
A drift approximation for parabolic PDEs with oblique

boundary data

Damon Alexander and Inwon Kim∗

February 17, 2014

Abstract

We consider solutions of a quasi-linear parabolic PDE with zero oblique boundary data in a
bounded domain. Our main result states that the solutions can be approximated by solutions of
a PDE in the whole space with a penalizing drift term. The convergence is locally uniform and
optimal error estimates are obtained.

1 Introduction

Consider the following parabolic problem with oblique boundary data:

(Pg)


ut − F (D2u,Du, u, x, t) = 0 in Ω× (0,∞);

Du · ~v(x, t) = 0 on ∂Ω× [0,∞);

u(x, 0) = u0(x) in Ω.

Here Ω ⊂ Rn is a bounded C2 domain, u0 ∈ C(Ω̄), ~v ∈ Rn is smooth, and F is a quasi-linear operator
with smooth coefficients given by

F (D2u,Du, u, x, t) =
∑
i,j

qij(u, x, t)uxixj + b(Du, u, x, t). (1)

We use D and ∇ interchangeably to denote the spacial gradient. We assume that qij(z, x, t) satisfies
a uniform ellipticity condition, that is, there exists constants 0 < λ < Λ such that for all (z, x, t) ∈
R× R× [0,∞),

λIdn×n ≤ (qij) ≤ ΛIdn×n. (2)

For a given matrix M , we write M+ and M− to denote its positive and negative parts, that is,
M = M+ −M− with M+,M− ≥ 0 and M+M− = 0. Using this notation, (2) is equivalent to the
condition

P−(M) ≤
∑

qij(z, x, t)Mij ≤ P+(M),

where P± are the extremal Pucci operators defined by

P+(M) := Λ tr(M+)− λ tr(M−), P−(M) := λ tr(M−)− Λ tr(M−). (3)
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We also assume that qij(z, x, t) and b(p, z, x, t) are smooth and

qij and b are uniformly Lipschitz with respect to p, z in Rn × R. (4)

We assume that ~v(x, t) given in the boundary condition of (Pg) is a smooth vector field which
satisfies

~v(x, t) · ~ν(x) ≥ c0, (5)

for some c0 > 0, where ~ν(x) denotes the outward normal vector of Ω at x ∈ ∂Ω.
As we show in Appendix A, for a given ~v(x, t) satisfying (5) by possibly adjusting the size of λ

and Λ, one can always find a symmetric matrix A(x, t) defined on Rn× [0,∞) that is smooth, satisfies
(2) and

~v(x, t) = A(x, t) · ~ν(x) on ∂Ω.

With this representation of ~v using A, our goal is to approximate the above problem by introducing
a penalizing drift. First let us discontinuously extend F onto all of Rn by taking

F (D2v,Dv, v, x, t) =

 F (D2v,Dv, v, x, t) if x ∈ Ω

∇ · (A(x, t)∇v) if x ∈ Ωc.

Now consider

(PN )

 vt − F (D2v,Dv, v, x, t)−N∇ · [vA(x, t)∇Φ] = 0 in Rn × (0,∞);

v(x, 0) = v0(x) in Rn.

Here v0 is an extension of u0 to Rn to be defined in (17). Φ is a potential whose gradient is zero inside
of Ω and is proportional to the inward normal of Ω outside of Ω. More precisely, we start with d(x,Ω)
which is C2 provided x is in an outer ball of Ω, and we consider a smooth extension d(x) onto all of
Rn that goes to infinity as |x| → ∞. Then we write

Φ(x) := d(x)3 (6)

See Theorem 4.1(a) for the well-posedness of (PN ) with the discontinuous operator F . Alternatively
one can consider a regularized version of F (see section 4).

The approximating problem (PN ) can be viewed in the framework of stochastic particles, where
the added drift represents an external force that pushes back the particles which diffused out of the
domain Ω. In the context of stochastic differential equations, relevant results have been established
in the classical paper of Lions and Snitzman [8], where a similar method of introducing a drift term
was used to derive existence of solutions to the Skorokhod problem.

Showing the validity of this approximation is the goal of our paper. Our main result is the following:

Theorem 1.1. Let u and v respectively solve (Pg) and (PN ) as given above, and let v0 be given by
(17). Then for any T > 0, v uniformly converges to u in Ω̄× [0, T ] as N →∞. Moreover we have

|v(x, t)− u(x, t)| ≤ CN−1/3 in Ω̄× [0, T ], (7)

where C depends only on n, λ,Λ, T and the regularity of the coefficients and the domain Ω.
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While (PN ) is a natural approximation of the original problem (Pg), the convergence result does
not appear to be previously proven, even for the case of the heat equation with Neumann boundary
data. Let us briefly discuss the main challenges in the analysis.

Remarks
1. It is not clear to us whether the above theorem holds with the original F in (PN ) without

extending it to have a diffusion term that corresponds to the boundary conditions given A(x, t) outside
of Ω. For our analysis this extension was necessary for the rather technical reason of constructing
an appropriate barrier of the form e−NΦf , based on the stationary solution of the divergence-form
equation outside of Ω.

2. The rate in (7) is optimal in some sense for our choice of Φ in (6), which we show in Section
5.1. Φ is chosen to have cubic growth for the technical reason that Φ then is C2 across ∂Ω. See
Theorem 5.3 for a result on different choices of potentials.

3. The result is limited to quasi-linear PDEs of the form (1). This is due to the nature of our
argument, which is based on approximating (Pg) by switching the operator F near the boundary of Ω
with the diffusion operator associated with A(x, t), as explained in the outline of the paper below. To
guarantee stability of such an approximation we need uniform regularity of the approximate solutions.
This corresponds to the regularity of parabolic PDEs with leading coefficients discontinuous in one
variable; see Theorem 4.1. It remains open whether the theorem holds for general nonlinear operators
that go beyond (1).

◦ Heuristics and difficulties

For the elliptic case, arguments from the standard viscosity solution theory were applied in [1] to
show that the solution of

−F (D2v,Dv, v, x)−N∇v · (A(x)∇Φ) = 0 in Rn (8)

uniformly converges to the stationary version of (Pg) for nonlinear, uniformly elliptic F . Heuristically,
this result can be justified by observing that N∇Φ approximates a singular measure concentrated on
the boundary of Ω with the normal direction, thus leading to the boundary condition ∇v ·A(x)~ν = 0.
However, for the parabolic problem the above approximation fails, due to additional challenges created
by the time variable. For example, we show in Theorem 5.1 that for F = ∆u, replacing the divergence-
form drift term in (PN ) by the non-divergence drift term in (8) causes the solution to converge to zero
over time as N →∞. On the other hand, the zeroth order term Nv∇ · (A(x, t)∇Φ) in (PN ) causes a
problem in the above heuristics to yield the oblique boundary condition in the limit N →∞. Indeed
the standard viscosity theory argument fails to show the approximation of (Pg) with (PN ), due to the
zeroth order term in the divergence-form drift in (PN ). Thus one concludes that there is a delicate
balance between the two terms coming out of the penalizing drift term in (PN ), which must be handled
carefully. The main observation that enables our analysis is that the solution of (PN ) outside of Ω can
be bounded by the quickly vanishing barriers of the form e−NΦf , where f is a smooth function. Our
actual argument is built on estimates for the barriers (see section 2.1.1) and does not involve direct
estimates on v, which suffices for our convergence result, but further asymptotic analysis on v may
reveal information on the dynamics of the penalizing drift leading to the boundary condition in (Pg).

◦ Outline of the paper

Due to the difficulties described above, we were not able to produce a direct argument to show
Theorem 1.1. Instead, we show the theorem first for linear operators where the diffusion matches the
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boundary flux condition in Section 2, and then build on these results to address the general case in
Section 4.

The general idea in Section 2 is to use the comparison principle, by testing against barriers created
by extending a particular perturbation of the true solution for (Pg). To illustrate the construction
of barriers done in Section 2, we first carry out the argument in one dimension in Section 2.1, in the
special case where F = ∆u and A = 1. Then we proceed to the more general linear case in higher
dimensions in Section 2.2, still in the case where F and A correspond. One important ingredient in
the proof is a decomposition argument which eliminates the zeroth order term in the penalizing drift
in (PN ), as shown in (10) and (19). In Section 3 we will show results from basic numerical experiments
which verify the rate of convergence for the heat equation in one dimension.

