂(Kλ,µ
τ ∩ {t1 − τ ≤ t ≤ t1}):

From (3.3) we need

φ(ρ, t) ≥





(a + ε)λ for RI(t) ≤ ρ ≤ RS(t),
0 for R1(t) ≤ ρ ≤ RI(t),
(b + ε)µ for RT (t) ≤ ρ ≤ R1(t).

(3.4)

The second condition is satisfied as long as R̃(t) ≤ R1(t) and that is true for all t ∈ [t1−τ, t1]
if τ is small enough. Third condition is trivial for R̃(t) ≤ ρ ≤ R1(t). For RT (t) ≤ ρ ≤ R̃(t)
we use the fact that

φ(ρ, t) ≥ (β − ε)
(
R̃(t)− ρ

)

≥ (β − ε)
(
R̃(t)−RT (t)

)

≥ (β − ε)µ > (b + ε)µ.

Lastly the first condition in (3.4) holds since

φ(ρ, t) ≥ (α− ε)
(
ρ− R̃(t)

)
≥ (α− ε)

(
RI(t)− R̃(t)

)

≥ (α− ε)(d1 −m(t− t1) + λ− η − d1 + m̃(t− t1))
= (α− ε) ((m̃−m)(t− t1) + λ− η)
≥ (α− ε)(λ− η) > (a + ε)λ
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if τ and λ are small compared to ε since η = o(λ) + o(t− t1).

Part 2: On Kλ,µ
τ ∩ {t = t1 − τ}:

From the bounds on U in (3.3) we need

φ(ρ, t) ≥
{

(a + ε)λ for R1(t1 − τ) ≤ ρ ≤ RS(t1 − τ),
0 for RT (t1 − τ) ≤ ρ ≤ R1(t1 − τ).

The second inequality can be satisfied by taking τ and µ small so that R̃(t1−τ) ≤ RT (t1−τ).
The first inequality is then satisfied by taking λ small.

We demonstrated that U ≤ φ on the parabolic boundary of Kλ,µ
τ and U ≥ φ at P1 if λ,

µ and τ > 0 are small enough. Since φ is in fact a strict classical supersolution due to
Appendix, we can perturb φ into φ̃ near P1 such that φ̃ is still a classical supersolution with
U ≤ φ̃ on the parabolic boundary of Kλ,µ

τ and U > φ̃ at P1. This is a contradiction with
the definition of U .

We recall that Z ≤ W at t = t0. Therefore Lemma 3.8 as well as considering g in the
beginning of its proof yields

lim sup
λ→0+

W (P0 + λe1, 0)
λ

+ lim sup
µ→0+

W (P0 − µe1, 0)
µ

(3.5)

≥ lim inf
λ→0+

Z(P0 + λe1, 0)
λ

+ lim inf
µ→0+

Z(P0 − µe1, 0)
µ

+ |Dg(P0)|
> m.

Recall that strict ordering Z < W for t < t0 implies that B2 has an exterior normal (e1, m̂)
with m̂ ≤ m. With this result in mind, we can repeat the argument in Lemma 3.8 to get a
contradiction by proving that the quantity (3.5) must be less or equal than m.

This establishes the desired contradiction and we conclude that Z and W stay strictly
separated for all times.

Note that Theorem 3.1 yields ordering only between strictly separated initial data. There-
fore it does not directly yield the uniqueness result for viscosity solutions, even with the
additional assumption |{u0 = 0}| = 0. However under some restrictions on initial data,
uniqueness readily follows from Theorem 3.1.

Corollary 3.9. Let u(x, t) be a viscosity solution of (ST) with initial data u0 and boundary
data θ(x, t) = θ(x) < 0, where u0 and θ satisfies one of the following conditions:
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(a) u0 is strictly concave;

(b) θ(x, t) ≡ θ < 0 and both Ω and u0 is star-shaped: i.e. for sufficiently small ε > 0,

(1 + ε)−1Ω ⊂ Ω and u0(x) ≤ u0((1 + ε)−1x), where equality only holds at x = 0.

Then u(x, t) is unique.

Proof. 1. Let us begin by mentioning that for any a, b and c > 0, if u is a viscosity sub
(super)-solution of (ST), then so is

au(bx, ab2t + c).