In section 4, we introduce an additional approximation to let us utilize the results of the previous
section to show the main theorem. Roughly speaking, we will interpolate the diffusion term of F
in (Pg) with the one matching the boundary condition near ∂Ω; see (Pr) in Section 4. We then
consider approximating the modified problem with the penalizing drift term. The important estimate
in this section is the uniform rate of convergence between (Pr) and its penalizing approximation (Pr,N )
which is independent of r (see Theorem 4.2), based on the uniform regularity of solutions of (Pr) (see
Lemma 4.1). The uniform regularity estimate for (Pr) draws from the result of Kim and Krylov [5],
and is of independent interest. We finish with remarks and examples in Section 5.

Acknowledgements: We thank Jose Carrillo for the interesting discussions which prompted our
investigation. We also thank Alexis Vasseur for insightful comments regarding the heuristics above.
Both authors are partially supported by NSF DMS 1300445.

2 PDEs of divergence form

We first consider the case when F is in linear, in divergence form and matches the co-normal boundary
condition, in the following way:

(D)

 ut −∇ · (A(x, t)∇u) = 0 in Ω× (0,∞);
∇uTA(x, t)~ν = 0 on ∂Ω× (0,∞);
u(x, 0) = u0(x) in Ω.

For simplicity we rescale so that λ = 1, so that

Idn×n ≤ A(x, t) ≤ ΛIdn×n for all x ∈ Rn, t ≥ 0. (A1)

In this case, the approximating problem is written as

(DN )

{
vt −∇ · [A(x, t)∇v]−N∇ · [vA(x, t)∇Φ] = 0 in Rn × (0,∞);
v(x, 0) = v0(x) on Rn.

Here Φ(x) is defined in (6), and v0 is an extension of u0 onto Rn which will be defined in more detail
in Section 2.2. We will prove

Theorem 2.1. Suppose Ω is C2 and that A is C2, symmetric, and satisfies (A1). Then if u solves
(D) and v solves (DN ) with initial data v0 given in (17), we have that

‖u− v‖L∞(Ω×[0,T ]) < C(u0,Ω, A)TN−1/3.
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2.1 The heat equation in one dimension

Before handling the problem in multiple dimensions, we illustrate the proof technique on a simpler
example, the one dimensional heat equation with Neumann data:

(H)

 ut = uxx in (a, b)× [0,∞);
ux(a, t) = ux(b, t) = 0 for all t > 0;
u(x, 0) = u0(x) for all x ∈ [a, b].

We define the approximating problem

(HN )

{
vt = vxx +NvxΦx +NvΦxx in R× (0,∞);
v(x, 0) = v0(x) for all x ∈ R.

Here v0 is defined as

v0(x) :=


u0(x) if x ∈ [a, b]
u0(b)e−NΦ(x) if x > b
u0(a)e−NΦ(x) if x < a,

(9)

and Φ is defined as follows:

Φ(x) :=

 |x− a|
3 if x ≤ a

0 if a < x < b
|x− b|3 if x ≥ b.

In words, Φ grows cubically outside the original region, which makes it C2 at the boundary.

Theorem 2.2. Assume u0 ∈ C([a, b]), and let u and v solve (H) and (HN ) respectively with initial
data u0 and v0. Then for any T > 0, v uniformly converges to u in [a, b] × [0, T ] as N → ∞. In
particular we have that for all T > 0,

‖u− v‖L∞([a,b]×[0,T ]) < C(u0, a, b)(T + 1)N−1/3.

For the proof we will perturb the true solution and then extend it to get super- and subsolutions
of (HN ) on all of R. The super- and subsolutions will serve as barriers to show that v is close to u
in Ω. For the specific v0 given by (9), the minimal size of the perturbation can be estimated by the
barriers and we obtain the rate of convergence.

Building a supersolution

The first step is to create a supersolution to extend u off Ω, taking the form

ϕ(x, t) = f(x, t)e−NΦ(x). (10)

Without loss of generality, we will only show the details of the extension to the right of x = b. Note
that ϕ satisfies

ϕt − ϕxx −NϕxΦx −NϕΦxx = e−NΦ
(
ft − fxx + 2NfxΦx −N2fΦ2

x

+NfΦxx −NfxΦx +N2fΦ2
x −NfΦxx

)
= e−NΦ (ft − fxx +NfxΦx) .

Thus we need only verify that

ft − fxx +NfxΦx > 0. (11)
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Figure 1: A sample u, uε, and ϕ, where Ω = [0, 1].

We want ϕ to match u at the boundary, and go above it to the left, that is, (ϕx − ux)|x=b < 0. This
would let us create a supersolution extension by taking the infimum of ϕ and u. However, since ux = 0
at b, this requires ϕx = fx < 0 which makes (11) difficult to satisfy. To avoid this, consider

uε(x, t) := u(x, t) +
5α

b− a
ε(x− (a+ b)/2)2 +

10α

b− a
εt.

Here α := ‖ut(b, ·)‖L∞([0,∞)), and ε is a perturbation parameter. Then uε will satisfy the heat equation
except with boundary condition uε,x(b, t) = 10αε/2 = 5εα.

Now we construct f so that it matches uε at the boundary. For simplicity, we assume b = 0 and
write

f(x, t) := uε(0, t) + α
(x− ε)3 + ε3

ε
+ αεx.

A sample ϕ is shown in Figure 1. The cubic term in f is designed to help for x small, while the linear
term will help for larger x. We calculate:

ft(x, t) = uε,t(0, t) = ut(0, t) + 10εα/(0− a),

fx(0, t) = ε(3α+ α) < uε,x(0, t).

Then ft(x, t) > −2α if ε < (b− a)/10.
Now for x ∈ [−ε, ε/2], we find

fx = α
3(x− ε)2

ε
+ αε > 0, fxx = 6α

x− ε
ε
≤ −3α.

Thus we find
ft − fxx +NfxΦx > −2α+ 3α > 0.
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Next, if x > ε/2, we find

fx = 3α(x− ε)2/ε+ αε ≥ αε, fxx = 6α(x− ε)/ε < 6αx/ε.

This gives the result

ft − fxx +NfxΦx > −2α− 6αx/ε+ 3x2αεN

≥ (Nαε3/4− 2α) + αε−1x
(
2xε2N − 6

)
.

Then if N > 8ε−3, both terms will be positive in this region, letting us conclude that ϕ is a superso-
lution of (HN ) on [−ε,∞)× [0,∞).

The full supersolution

Our final supersolution will be as follows:

w(x, t) =

{
uε(x, t) if a < x < 0
ϕ(x, t) if x ≥ 0.

(12)

This is a supersolution of (HN ) because it can be written as the infimum of a smooth extension of uε
and ϕ. This works since they touch at x = 0 and are ordered appropriately because as shown above,
uε,x(0, t) > fx(0, t). Then for x > 0,

w(x, 0) ≥ uε(0, t)e−NΦ(x) ≥ u0(0)e−NΦ(x) = v(x, 0).

Since we can extend w in an analogous way to the left of a, applying the comparison principle ensures
that v ≤ w in R× [0,∞) and hence v ≤ uε in [a, b]× [0,∞).

The proof of Theorem 2.2

From the supersolution uε constructed above setting N = 10ε−3, we obtain v ≤ uε ≤ u + CTε ≤
u+ CTN−1/3. Next, we construct a subsolution as follows. Let

g(x, t) = u−ε(0, t)− α
(x− ε)3 + ε3

ε
− αεx.

Then we have that gx = −fx and gxx = −fxx, and so by similar estimates we find ψ(x, t) :=
g(x, t)e−NΦ(x) will be a subsolution on [−ε,∞)× [0,∞). This lets us extend u−ε to a subsolution w̃ on
all of R× [0,∞). Then by construction, w̃ ≤ v at t = 0. Hence w̃ ≤ v for all time by the comparison
principle, so in particular u−ε ≤ v in [a, b]×[0,∞). This lets us conclude that for (x, t) ∈ [a, b]×[0,∞),

u−ε(x, t) ≤ v(x, t) ≤ uε(x, t).

Thus provided N > 10[(b− a)/10]−3, we have

‖u− v‖L∞(Ω×[0,∞)) < C(u0, a, b)(T + 1)N−1/3.

�

Remark 2.1. Perhaps the most natural choice for v0 is v0 = u0 inside Ω and zero outside. In
this case the convergence rate can be obtained in L1 norm. Observe that for w as given in (12),
v ≤ w ≤ u+CN−1/3(T+1) in Ω×[0, T ]. Moreover, since 0 ≤ v ≤ w one can show that

∫
R\Ω v(x, t)dx ≤

CN−1/3. The above estimates as well as conservation of mass yields that

‖v(·, t)− u(·, t)‖L1(Ω) ≤ CN−1/3(T + 1).