2. Now let u and v be two viscosity solutions of (ST) with initial data u0. In the case of (a),
one can verify via barrier arguments that v(x, t) ≤ u0(x) if 0 ≤ s < t with equality holding
only at ∂LQ. In particular, for sufficiently small ε > 0, we have (1+ε)v(x, ε) < u0(x) (recall
that θ is negative). Therefore observation made in step 1 and Theorem 3.1 yields

(1 + ε)v(x, (1 + ε)t + ε) < u(x, t) in Q

for any ε > 0. Now we can send ε → 0 to obtain v ≤ u. Similarly we can argue with v and
u switched to obtain u ≤ v, and therefore u = v.

In the second case, note that for any ε > 0 and δ > 0,

(1 + δ)−1u0(x) < u0((1 + ε)−1x) in Ω.

Also, since u0 is star-shaped, the minimum of u0 (and u and v) equals θ0. Since u and v are
negative caloric functions near ∂Ω, Hopf’s lemma yields that the inward normal derivative
of u(·, t) and v(·, t) on ∂Ω is strictly positive. In particular for any T > 0 there exists
δ = O(ε) such that

(1 + δ)−1θ0 < u((1 + ε)−1x, t) for (x, t) ∈ ∂LQ.

Hence Theorem 3.1 again yields that, for sufficiently small ε < 0,

(1 + δ)−1v(x, (1 + δ)−1t) < u((1 + ε)−1x, (1 + ε)−2t) in Q.

Therefore, by sending ε → 0, we can conclude that v ≤ u. As before, by switching v and u
in above argument one can conclude v = u.

For a general uniqueness result using the comparison principle we refer to section 4 in [K]
where rather technical barrier arguments take place. We have not attempted to follow
this approach since, as mentioned before, we are interested in the coincidence of the two
generalized solutions for (ST).
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4 Correspondence between weak and viscosity solutions

Recall that, due to [11,14,15], there exists a unique weak solution h of problem (ST), defined
in Definition 2.1, with initial data h0 and boundary data θ. Let us define u = χ(h) to be
the weak temperature solution of (ST) associated with initial enthalpy function h0, see [11].

Lemma 4.1. Any weak temperature solution u of (ST) with initial data u0 = χ(h0) is a
viscosity solution of (ST).

Proof. The analysis in [6] yields that weak temperature solutions are continuous for contin-
uous χ(h0). Moreover, a comparison principle holds for weak solutions. Indeed, if h1 and
h2 are two weak solutions with h1 ≤ h2 on ∂P Q, then h1 ≤ h2 in Q. See [15], for instance.

The comparison principle can be extended to accommodate weak sub and supersolutions.
A function h1 is a weak subsolution if it satisfies (2.1) in Definition 2.1 with ≥ instead of
equality for all ϕ ∈ W 2,1

2 (Q), ϕ ≥ 0, ϕ = 0 on ∂LQ ∪ {t = T}. A function h2 is a weak
supersolution if it satisfies (2.1) with ≤ instead of equality for all ϕ as above. A comparison
principle still holds. If h1 ≤ h2 on the parabolic boundary ∂P Q then h1 ≤ h2 in Q.

A standard integration by parts also shows that a classical subsolution φ in Definition 2.2
corresponds to a weak subsolution χ−1(φ), and also that a classical supersolution ϕ is a
weak supersolution χ−1(ϕ): note that, by definition, φ and ϕ have no mushy region and
thus χ−1φ and χ−1ϕ are well defined almost everywhere. We deduce from this that we
can compare weak temperature solutions with classical sub and supersolutions. Hence we
conclude that weak temperature solutions are viscosity solutions of (ST) in the sense of
Definition 2.4.

Corollary 4.2. There exists a viscosity solution of (ST) for continuous χ(h0) and θ.

Unfortunately it is not clear to the authors how to find a corresponding weak solution for
a given viscosity solution when the initial data has a fat zero set. However it is possible
to identify the maximal and minimal viscosity solution with maximal and minimal weak
temperature solutions (see Proposition 4.4). To prove this we first need a uniform control
on the expansion of the sets {u ≤ 0} and {u ≥ 0} at t = 0 in terms of the L∞-norm of the
initial data.

Lemma 4.3. Let u be a viscosity solution of (ST) with initial data u0. Further assume
that |{u0 > 0}| = 0. Then for any r > 0 the set {u ≤ 0} does not expand by more than r
before the time tr = c(n,M)r2, M = max∂P Q |u0|. In other words,

{x : u(x, t) ≤ 0} ⊂ {x : dist(x, {u0 ≤ 0}) ≤ r}
for all t ∈ [0, tr].