7



Ω

x
−∇d(x)

−A∇d(x)

S(x, t)

∂Ω

Figure 2: An illustration of how S functions

2.2 The general linear divergence form equation

Now we consider the divergence form parabolic equation (D), and the approximating problem (DN ).
Generalizing the extension process used in the one-dimensional case requires using the distance func-
tion, which is only smooth if we are close to Ω. To this end, we will require an intermediate domain
Ω′ that contains Ω. For γ a lower bound on the radius of interior and exterior balls to ∂Ω, we define
Ω′ as

Ω′ := {x : d(x,Ω) < d0}, (13)

where d0 =
1

2
min

[
γ,

γ√
Λ2 − 1

(
Λ−

√
Λ2 − 1

)]
. (14)

Then we have that d(x,Ω) is C2 inside Ω′, so we can find a C2 extension d(x) that matches d(x,Ω)
inside Ω′, and goes to infinity as |x| → ∞. Before we prove Theorem 2.1, we prove two lemmas that
will help us extend u off Ω. We define the mapping S : Ω′ → ∂Ω to tell us what boundary point our
extension takes data from. We define S in formula as

S(x, t) := x− d̃(x, t)A(x, t)∇d(x).

Here d̃(x, t) is defined so that S(x, t) ∈ ∂Ω, and in the case A = Idn×n simply equals d(x). In words,
S maps x to the closest point in Ω in direction −A(x, t)∇d(x), whereas the closest point is actually
in direction −∇d(x); see Figure 2.

Our first lemma shows basic properties of S, d, and d̃; the proof employs basic geometry and the
implicit function theorem and is deferred to Appendix B.

Lemma 2.1. Suppose that (13) holds and A is C2. Then in Ω′, the distance function d(x,Ω) is C2,
S(x, t) is well defined, and d̃ . d. Further, for x ∈ Ω′\Ω, A∇d|x /∈ TS(x,t)∂Ω. Lastly, d̃ is also C2,
and hence S is C2 as well, with

∇d̃(x, t)T =
∇d(S(x, t))T

[
I − d̃(x, t)∇A(x, t)∇d(x)− d̃(x, t)A(x, t)D2d(x)

]
∇d(S(x, t)T )A(x, t)∇d(x)

. (15)
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Lemma 2.2. We can control the size of the directional derivative of S in the drift direction A∇d in
the following sense:

|DSA∇d|
∣∣∣∣
(x,t)

. d(x),

for all t ≥ 0 and x ∈ Ω′\Ω.

Proof. We remark that as we move slightly in direction A∇d, S is affected by both A and∇d changing.
Since those changes are small, the deflection of S will be proportional to the length we have to travel
to get back to ∂Ω, which is proportional to d̃ . d.

Fix x and t. Define η := A(x, t)∇d(x)/|A(x, t)∇d(x)|. As shown in Lemma 2.1,

∇d̃(x, t)T η =
∇d(S(x, t))T

[
I − d̃(x, t)∇A(x, t)∇d(x)− d̃(x, t)A(x, t)D2d(x)

]
∇d(S(x, t))TA(x, t)∇d(x)

η

=
1

|A(x, t)∇d(x)|
− d̃(x, t)

[
∇d(S(x, t))T

∇A(x, t)∇d+A(x, t)D2d(x)

∇d(S(x, t))TA(x, t)∇d(x)
η

]
=:

1

|A(x, t)∇d(x)|
+ βd̃(x, t).

Here β is defined this way for brevity and ∇A∇d is the matrix whose (i, j) entry is (∇aij)T∇d. We
Taylor expand the quantities in S in direction η to find

d̃(x+ hη, t) = d̃(x, t) +
h

|A(x, t)∇d(x)|
+ βd̃h+O(h2),

∇d(x+ hη) = ∇d(x) + hD2dη +O(h2),

(A(x+ hη, t)) = A(x, t) + h(∇Aη) +O(h2).

Calculating the directional derivative directly yields

S(x+ hη, t)− S(x, t) = x+ hη − d̃(x+ hη, t)A(x+ hη, t)∇d(x+ hη)− x+ d̃(x)A(x)∇d(x)

= hη −
(
d̃+

h

|A∇d|
+ hβd̃

)
(A+ h(∇Aη))(∇d+ hD2dη) + d̃A∇d+O(h2)

= h
(
η − d̃AD2dη − η − βd̃η − d̃(∇Aη)∇d

)
+O(h2).

Dividing by h and taking the limit as h→ 0, we see that

DSA∇d = −|A∇d|
(
d̃AD2dη + βd̃η + d̃(∇Aη)∇d

)
. (16)

Then by Lemma 2.1, A∇d|x /∈ TS(x,t)∂Ω, that is, it is not tangent to ∂Ω at the point S(x, t). Thus by
compactness, we find ∇d(S(x, t))TA(x, t)∇d(x) can be bounded away from zero, and so β < C(A,Ω).
Then factoring out d̃ from (16) and using that d̃ . d from Lemma 2.1, we find

|DSA∇d| < C(A,Ω)d̃ < C(A,Ω)d.

With this lemma in hand, we are ready to prove Theorem 2.1. We define v0 as follows:

v0(x) :=

{
u0(x) in Ω
e−NΦ(x)µ(x)u0(S(x, 0)) in Ωc.

(17)

Here µ(x) : Rn → [0, 1] is a smooth function that is one when d(x,Ω) < d0/2 and zero when d(x,Ω) >
d0. This smoothing factor µ is necessary since the map S is only defined when d(x,Ω) < d0.
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2.2.1 Proof of Theorem 2.1

Proof of Theorem 2.1. We proceed in a similar fashion to the heat equation case, with the difference
being more care is required in the extension process. In particular, the extension used previously now
only works on Ω′, and we have to patch it to another solution to create a supersolution on all of Rn.

First, we perturb u to uε which has a small positive slope at the boundary. We proceed by
considering the signed distance function

h(x) =

{
d(x,Ωc) if x ∈ Ω
−d(x,Ω) if x ∈ Ω′\Ω,

defined in a neighborhood of ∂Ω where this is C2. We extend h to a C2 function h̃ on all of Ω, and
define

uε(x, t) := u(x, t) + 5αεΛ
(
−h̃(x) + ‖∇ · (A∇h̃)‖L∞(Ω×[0,∞))t+ ‖h̃‖L∞(Ω)

)
, (18)

where ε > 0 is a perturbation parameter and α is a constant to be chosen later. Then uε will be a
supersolution of (D) satisfying uε ≥ u and at ∂Ω,

∇uTε A~ν = ∇uTA~ν − 5αεΛ∇h̃TA~ν = 5αεΛ~νTA~ν ≥ 5αεΛ.

We look for a supersolution of the modified equation (DN ) on Ω′\Ω of the form

ϕ(x, t) = f(x, t)e−NΦ(x). (19)

Let us calculate how this transforms the equation in detail. We have that

ϕt = fte
−NΦ,

∇ϕ = e−NΦ(∇f −Nf∇Φ),

−N∇ · (ϕA∇Φ) = e−NΦ

−N∇fTA∇Φ +N2f∇ΦTA∇Φ−Nf
∑
i,j

aijΦxixj −Nf
∑
i,j

aijxiΦxj

 ,

−∇ · (A∇ϕ) = −e−NΦ
∑
i,j

[
aijxi(fxj −NfΦxj )

]
+
∑
i,j

aij
[
fxixj −NfxjΦxi −NfxiΦxj −NfΦxixj +N2fΦxjΦxi

]
= e−NΦ

(
2N∇fTA∇Φ−N2f∇ΦTA∇Φ

)
+ e−NΦ

∑
i,j

[
aijxi(NfΦxj − fxj ) + aij(NfΦxixj − fxixj )

]
.

Summing these, we find

ϕt −∇ · [A∇ϕ−NϕA∇Φ] = e−NΦ

(
ft +N∇fTA∇Φ−

∑
i,j

[aijxifxj + aijfxixj ]

)
=: e−NΦ(ft −Mf),

where M is defined this way for brevity. Then we set

f(x, t) := uε(S(x, t), t) + α
(d(x)− ε)3 + ε3

ε
+ αεd(x),

10



where S(x, t) is the mapping onto ∂Ω defined above. We calculate:

ft = uε,t +

n∑
i=1

uε,xiSi,t,

∇fT = ∇uTε DS + 3α
(d(x)− ε)2

ε
∇dT + αε∇dT ,

fxixj =
∑
k,l

∂2uε
∂xl∂xk

∂Sl
∂xj

∂Sk
∂xi

+
∑
k

∂uε
∂xk

∂2Sk
∂xj∂xi

+ 6α
(d(x)− ε)

ε
dxidxj + α

(
3

(d(x)− ε)2

ε
+ ε

)
dxixj ,

∇Φ = 3d(x)2∇d.

Then we can find C(u,A,Ω) so that the following bounds hold for ε small:∣∣∣∣∑
i,j

aij

∑
k,l

∂2uε
∂xl∂xk

∂Sl
∂xj

∂Sk
∂xi

+
∑
k

∂uε
∂xk

∂2Sk
∂xj∂xi

+
∑
i,j,k

aijxi
∂uε
∂xk

∂Sk
∂xj

∣∣∣∣ ≤ C(u,Ω, A), (20)

uε,t = ut + 5αεΛ‖∇ · (A∇h̃)‖L∞(Ω×[0,∞)) ≥ −‖ut‖L∞(∂Ω×[0,∞)) ≥ −C(u,A,Ω), (21)∣∣∣∣∣
n∑
i=1

uε,xiSi,t

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

uxiSi,t − 5αεΛ

n∑
i=1

h̃xiSi,t

∣∣∣∣∣ ≤ C(u,A,Ω) + αεC(u,A,Ω). (22)

Then in particular we find that ft ≥ −2C − αεC, so

ft −Mf = ft +N∇fTA∇Φ−
∑
i,j

[aijxifxj + aijfxixj ]

≥ −2C − αεC +N∇fTA∇Φ− C(u,Ω, A)−
∑
i,j

aijxiα

[
3

(d(x)− ε)2

ε
+ ε

]
dxj

+−6α
(d(x)− ε)

ε
∇dTA∇d−

∑
i,j

aijα

[
3

(d(x)− ε)2

ε
+ ε

]
dxixj .

Now let us examine the ∇fTA∇Φ term more carefully. Applying Lemma 2.2, we have

∇fTA∇Φ = 3d(x)2
(
α[3(d(x)− ε)2/ε+ ε]∇dTA∇d−∇uεDSA∇d

)
≥ 3d(x)2

(
3α(d(x)− ε)2/ε+ αε− Cd

)
.

Then the inner polynomial has a minimum at d = ε + Cε/6α, where it achieves the value of ε(α −
C2/12α − C). Thus provided α ≥ 3C(u,Ω, A), we have N∇fTA∇Φ ≥ 3Nεαd(x)2/2. Then this
assumption on α yields the bound

ft −Mf ≥ −α− αεC +
3

2
Nεαd(x)2 − 6α

(d(x)− ε)
ε

∇dTA∇d

−
[
3α

(d(x)− ε)2

ε
+ ε

]∑
i,j

(aijxidxj + aijdxixj ). (23)

Now suppose −ε < d(x) < ε/2. This lets us use the estimate −(d− ε)∇dTA∇d ≥ ε/2 to bound (23)
by

ft −Mf ≥ −α+ 3α/2 +O(ε).

11



Thus it follows that ϕ is a supersolution here if ε is small.
Next, suppose ε/2 ≤ d(x) ≤ d0. Then we simplify (23) to get

ft −Mf ≥ −α− αεC +
3

2
Nεαd2 − 6αΛd/ε− C[3αd2/ε+ ε]

= α(Nd2ε/2− 1− εC) +
α

ε

(
Nd2ε2 − 6Λd− 3Cd2 − Cε2

)
.

Then setting N = 12(Cd0 + Λ + 1)ε−3, both terms will be positive, and so ϕ will be a supersolution
over all of Ω′\Ω× [0,∞).

2.2.2 Creating the full supersolution

As in the one dimensional case, we define

w(x, t) =

{
uε(x, t) if x ∈ Ω
ϕ(x, t) if x ∈ Ω′\Ω.

We need to check that w is in fact the infimum of the two supersolutions uε and ϕ. This is because
at ∂Ω by construction we have ϕ(x, t) = uε(S(x, t), t) = uε(x, t), while ∇uε ·A~ν ≥ 5αεΛ and

∇ϕ ·A~ν = ∇f ·A~ν = ∇uTε DSA~ν + 4αε~νTA~ν ≤ 4αεΛ.

Then since −A~ν points inside Ω, it follows that ϕ > uε immediately inside Ω, so w is in fact a
supersolution. Note again that this infimum procedure works even though uε is only defined inside Ω,
since it crosses ϕ exactly at ∂Ω.

Now we extend w again from Ω′ to all of Rn. To do this, consider a stationary solution

η(x) = 2‖uε‖L∞(∂Ω×[0,∞))e
−NΦ(x).

Then at ∂Ω, η > w and at ∂Ω′, if ε < d0/2, we have

η(x) = 2‖uε‖L∞(∂Ω×[0,∞))e
−NΦ(x),

w(x, t) = ϕ(x, t) ≥ αd
3
0

8ε
e−NΦ(x).

Thus w starts off below η and provided ε < d3
0α(16‖uε‖L∞(∂Ω×[0,∞)))

−1, w must cross η before ∂Ω′.
Thus by taking another infimum, w can be extended to be a solution on all of Rn.

Lastly we check the ordering of w versus v at the parabolic boundary. At t = 0, the ordering is
clear inside Ω, and since

f(x, 0) ≥ uε(S(x, 0), 0) ≥ µ(x)uε(S(x, 0), 0) = µ(x)
[
u0(S(x, 0)) + 5αεΛ‖h̃‖L∞(Ω)

]
,

it follows that ϕ(x, 0) ≥ v0(x) outside Ω. Also, η(x) ≥ v0(x) by construction, so w(x, 0) ≥ v0(x) as
well. Thus we can apply the comparison principle to deduce that

v(x, t) ≤ w(x, t) in Rn × [0,∞).

Since w(x, t) = uε(x, t) ∈ Ω, we see that in [0, T ],

v(x, t)− u(x, t) . ε(T + 1) . N−1/3(T + 1).

12
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Figure 3: The true solution u at various time points

Now we construct the subsolution of (DN ) via a parallel procedure. As in the one-dimensional
heat equation case, define

g(x, t) := u−ε(S(x, t), t)− α (d(x)− ε)3 + ε3

ε
− αεd(x).

This crosses the zero solution inside Ω′, since for ε small, g(x, t) < 0 when d(x,Ω) = d0/2. Then by
taking a supremum with the zero stationary solution, we can extend g(x, t)e−NΦ(x) to a subsolution
on all of Rn that equals u−ε in Ω and starts below v0. Thus employing the comparison principle lets
us deduce that v(x, t) ≥ u−ε(x, t) in Ω× [0,∞), and so we conclude that in Ω× [0, T ],

|v(x, t)− u(x, t)| . N−1/3(T + 1).

3 Finite Difference Approximation

In this section we present the results of applying the Crank-Nicolson finite difference method to
implement the approximation technique. First we consider the heat equation on [0, 1] with initial

data u0(x) = cos(2πx) + 1, which admits solution u(x, t) = e−4π2t cos(2πx) + 1. We ran the scheme
with 300 spacial panels and 2000 temporal panels, with zero Dirichlet conditions at the boundary of
Ω′ = [−1, 2]. We ran the experiment for t ∈ [0, 0.3]. The true solution is shown in Figure 3, and two
approximate solutions are shown in Figures 4 to 5.

Estimates of the rate of convergence as we vary N are shown in Table 1, which are close to the
analytic result of N−1/3. To remove the inaccuracy of the underlying numerics, for each N we ran
the scheme with varying space and time panels, and found that for all N tried, 6400 spacial panels
and 102400 time panels ensured the results were stable for fixed N . Note that the L∞ errors were
approximately constant in time, and so it sufficed to use the final error.

The big advantage this method has for numerics is that it allows one to run finite difference schemes
on domains with general geometry, which normally would require finite element methods. Since the
routine winds up being done over a box, spectral methods can be used. Also, unlike the finite element

13
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Figure 4: The approximating solution v with N = 100
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Figure 5: The approximating solution v with N = 1000

N ‖u− vN‖L∞([−1,2]×{t=0.3}) p estimate
8192 0.0438889 0.2922126913041514
16384 0.0356576 0.2996465089723717
32768 0.0288452 0.30587833655159546
65536 0.0232513 0.3110198856649859
131072 0.018688 0.3151992014544745
262144 0.0149858 0.31851607677867955

Table 1: Estimates of the rate of convergence N−p as we vary N .
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methods, this method can be generalized to handle non-linear terms on the interior, at the expense
of losing the converge rate estimate.

4 PDEs of non-divergence form

Building on the previous constructions of barriers, we are now ready to address the general problem
given in the introduction in Theorem 1.1. Let u solve (Pg), and let v solve (PN ). To use the
barrier argument from the previous section, the boundary operator F must correspond to the operator
∇·(A∇v) in a neighborhood of ∂Ω. This necessitates the introduction of two auxiliary problems which
feature a regularized operator Fr. Towards this, we define

Ωr := {x ∈ Ω : d(x, ∂Ω) > r}.