The same is true for {u ≥ 0}.
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Proof. We only prove the lemma for {u ≤ 0}. Parallel argument holds for {u ≥ 0}.
Set

Ar = {x : dist(x, {u0 ≤ 0}) > r}.
We need to show that u(x, t) > 0 in Ar × [0, tr], for tr specified below.

Thus choose x0 ∈ Ar. Define the function

f(ρ) =

{
1

ρn−2 − 1, n ≥ 3,

− log ρ, n = 2.

Note that f is decreasing and f(1) = 0. For simplicity we show the following computation
for n ≥ 3 only. The case n = 2 is similar.

Set K = M
|f(2)| and v = 8K(n−2)

r . We will construct a classical subsolution of (ST) in the set

C = {(x, t) : |x− x0| < r − vt, 0 ≤ t ≤ tr}
that is below u on the parabolic boundary of C and is positive at x0 for 0 ≤ t ≤ tr.

Define the radially symmetric function φ = φ(x, t) in C as

φ(x, t) =

{
Kf

(
2|x−x0|

r−vt

)
, 2|x− x0| > r − vt,

φ̃(x, t), 2|x− x0| < r − vt,

where φ̃(x, t) is a solution of the heat equation in the domain

C 1
2

=
{

(x, t) : |x− x0| < 1
2

(r − vt) , t ∈ (0, tr)
}

with smooth positive initial data φ̃(x, 0) < u(x, 0) in the interior of D = {x : |x− x0| < r/2}
and boundary data 0.

The modulus of the gradient |Dφ−| on the free boundary Γ(φ) is

∣∣Dφ−
∣∣ = K

∣∣f ′ (1)
∣∣ 2
r − vt

=
2K(n− 2)

r − vt
.

For t < tr = r
2v = c(n,M)r2,

∣∣Dφ−
∣∣ <

4K(n− 2)
r

=
v

2
= −Vn.

Therefore φ is a classical subsolution of (ST) in the set C. Also, φ < u on the parabolic
boundary ∂P C. Theorem 3.1 implies φ < u in the set C and therefore u > 0 at x0 for
0 ≤ t ≤ tr.
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Proposition 4.4. There exist maximal and minimal viscosity solutions U1(x, t) and U2(x, t)
of (ST) satisfying the following:

U2 ≤ u ≤ U1 for any viscosity solution u of (ST).

Furthermore, U1 is the unique weak temperature solution of (ST) with the intial enthalpy

hmax
0 :=

{
u0 if u0 ≥ 0,
u0 − 1 if u0 < 0,

and U2 is the unique weak temperature solution of (ST) with the initial enthalpy

hmin
0 :=

{
u0 if u0 > 0,
u0 − 1 if u0 ≤ 0.

Proof. 1. Take an approximation wε
0 < u0 < vε

0 such that the zero set of the approximation
has zero measure. This can be done, for example, with simply wε

0 = u0 − ε and vε
0 = v0 + ε

for along a sequence of ε0 → 0. Indeed the function F (ε) := |{u0 > 0}| − |{u0 > ε}|
is a monotone, bounded function. therefore it can only have countable number of jumps.
Except at these jumps, |{u0 = ε}| = 0.

Let us choose a viscosity solution vε (and wε) of (ST) respectively with initial data vε
0

(resp. wε
0) and lateral boundary data θ + ε (resp. θ − ε). In particular (excluding a

countable number of ε) the functions vε
0 and wε

0 have no mushy region, and therefore h1,ε
0 :=

χ−1(wε
0) and h2,ε

0 := χ−1(vε
0) are well-defined almost everywhere, hence the corresponding

weak solutions h1,ε and h2,ε exist. Now, by Lemma 4.1, the weak temperature solution
vε := χ(h1,ε) (resp. wε := χ(h2,ε)) is a viscosity solution of (ST) with initial data vε

0 (resp.
wε

0). Let u be a viscosity solution of (ST) with initial data u0. Let û be the unique weak
temperature solution of (ST) with boundary data h0 := χ−1(u0). For convenience, let us
denote the initial and lateral boundary data g := (u0, θ).

2. The proof of the following lemma will be presented in the Appendix:

Lemma 4.5. vε (or wε), along a subsequence, uniformly converge to a continuous function
u with boundary data g .

Due to the stability of viscosity solutions, it is straightforward to verify that u is a viscosity
solution of (ST) with boundary data g.