Now take a smooth function f(x) which is zero for x < 1 and one for x > 2, and write

g(x) := f(r−1d(x, ∂Ω)).

Then we define

Fr(D
2u,Du, u, x, t) := g(x)F (D2u,Du, u, x, t) + (1− g(x))∇ · (A(x, t)∇u), (24)

which is smooth, satisfies (2), equals F in Ω2r, and equals ∇ · (A(x, t)∇u) outside of Ωr.

Next let w and ṽ solve the two auxiliary problems:

(Pr)


wt − Fr(D2w,Dw,w, x, t) = 0 in Ω× [0, T ];

(A(x, t)∇w) · ~ν = 0 on ∂Ω× [0, T ];

w(x, 0) = u0(x) in Ω,

and

(Pr,N )

 ṽt − Fr(D2ṽ, Dṽ, ṽ, x, t)−N∇ · [ṽA(x, t)∇Φ] = 0 in Rn × [0,∞);

ṽ(x, 0) = v0(x) in Rn.

The proof of Theorem 1.1 proceeds by showing that as r → 0, the solutions of the auxillary
problems (Pr) and (Pr,N ) converge to the solutions of the original problems, uniformly in N . Then
since the barriers constructed for the divergence form PDEs apply to the auxiliary problems, this will
finish the proof (see Figure 4).

As a preliminary step, we will develop uniform estimates for w independent of r, using the following
particular cases of Theorems 2.5 and 2.8 in Kim-Krylov [5]:

Theorem 4.1. Let us denote x = (x1, ..., xn) ∈ Rn and define

Lu := aij(x, t)uij + b(x, t) ·Du+ c(x, t)u,

where the {aij} satisfy (2), are continuous with respect to (x1, ..., xn−1), and measurable with respect
to the xn variable. Also, assume b and c satisfy (4). Then the following holds for 2 < p < ∞ and
T > 0:

15
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Figure 6: How the different problems and their solutions relate as we vary the parameters.

(a) For any f ∈ Lp(Rn × [0, T ]), there exists a unique u ∈W 2,1
p (Rn × (0, T ]) such that ut −Lu = f

in Rn × (0, T ] with u(·, 0) = 0. Moreover

‖u‖W 2,1
p (Rn×[0,T ]) ≤ C‖f‖Lp(Rn×[0,T ]).

Here C depends only on n, p, T, λ,Λ, the bounds for b and c, and the mode of continuity of the
{aij} with respect to (x1, ..., xn−1).

(b) Let H be the half space {x = (x1, ..., xn) ∈ Rn : xn > 0} and let l ∈ H. Then for a given
f ∈ Lp(H × (0, T ]) there exists a unique u ∈W 2,1

p (H × (0, T ]) satisfying ut − Lu = f in H × (0, T ];
l ·Du = 0 on ∂H × (0, T ];
u(x, 0) = 0 in H,

with the estimate
‖u‖W 2,1

p (H×(0,T ]) ≤ C‖f‖Lp(H×(0,T ]).

Here C depends only on n, p, T, l, λ,Λ, the bounds for b and c, and the mode of continuity of the
{aij} with respect to (x1, ...xn−1).

The following lemma is essential to deduce an estimate, uniform in r, for the convergence of the
solutions of (Pr,N ) to those of (Pr).

Lemma 4.1. Let F (D2u,Du, u, x, t) be given as in (1), satisfying (2) and (4), and let w solve (Pr).
Then for a given T > 0, the following holds for 0 ≤ t ≤ T :

(a) For any 0 < α < 1, w(·, t) is uniformly C1,α in Ω̄ with respect to r;

(b) wt is bounded in Ω× [0, T ];

(c) The restriction of w(·, t) on ∂Ω is uniformly C1,1 with respect to r.

Proof. 0. In this proof C denotes various constants which are independent of r. Since w is C2 up to
Ω̄× (0, T ], it suffices to get a uniform bound on the derivatives of w with respect to r.
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1. Let us first consider the case when ~v is constant and the domain is a half space, i.e. when

Ω = H = {x = (x1, ..., xn) : xn ≥ 0}.

In this case, with compactly supported u0, Theorem 4.1(b) as well as Morrey’s inequality yield (a)
for linear PDEs. For F given as in (1) one can use Schauder’s fixed point theorem with the map
Ψ : W 1,0

p (Ω̄T )→W 2,1
p (Ω̄T ) with sufficiently large p, where u := Ψ(v) solves
ut −

∑
qij(v, x, t)uxixj + b(Dv, v, x, t) = 0 in Ω× (0, T ];

~v ·Du = 0 on ∂Ω× (0, T );

u(x, 0) = u0(x) ∈ C2(Ω̄).

The argument for smooth, non-constant ~v is parallel to the constant case, which relies on intro-
ducing a local change of coordinates to change the problem to a Neumann problem, as written in the
proof of Theorem 2.8 in [5]. Also, see Remark 2.10 in [4].

To generalize from H to Ω, we can apply a local change of coordinates such as in [2] p. 337-339,
which maps {x : d(x, ∂Ω) = r} to {xn = r}, to reduce to the half-space case.

2. Note that W := wt satisfies
Wt −

∑
i,j a

ij
r (w, x, t)Wij + ∂pb

r(Dw,w, x, t) ·DW +B(x, t)W + C(x, t) = 0 in Ω× (0, T ];

(A(x, t)DW ) · ~ν = −(At(x, t)Dw) · ~ν on ∂Ω on ∂Ω× (0, T ).

We write aijr := g(x)qij + (1− g(x))aij as the second order matrix of Fr and likewise for br. Here

B(x, t) :=
∑
i,j

∂za
ij
r (w, x, t)wij + ∂zb

r(Dw,w, x, t),

and
C(x, t) :=

∑
i,j

(aijr )t(w, x, t)wij + brt (Dw,w, x, t).

Due to the uniform W 2,1
p estimates obtained in step 1, we have that B and C are uniformly bounded

with respect to r in Lp(Ω × [0, T ]) for any 2 < p < ∞. Setting p = n + 1, [6] yields the uniform L∞

bound for W .

3. It remains to show (c). For simplicity, we will only show (c) in the case that Ω is locally a half
space, that is, we will show (c) in B1/2(0) when

Ω ∩B1(x0) = {x · e1 ≥ 0} ∩B1(0). (25)

For general domains one can take a local change of coordinates as before to reduce to the half-space
case.

Let us choose a boundary point x0 ∈ ∂Ω∩B1/2(0) and a time t = t0. To show (c), it is enough to
show that there exists M > 0 which is independent of r such that for x ∈ ∂Ω and t ≤ t0, we have

|w(x, t)− w(x0, t0)−Dw(x0, t0) · (x− x0)| ≤M(x− x0)2 − C(t− t0) (26)
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in S := (∂Ω ∩ Bδ(x0)) × [t0 − τ, t0]. To this end we will build a supersolution and a subsolution of
(Pr) and compare it with w in a parabolic neighborhood of S.

We first construct a supersolution of (Pr) to show that in S,

w(x, t)− w(x0, t0)−Dw(x0, t0) · (x− x0) ≤M(x− x0)2 − C(t− t0). (27)

Next, fix α ∈ (0, 1). Due to (a) and (b) we know that

w(x, t) ≤ w(x0, t0) +Dw(x0, t0) · (x− x0) + C|x− x0|1+α − C(t− t0) (28)

in (Bδ(x0) ∩ Ω̄)× [t0 − τ, t0], where C, δ, and τ are constants independent from the choice of r.

Let us denote (x− x0)T := (x− x0)− (x− x0) · e1, and consider the function

h(x) := Cδα−1

(
|(x− x0)T |2 −

Λ

λ
(n+ 1)|(x− x0) · e1|2

)
− C1δ

α(x− x0) · e1 + CC1δ
αa,

where C1 is a constant depending only on A(x, t) and ‖Dw‖Cα , and a is a constant that is much smaller
than δ. We work on Σ, a strip neighborhood of x0 which is narrow in the direction of −e1 = ~ν:

Σ := Bδ(x0) ∩ {|(x− x0) · ~ν| ≤ a} ∩ Ω.

Now let us define

h̃(x, t) := h(x) + w(x0, t0) +Dw(x0, t0) · (x− x0)− C2(t− t0)

where C2 is to be chosen later. We claim that h̃ satisfies

h̃t − Fr(D2h̃, Dh̃, h̃, x, t) ≥ 0 in Σ× [t0 − τ, t0] (29)

if δ and τ are chosen small enough, but independently of r. To see this, observe that

P+(D2h) ≤ −2ΛCδα−1.