On the other hand, due to stability result of [15], for each time t > 0 the weak soution
h1,ε(·, t) converges to h(·, t) in L1-norm, where h(·, 0) = hmax

0 .

Using the uniform convergence of vε := χ(h1,ε), it is easy to check that u = χ(h) = U1 a.e.

3. Lastly, Theorem 3.1 yields that any viscosity solution u of (ST) with initial data u0

satisfies
wε < u < vε, and thus taking ε → 0 we obtain U2 ≤ u ≤ U1.
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The following Theorem is obtained as a corollary of Propostion 4.4

Theorem 4.6. The viscosity solution u of (ST) with |{u0 = 0}| = 0 coincides with the
weak temperature solution and it is unique.

Appendix

First we construct “two-phase” test functions for the barrier arguments in the proof of the
comparison principle, Theorem 3.1.

A. Test functions. Here we provide a construction of a class of radially symmetric classical
sub- and supersolutions for that purpose. We will be working in spherical coordinates and
thus we shall denote ρ = |x|.
Let α 6= 0, β 6= 0, ε > 0, R > 0 and m be given parameters satisfying

signα 6= signβ and α + β 6= m signβ. (4.1)

We show below that one can find constants τ > 0, δ > 0 and q such that a test function
φ(x, t) of the form

φ(x, t) = φ0(|x| −R−mt).

with

φ0(s) =

{
αs + q s2

2 s ≥ 0,

−βs + q s2

2 s < 0,

defined in the domain

Στ,δ = {(x, t) : R + mt− δ ≤ |x| ≤ R + mt + δ, −τ ≤ t ≤ 0},

is a classical subsolution (or supersolution) of (ST) on Στ,δ, see Figure 8. Moreover, φ(x, t)
is “ε-close” to a linear function of ρ on both sides of the free boundary Γ(φ), see (4.5).

We shall denote Rt = R+mt since the set Γ(φ) = {(x, t) : r = R + mt} is the free boundary
of φ. Observe that on Γ(φ), we have

∣∣Dφ+
∣∣ = max (α, β) ,

∣∣Dφ−
∣∣ = −min (α, β) .

and thus
∣∣Dφ+

∣∣− ∣∣Dφ−
∣∣ = α + β. (4.2)
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Figure 8: Test function φ(r, t) at time t

We can also deduce the direction of the outer normal of {φ > 0}, and hence the sign of
the normal velocity Vn, from the signs of α and β due to (4.1). As Γ(φ) is the space ball
expanding with speed m, we recognize two situations:

Vn =

{
−m when β < 0,

m when β > 0.
(4.3)

Now we can express the free boundary condition in the light of (4.2) and (4.3) as

(a) m sign β ≥ α + β for a classical supersolution,

(b) m sign β ≤ α + β for a classical subsolution.

Suppose that the condition in (a) is satisfied and we are thus constructing a classical su-
persolution. In this case, the function φ has to satisfy also (∂t −∆)φ ≥ 0 in {φ 6= 0}.
Straightforward computation yields

(∂t −∆)φ(x, t)|ρ=R+
t

= −α

(
m +

n− 1
Rt

)
− q,

(∂t −∆)φ(x, t)|ρ=R−t
= β

(
m +

n− 1
Rt

)
− q.

Continuity allows us to choose small τ > 0 and δ > 0 and a suitable constant q such that

(∂t −∆)φ(x, t) ≥ 0 in Στ,δ \ Γ(φ) (4.4)

and ∣∣∣∣
φ(x, t)
ρ−Rt

− α

∣∣∣∣ < ε, when ρ > Rt,

∣∣∣∣
φ(x, t)
Rt − ρ

− β

∣∣∣∣ < ε, when ρ < Rt,

(4.5)
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in Στ,δ.

Thus let φα,β
R,m denote the classical supersolution constructed above with the parameters R,

m, α and β. Also let δ
(
φα,β

R,m, ε
)

and τ
(
φα,β

R,m, ε
)

denote the constants from above.

The case when the condition in (b) is satisfied and we are constructing a subsolution is
analogous. The constants τ > 0, δ > 0 and q are chosen in such a way that the function
φ satisfies (∂t −∆)φ(x, t) ≤ 0 in (4.4). And correspondingly, let φα,β

R,m be the constructed
classical subsolution.

We next present the proof of the lemma used in the proof of Proposition 4.4.