This fact along with (2) and (4) yields

h̃t − Fr(D2h̃, Dh̃, h̃, x, t) ≥ −C2 + g(x)b(Dh̃, h̃, x, t) + 2ΛCδα−1

≥ 2ΛCδα−1 −O(|Dh̃|+ |h̃|+ |x− x0|+ |t− t0|).

From the definition of h̃ one can check that, in Σ× [t0 − τ, t0] with small τ , |h̃| ≤ C and

|Dh(x)| ≤ 2Cδα + 2
Λ

λ
Cδα−1a− C1δ

α ≤ Cδα. (30)

Hence due to (a), |Dh̃| ≤ |Dw|+ |Dh| ≤ C + Cδα, and thus |Dh̃|, |h̃| ≤ C. Thus we conclude that h̃
satisfies (29) if δ and τ are sufficiently small.

Moreover, due to (5) we have

[A(x, t)Dh̃(x, t)] · (−e1) = [A(x, t)(Dh+Dw(x0, t0))] · (−e1)

= [A(x, t)(Dh+Dw(x, t) + [Dw(x0, t0)−Dw(x, t)])] · (−e1)

≥ [A(x, t)(Cδα−1(x− x0)− C1δ
αe1)] · (−e1)− ‖A‖‖Dw‖Cα

≥ C1δ
αλ− ‖A‖‖Dw‖Cα − ‖A‖Cδα

≥ 0 on (∂Ω ∩ Σ)× [t0 − τ, t0],
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where the last inequality holds if C1 is chosen sufficiently large with respect to ‖A‖ and ‖Dw‖Cα .

The above arguments let us conclude that h̃ is a supersolution of (Pr) in Σ× [t0 − τ, t0]. Now let
us compare w and h on the parabolic boundary of the domain Σ× [t0 − τ, t0] excluding ∂Ω. Observe
that on (∂Σ\∂Ω)× [t0 − τ, t0], due to (28) we have

h̃(x, t)− w(x, t) ≥ Cδα−1|(x− x0)T |2 − C|x− x0|1+α − C1δ
α|(x− x0) · e1|+

+ Cδαa− Cδα−1Λ(n+ 1)|(x− x0) · e1|2/λ
≥ 0,

since |(x− x0)T | ∼ δ and |(x− x0) · e1| ≤ a on ∂Σ\∂Ω. Moreover

h̃− w(x, t) ≥ C2τ − Cδα ≥ 0 on Σ ∩ {t = t0 − τ},

if τ is chosen to be larger than δα and if C2 is sufficiently large. Therefore, we conclude that w ≤ h̃
in Σ× [t0 − τ, t0], which yields (27).

A parallel argument can be used to provide the lower bound.

Let us point out that the barrier constructed in the proof of Theorem 2.1 only relied on the C1,1

spacial bounds of u and L∞ bounds of ut restricted to ∂Ω to get the bounds given in Equations (20)-
(22). This is because the supersolution constructed in Theorem 2.1 was built off the behavior of the
true solution u along the boundary. In addition, the space-time C1 bound on u lets us use Taylor
series to show that this supersolution in fact has the right ordering against uε at the boundary. Thus
Lemma 4.1 lets us create a supersolution extension on the full domain that is uniformly close to w
with respect to r, by taking an infimum of the candidate function and the (perturbed) true solution,
which cross at ∂Ω. We can then apply the comparison principle to ṽ and w as before and conclude:

Theorem 4.2. Let ṽ and w respectively solve (Pr,N ) and (Pr). Then for any T > 0 we have

sup
Ω×[0,T ]

|ṽ − w| ≤ C(Ω,Λ, λ, T )N−1/3 (31)

Next we show by barrier arguments the following:

Lemma 4.2. Let u solve (Pg) and w solve (Pr). Then

‖u− w‖L∞(Ω×[0,∞)) ≤ C(Ω, u0, c0,
Λ

λ
)(1 + eLt)r,

where L is the Lipschitz constant for F given in (4).

Proof. 1. Before we begin, we remark that we will later require that the spacial operators F and
Fr be decreasing in the zero-th order term. We can assume this by applying the transform U :=
e−Ltu,W := e−Ltw. Then we find that U satisfies

Ut = e−Ltut − LU = e−LtF (D2u,Du, u, x, t)− LU
= e−LtF (eLtD2U, eLtDU, eLtU, x, t)− LU
=: G(D2U,DU,U, x, t),
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where now G is still uniformly elliptic for t ∈ [0, T ] and in particular is decreasing in the U argument.
Likewise, W satisfies

Wt = e−LtFr(e
LtD2W, eLtDW, eLtW,x, t)− LW

=: Gr(D
2W,DW,W, x, t).

Denote the problems that U and W solve (P̃g) and (P̃r). Note that U(·, t) ∈ C2,α(Ω̄) due to [7].

2. Let us define

M := max
0<r<1,x∈Ω\Ω2r,0≤t≤T

(max(Gr(D
2U,DU,U, x, t), 1)),

which is independent of r and finite due to the regularity of U . Let dr(x) denote the distance function
d(x,Ω2r) and its smooth extension by d̃(x), where |d̃| ≤ 1 and d̃(x) = dr(x) in a small neighborhood
of Ω\Ω2r. Let

C0 := 2
sup∂Ω×[0,T ] |~v(x, t)|

λc0
,

where c0 is given in (5). Now consider

w2(x, t) := U(x, t) + 2C0Mr + C0Mrd̃(x) in Ω.

Note that on any level set of dr in Ω\Ω2r the sum of the tangential second derivatives of dr amounts
to the mean curvature of its level set and the normal second derivative of dr is zero. Thus, due to (4),
given that r is small enough,

Gr(D
2w2, Dw2, w2, x, t) ≤ Gr(D2U,DU,U, x, t) +O(Mr[‖D2d̃‖L∞ + ‖Dd̃‖L∞ + 1]) in Ω\Ω2r. (32)

From (32) and the fact that Ddr = ~ν(x) +O(r) on ∂Ω we deduce that

(w2)t −G(D2w2, Dw2, w2, x, t) ≥ −C1Mr, in Ω2r × (0, T ];

(w2)t −Gr(D2w2, Dw2, w2, x, t) ≥ −M − C1Mr in (Ω\Ω2r)× (0, T ];

∇w2 · ~v(x, t) ≥ 2 sup |~v|Mr/λ on ∂Ω× (0, T ];

w2(x, 0) = U(x, 0) + 2C0Mr + C0Mrd̃(x) ≥ U(x, 0) + C0Mr in Ω.

Here C1 is a constant independent of r. Now define

h(x) := Md2
r(x).

We will show that the function defined by

w̃(·, t) :=

{
w2 + C1Mrt in Ω2r

w2 − λ−1h+ C1Mrt in Ω\Ω2r
(33)

is a supersolution of (P̃r) if r is sufficiently small. To this end we develop estimates on h. Note that
D2dr is bounded in Ω\Ω2r since ∂Ωr is C2 for r small. From these facts and that dr ≤ 2r in Ω\Ωr,
it follows that

D2(d2
r) = 2drD

2dr + 2Ddr(Ddr)
T ≥ 2Ddr(Ddr)

T −O(r)(Idn×n).
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Thus since |Ddr| = 1, we have

(D2(d2
r))

+ ≥ 2−O(r) and (D2(d2
r))
− ≤ O(r).

It follows from the uniform ellipticity of Gr with respect to r that h satisfies
P+(D2h) ≥ 2λM − ΛO(r) in Ω\Ω2r;

|Dh| = M |Ddr|dr ≤ 2Mr on ∂Ω;

0 ≤ h ≤ 16Mr2 in Ω\Ω2r.

Then since Gr is decreasing in the zero-th term, we find that in Ω2r,

w̃t = C1Mr + (w2)t ≥ Gr(D2w2, Dw2, w2, x, t)

≥ Gr(D2w̃,Dw̃, w̃, x, t).

On the other hand, in Ω\Ω2r we find

w̃t = C1Mr + (w2)t ≥ Gr(D2w2, Dw2, w2, x, t)−M
≥ Gr(D2(w2 − λ−1h), Dw2, w2, x, t) + 2M −M −O(r)

≥ Gr(D2w̃,Dw̃, w̃, x, t) +M −O(r).

Next,
(Dw2 − λ−1Dh) · ~v(x, t) ≥ 2λ−1 sup |~v|Mr − 2Mr|~v|λ−1 ≥ 0.

Thus w̃ is a supersolution of (P̃r) in Ω× (0, T ] if r is small. Moreover, if r is sufficiently small,

w̃(x, 0) ≥ U(x, 0) +Mr − 16λ−1Mr2 ≥ U(x, 0) = W (x, 0).

Thus it follows from the comparison principle for solutions of (P̃r) that

W ≤ w̃ in Ω× [0, T ],

Then computing

e−Ltw ≤ w̃ = e−Ltu+ 2C0Mr + C0Mrd̃(x)− λ−1h+ C1Mrt

shows that w ≤ u+ CeLT r in Ω× [0, T ].
A lower bound can be obtained with parallel arguments.

Corollary 4.1. For ṽ solving (Pr,N ) and u solving (Pg),

|ṽ − u| ≤ C(T )(r +N−1/3) in Ω× [0, T ].

Lastly we show the following:

Lemma 4.3. For fixed N , ṽ locally uniformly converges to v in Ω̄× [0,∞) as r → 0.

21



Proof. Let vr = ṽ be the solution of (Pr,N ) associated with Fr. Since N is fixed, vr is uniformly
C1,α in space with α > 1/2 and hence has a subsequential limit we denote by v0. We claim v0 is a
viscosity supersolution of (PN ); the subsolution case is analogous. Suppose it is not, and so we can
find a smooth function ϕ that crosses v0 from below at some point (x0, t0) that satisfies

ϕt − F (D2ϕ,Dϕ, x, t)−N∇ · [ϕA(x, t)∇Φ] < −δ < 0, (34)

and by smoothness of ϕ and F we can assume this holds in a neighborhood of (x0, t0).
Note that we must have x0 ∈ ∂Ω to not get an immediate contradiction, since otherwise v0 and

vr have the same equation for r small. Then we can find points (xr, tr) → (x0, t0) where ϕ − vr has
a local maximum with value zr. These points must all lie in Ω\Ω2r, as outside vr and v0 satisfy the
same equation. The goal is to push the crossing point into Ω2r. Using γ as the minimial radius of
interior balls of Ω, let

ϕr := ϕ− δ|x− xr|2

4λn
+ δ(t− tr)/4.

Then ϕr will still be a subsolution near (x0, t0), but now ϕ−vr has a strict local maximum at (xr, tr).
Next, consider the region B√γr(xr)× [tr− τ, tr]. Then if r and τ are small enough, this region will

be contained in the region where ϕ − v0 has a local maximum and (34) holds. We are going to use
the fact that vr is uniformly C1,α in space, independent of r. For r small, xr must lie within distance
γ of x0, in which case it has a unique nearest boundary point we denote by yr. For ~νr the outward
unit vector at yr, let

h(x, t) := ϕr(x, t)− 20Crα(x− xr) · ~νr,

where C is larger than the sum of the uniform C1,α norms of vr and ϕr. Next, since Dϕr = Dvr at
(xr, tr), by the uniform C1,α regularity of vr we have

(ϕr − vr)(x, tr) =

∫
(Dϕr −Dvr)(s, tr) · ds+ zr

=

∫
[(Dϕr −Dvr)(s, tr)− (Dϕr −Dvr)(xr, tr)] · ds+ zr

≥ −
∫

(‖vr‖C1,α + ‖ϕr‖C1,α)|s− xr|αds+ zr

≥ −C|x− xr|1+α + zr.

This lets us compute that

(h− vr)(xr − 5r~νr, tr) ≥ −51+αCr1+α + zr + 20 · 5Cr1+α

≥ zr + 75Cr1+α.

On the other hand, if (x− xr) · ~νr ≥ −3r, we have

(h− vr)(x, tr) ≤ (ϕr − vr)(x, tr) + 20 · 3 · Cr1+α

≤ zr + 60Cr1+α.

Thus the maximum of h− vr in B√γr(xr)× [tr − τ, tr] occurs in {(x− xr) · ~νr ≤ −3r}. Further, if r
is small enough, it must occur on the parabolic interior because on the spacial edge of the parabolic
boundary,

h− vr ≤ −
γδr

4λn
− 20Crα(x− xr) · ~νr ≤ −

γδr

4λn
+ 40Cγrα+1/2 ≤ 0.
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xr

~~νr

3r
2r
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B√γr(xr)

Bγ−2r(x
′
r)

{(x− xr) · ~νr = −3r}

Figure 7: Showing {(x− xr) · ~νr ≤ −3r} is contained in Ω2r

This is because α > 1/2, and on the temporal edge, ϕr was not modified.
Now it remains to show that this maximum occurs inside Ω2r. This is because of the square root

scaling we used. That is, yr must have an interior ball Bγ(x′r) ⊂ Ω that contains xr. Then Ω2r must
contain Bγ−2r(x

′
r). We assume for simplicity the worst case scenario where xr = yr, that is, xr is on

∂Ω. Now we show that

B√γr(xr) ∩ {(x− xr) · ~νr ≤ −3r} ⊂ Bγ−2r(x
′
r).

This follows because the hyperplane {(x− xr) · ~νr ≤ −3r} intersects B√γr(xr) with width
√
γr − 9r2

and it intersects Bγ−2r(x
′
r) with width√

(γ − 2r)2 − (γ − 3r)2 =
√

2rγ − 5r2,

as can be seen from Figure 7. This width is larger provided r < γ/4, and by the definition of ~νr, the
hyperplane is perpendicular to the line between xr and x′r.

This entails that ϕr − vr has a local maximum inside Ω2r, where ϕr is a subsolution of the same
equation as vr. Thus we are done, since this contradicts that vr was a viscosity solution.

Theorem 4.2, Corollary 4.1 and Lemma 4.3 enable us to compare ṽ and v and conclude the
following:

Theorem 4.3. Let v and u respectively solve (PN ) and (Pg). Then we have, for any T > 0,

sup
Ω×[0,T ]

|v − u| ≤ C(T )N−1/3.

5 Additional Remarks

5.1 Examples in one dimension

First we verify that the full divergence-form drift is necessary in (PN ).
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Theorem 5.1. Let v(x, 0) be the characteristic function of Ω := [0, 1], let Φ(x) = d3(x, [0, 1]) and let
v(x, t) solve the following equation with initial data v(x, 0):

vt − vxx −NΦxvx = 0 in R× (0,∞). (35)

Then for any δ > 0, there are N0 and T0 that only depend on δ so that for N > N0, v(x, T0) < δ in
[0, 1].

The solution u of (H) with a = 0, b = 1 and u0 = v(x, 0) is the stationary solution u ≡ 1. Thus
the above theorem demonstrates in particular that v does not converge to u in Rn× [0, T ] as N →∞,
if T is chosen large.

Proof. Fix δ > 0. Note that φ(x) := e−NΦ(x) is a supersolution to (35), and thus v ≤ φ. Set N0 so
that φ(x) ≤ δ for x ∈ {−1, 2}, and let us compare v(x, t) with a barrier h(x, t) in [−1, 2] × [0, T0],
where

h(x, t) = 1 + δ/2− δ(x− 1/2)2 − δt.
Here T0 = δ−1−13/4 satisfes h(x, T0) = δ for x ∈ {−1, 2}. Since ht−hxx ≥ 0 and hxΦx ≤ 0, it follows
that h is a supersolution of (35), and since h ≥ δ in {−1, 2} × [0, T0] it follows from the comparison
principle that v ≤ h in [−1, 2]× [0, T0]. Thus v(x, T0) ≤ h(x, T0) ≤ 4δ.

Next we show that for this penalization scheme and choice of initial data (17), the convergence rate
of N−1/3 given in Theorem 1.1 is optimal. The rate is connected to the cubic growth of Φ = d(x,Ω)3.
The idea is that O(N−1/3) mass leaks out as seen by the size of mass on the outside of the stationary
solution e−NΦ(x). Our attempt to add additional mass in v0 need not exactly cancel the mass loss, as
the following example shows. Consider v solving (HN ) in R× (0,∞) with initial data

v0(x) =


cos(2πx) + 1 if x ∈ [0, 1]

2eNx
3

if x < 0

2e−N(x−1)3 if x > 1.

(36)

With this v we have the following theorem:

Theorem 5.2. Let u(x, t) solve (Pg) in [0, 1] × (0,∞), with initial condition u0(x) = cos(2πx) + 1.
Then with v as above, Then there exists a time T so that for all N ,

sup
[0,1]×[0,T ]

|u(x, t)− v(x, t)| ≥ CN−1/3.

Proof. Note that u→ 1 and v → Ce−NΦ exponentially as t→∞, and since Φ is a uniformly convex
potential except in a compact set, this rate is uniform in N . By conservation of mass, we must have
that

C

[∫ 0

−∞
eNx

3

dx+ 1 +

∫ ∞
1

e−N(x−1)3 dx

]
= 1 +

∫ 0

−∞
2eNx

3

dx+

∫ ∞
1

2e−N(x−1)3 dx.