B. Proof of Lemma 4.5. We will only prove the Lemma for vε. The argument for wε is
parallel. Let uk := v1/k and let gk the corresponding initial and lateral boundary data of
v1/k.

[6] provide us with a uniform bound on the W 1,0
2 (Q) norm and with a uniform modulus of

continuity ωd for vε in the domains away from ∂P Q:

Qd = {(x, t) ∈ Q : dist((x, t), ∂P Q) > d}, d > 0.

Therefore we need a uniform modulus of continuity on ∂P Q to be able to extract a subse-
quence of uk converging uniformly. We will obtain this by comparing uk to solutions of the
heat equation near the parabolic boundary of Q.

First find k0 for which gk0 < 0 on ∂LQ. Theorem 3.1 implies uk decreases in k. In particular
{

uk+1 ≥ 0
}
⊂

{
uk ≥ 0

}
⊂

{
uk0 ≥ 0

}
.

Since
{
uk0 ≥ 0

}
is a closed set and gk < 0 for k ≥ k0, there exists η > 0 such that

{
uk ≥ 0

}
⊂ Qη := {(x, t) ∈ Q : dist(x, ∂Ω) > η} for all k ≥ k0.

Note that Qη := Ωη × (0, T ) where

Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.

Define ψk
+, resp. ψk−, to be the solution of the heat equation in Q with boundary data

gk+, resp. −gk−. Here gk+ and gk− are the positive part and the negative part of gk,
respectively.
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The maximum principle for the heat equation yields

ψk
− ≤ uk ≤ ψk

+ in Q. (4.6)

A uniform modulus of continuity for uk on the lateral boundary ∂LQ then follows from
comparing uk with ϕk that solves the heat equation





ϕt −∆ϕ = 0, in Q \Qη,

ϕ = gk, on ∂LQ,

ϕ(x, 0) = gk(x, 0)ζ(x), on Ω \ Ωη.

Here ζ(x) is a smooth function on Ω \ Ωη such that ζ ∈ [0, 1], ζ = 1 on Ω \ Ωη/2 and ζ = 0
on ∂Ωη.

Observe that (4.6) and comparison for the heat equation implies that

ψk
− ≤ uk ≤ ϕk on Q \Qη.

Since ψk− = uk = ϕk = gk on ∂LQ, the uniform continuity follows.

The proof for t = 0 is more involved. We split uk = uk+−uk− and consider each of uk± ≥ 0
separately.

Choose r > 0 small and fix k. Let Ak =
{
x ∈ Ω : gk > 0

}
. Define

Ak
r = {x ∈ A : dist(x, ∂A ∩ Ω) > r}.

By Lemma 4.3, there is tr > 0 such that Ak
r ⊂

{
x : uk(x, t) > 0

}
for all t < tr. Moreover, tr

can be chosen independent of k. Construct a solution ϕk to the heat equation in Ak
r ×(0, tr)

with boundary data 0 on (∂Ak
r ∩ Ω)× (0, tr) and gk(x, t)ζk(x) on the rest of the parabolic

boundary of Ak
r × (0, tr). ζk is chosen to be a smooth cutoff function with values in [0, 1]

on Ak
r such that ζk = 1 on Ak

2r and ζk = 0 on ∂Ak
r ∩Ω. It is also chosen in such a way that∥∥ζk

∥∥
C0,1 is uniformly bounded in k. Define ϕk

r = 0 in the complement of Ak
r × (0, tr). The

maximum principle for heat equation then yields

ϕk
r ≤ uk+ ≤ ψk

+ in Ω× [0, tr].

Thus the standard parabolic estimates for the heat equation ([14]) imply
∣∣∣uk+(x1, t1)− uk+(x0, 0)

∣∣∣ =
∣∣∣uk+(x1, t1)− gk+(x0)

∣∣∣
≤ ωg(2r) + ωH

(
|x1 − x0|2 + t1

)
,

for all t1 < tr, x0, x1 ∈ Ω, modulus of continuity ωH independent of k and r, where ωg is a
modulus of continuity of g. This implies uniform modulus of continuity for uk+ at t = 0.
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A similar consideration yields a uniform modulus for uk− at t = 0. Those together give us
a uniform modulus of continuity for uk.

Now as in [6], we can find a subsequence
{
ukj

}∞
j=1

such that

β
(
ukj

)
→ β (ũ) weakly in L2(Q),

Dukj → Dũ weakly in L2(Q),

ukj → ũ uniformly on Q.
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