Then denoting I =
∫∞

0
e−u

3

du, we have that
∫∞

0
e−Nx

3

dx = N−1/3I, so

C =
1 + 4N−1/3I

1 + 2N−1/3I
.

Thus since u(x, t)→ 1, we find that in [0, 1], as t→∞,

v(x, t)− u(x, t)→ C − 1 =
1 + 4N−1/3I

1 + 2N−1/3I
− 1 =

2N−1/3I

1 + 2N−1/3I
≥ N−1/3I.

Then we can find a time T , independent of N , so that v(x, T )− u(x, T ) > N−1/3I/2.
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5.2 Stability of the drift potential

Here we consider the potential whose gradient does not exactly line up with ~ν near the boundary. For
simplicity we will restrict this to the case of the heat equation and only work in Ω′; the divergence
case is similar. We will write our new drift as the old drift plus a perturbation term Ψ, that is, we
deal with the equation

(H ′N )


vt = ∆v +N∇ · (v∇Φ) +N∇ · (v∇Ψ) in Ω′,

v(x, 0) = v0(x) :=

{
u0(x) in Ω.
u0(S(x))e−N(Φ(x)+Ψ(x)) in Ω′\Ω

Here S(x) = x− d(x)∇d(x) in the case A ≡ Id.

Theorem 5.3. Suppose Ω is C2, Ω′ satisfies (13) and further d(Ω,Ω′) < 1. Also, suppose |∇Ψ| <
d(x,Ω)3. Then if u solves (D) with A ≡ Id (that is, the heat equation), and v solves (H ′N ), we have

‖u− v‖L∞(Ω×[0,T ]) < C(u,Ω)(T + 1)N−1/3.

Proof. The proof is essentially the same as in Theorem 2.1, with the main difference being we apply
the transform

ϕ(x, t) = f(x, t)e−N(Φ(x)+Ψ(x)).

Then using the fact that |∇Ψ| is an order smaller than |∇Φ| makes it so that the extra terms in the
transform are not problematic in the extension process.

A Appendix: Constructing A(x, t)

Lemma A.1. Consider a Ck domain Ω and smooth vector field ~v(x, t) satisfying ~v(x, t) · ~ν(x) ≥ c0
for all x and t, where ~ν is the outer unit normal to Ω at x. Then there exists a symmetric Ck matrix
A(x, t) satisfying the property that

A(x, t)~ν(x) = ~v(x, t) for all x ∈ ∂Ω.

Moreover, A satisfies the ellipticity condition (A1).

Proof. We start by considering an orthonormal basis of Tx(∂Ω) written as {v1(x), . . . , vn−1(x)}, where
the vi are Ck in x. After a rescaling ~v can be written as

~v(x, t) = ~ν(x) +

n−1∑
i=1

αi(x, t)vi(x),

where the αi are Ck and bounded. Then we define S as

S(x) = (~ν(x), v1(x), . . . , vn−1(x)).

Now we consider A of the form SBS−1, where

B =


1 α1 α2 . . . αn−1

α1 c 0 . . . 0
α2 0 c . . . 0
... 0

. . . 0
αn−1 0 0 . . . c

 .
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Here c is a constant to be chosen large. We claim that if c is large enough, all the eigenvalues of B
and hence A will be uniformly positive. This is because cofactor expansion gives that

det(B − λI) = (1− λ)(c− λ)n−1 +

n−1∑
i=1

(−1)iα2
i (c− λ)n−2

= (c− λ)n−2

[
(1− λ)(c− λ) +

n−1∑
i=1

(−1)iα2
i

]

= (c− λ)n−2

[
λ2 − 2λc+ c+

n−1∑
i=1

(−1)iα2
i

]
.

Then this has eigenvalues λ = c and writing β :=
∑n−1
i=1 (−1)iα2

i ,

λ =
2c±

√
4c2 − 4(c+ β)

2
.

Thus taking c large with respect to β ensures that all eigenvalues can be bounded by

λ0 < λi(x) < Λ

for all i and x ∈ ∂Ω. Thus A satisfies the ellipticity condition, is symmetric, and is smooth.

B Appendix: Remarks on the distance functions

In this section we prove Lemma 2.1. We keep the notation γ for the lower bound on the radii of the
exterior and interior balls of ∂Ω, and Λ is the constant so that I ≤ A(x, t) ≤ ΛI uniformly.

Lemma B.1. Suppose that

d(Ω′,Ω) < min

[
γ,

γ√
Λ2 − 1

(
Λ−

√
Λ2 − 1

)]
, (37)

and A is C2. Then in Ω′, the distance function d(x,Ω) is C2, S(x, t) is well defined, and d̃ . d.
Further, for x ∈ Ω′\Ω, A∇d|x /∈ TS(x,t)∂Ω. Lastly, d̃ is also C2, and hence S is C2 as well, with

∇d̃(x, t)T =
∇d(S(x, t))T

[
I − d̃(x, t)∇A(x, t)∇d(x)− d̃(x, t)A(x, t)D2d(x)

]
∇d(S(x, t)T )A(x, t)∇d(x)

. (38)

Proof. The regularity of the distance function is shown in [3]. For the second part, consider a point
x ∈ Ω′\Ω. Then since x is contained in an exterior ball of Ω, we must have that there is a unique
nearest point y ∈ ∂Ω at distance d, and at y, there is an interior ball Bγ(z). We show that starting
at x, going in direction −A∇d we will wind up in this interior ball, which will show that S(x, t) is
well-defined. The worst case scenario is when the angle between ∇d and A∇d is maximal, and we
note we can get an upper bound since it satisfies

cos θ =
∇dTA∇d
|∇d||A∇d|

≥ 1

Λ
.

We wish to show that a ray starting from x, deflected by a maximal θ, will hit Bγ(z) provided
d is small enough. Projecting into the plane containing ∇d and A∇d, we can consider this in two
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Figure 8: Calculating an upper bound on d̃

dimensions; see Figure 8. Solving for the intersection, we find that the distance from where we hit
Bγ(z) is given by

d′ =
d(d+ 2γ)Λ

d+ γ +
√

(d+ γ)2 − d(d+ 2γ)Λ2
≈ C(γ,Λ)d (39)

for d small. Then in particular we hit if

(d+ γ)2 − d(d+ 2γ)Λ2 ≥ 0, (40)

and it can be checked this is equivalent to requiring

d <
γ√

Λ2 − 1

(
Λ−

√
Λ2 − 1

)
.

Thus S(x, t) is well-defined if we hit Bγ(z), which is guaranteed if Ω′ satisfies (37). Also, since

d̃ ≤ d′/|A∇d|, we find d̃ . C(A,Ω).
Next, we check that A∇d|x /∈ TS(x,t)∂Ω. Consider the line from x along A∇d to where it hits

Bγ(z). If A∇d ∈ TS(x,t)∂Ω, then there would be an interior ball Bγ(w) that is perpendicular to A∇d
at S(x, t). We claim d(w, x) < d(z, x), which would contradict that y is the nearest point to x since
then d(x,Ω) ≤ d(w, x)− γ < d(z, x)− γ = d(x, y). This claim follows by showing that

d(x,w)2 = d(x, S(x, t))2 + γ2 < (d+ γ)2 = d(x, z)2.

But since d(x, S(x, t)) ≤ d′ < d(d+ 2γ)Λ/(d+ γ) by (39), this is ensured if

d2(d+ 2γ)2Λ2

(d+ γ)2
< (d+ γ)2 − γ2 = d(d+ 2γ).

Rearranging this yields that we need

d(d+ 2γ)Λ2 < (d+ γ)2,
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which is the same as (40), and hence true by our assumptions on the maximal size of d.
Finally, we use the implicit function theorem to show that d̃ is continuous. This is because it can

be given implicitly as the solution λ to

f(x, t, λ) = d(x− λA(x, t)∇d(x,Ω),Ω) = 0.

Then for a given (x0, t0), a minimal solution λ must exist since the solution space is non-empty and
everything is continuous. Then we compute that

∂f

∂λ
= −∇d(x0 − λA(x0, t0)∇d(x0))TA(x0, t0)∇d(x0).

It can be shown that (40) implies that at the first point of contact to Ω along A∇d, the angle to Ω
is not tangent, and hence ∂f

∂λ 6= 0. Thus we find an implicit solution exists as we vary around (x, t)

around (x0, t0), there is locally a solution d̃(x, t), and since everything else in f is C2, so is d̃. Then
(38) follows from the implicit function as well.
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