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Abstract

We study a model, due to J.M. Lasry and P.L. Lions, describing the evolution of a
scalar price which is realized as a free boundary in a 1D diffusion equation with dynam-
ically evolving, non—standard sources. We establish global existence and uniqueness.
0 Introduction
Here we are concerned with the following PDE:

ft - f:mc = [5p(t)+g - p(t)—g} fx(p(t)7t) in (_17 1) X [07 OO),
(P> fx(lat):fx(_]-at):o'
f(z,0) = fr(x).
where p(t) = {x : f(z,t) = 0} presumed, for a.e. t, to be a singleton, and
. 1 .
a = a(p(t)) = min{a, §|p(t) + 1|} with a < 1. (0.1)

The model with ¢ = a was invented in [8] and, as explained therein (see also [6],[7]) is

purported to describe the dynamic evolution of a price p(t) as influenced by a population

of buyers and sellers. In this initial reference, the existence of solutions was discussed,
mostly in the context of a non—compact domain.
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While the model on compact domains was featured (strictly speaking, the model on
R does not make economic sense) there was no proviso for the circumstance |1+p(t)| < a.
Our modification using a provides this definition and later (see Corollary 2.3) allows us
to ensure that p(t) stays away from the domain boundaries at x = £1. In terms of the
model, our modification can be viewed as a “rescue plan” to prevent prices from severe
deflation or inflation.

Recently, [6] the problem was solved completely for the case of symmetric initial
data and in the work [7], global existence, uniqueness and stability was established
for initial data sufficiently close (in a certain sense) to the piecewise linear equilibrium
solution. ! Finally, contemporaneous to the present work, the non-compact version of
(P) — sometimes with regularization — is investigated in [9]. A complete derivation of
uniqueness for short times is presented therein.

Notwithstanding the benign appearance of (P), the system contains intrinsic and
convoluted non—linearities. Indeed, the driving term at the sources is the gradient at the
dynamically generated zero, p(t). In turn, p(¢) controls the location of the sources and
therefore constitutes a free boundary for the problem. Thus, a central issue is to establish
non—degeneracy at this free boundary and thereby aquire some degree of control for its
motion. E.g., in this context Hopf’s lemma, while useful, is not immediately decisive
without some additional regularity information at the free boundary.

We consider the initial data f; € C%([—1,1]) satisfying the following:

(i) {fr(xz) =0} ={ps}, fr(z) > 0 for z < pr and f;(x) < 0 for z > p;.
(i) Do fi(—1) = Dufi(+1) = 0.
(iii) Given A := —0, fr(pr) > 0, we must have

3 .
-0z fr(x) > 1)\1 in (pr — ao, pr + ao) (0.2)

for some 0 < ap < a/4. Note that (iii) is automatic from the regularity of f.

It is worthwhile to notice that problem (P) satisfies the following conservation iden-
tities
p(t) 1 1 1
/ f(z,t) dx = fr(x) de =: My > 0, / fz,t) de = / fr(z) de =: =M, < 0.
-1 -1 p(t) PI
(0.3)
Note also that the free boundary moves with a velocity given by the formula:

o Jea(p(1),1)
p(t) = .0

and the flux across the free boundary is given by
At) = =0, f(p(t),1).

The main result in this paper is written below:

Tt is noted — but not proven — that ewistence might be established via a connection to a stochastic
interacting particle model. The utility of this connection is under investigation by the authors, particularly
with regards to the question of global stability.



Theorem 0.1. [Global existence and uniqueness of classical solution]

Consider the system described in (P) with initial data f; satisfying the conditions
(i)—(iii) above, and let us define Q := (—1,1) x (0,00). Then there is a unique “density”
f(z,t) € L®(Q) and a p : [0,00) — (—1,+1), p(t) € CV2([0,00)) that satisfy the
following:

(A) For any 0 <t <T there exists r = r(T) with r > 0 such that

(a) fis C® in {(z,t): |z —pt)| <r};
(b) A(t) >r;

(c) p(t) € (=1 +r,1—r).

(B) The density f solves the first two equation of (P) in the classical sense (in terms
of Duhamel’s formula) in Q, with f(z,t) > 0 if © < p(t) and f(x,t) <0 for x > p(t).
Moreover f(x,t) uniformly converges to fr(z) ast — 0.

The organization and summary of what remains is as follows:

e In Section 1 we derive existence and uniqueness of the system (P) for short times; i.e.,
we prove Theorem 0.1 for positive values of T' that are sufficiently small. We use a basic
approach deploying, perhaps, more care than is strictly necessary. However this turns
out to be important for later developments since it allows us to directly tie all sources
of potential difficulty to specific attributes of initial conditions.

e In Section 2 we provide the L _ property for the flux function A(¢). In order to do

this, we introduce a foliated version of the (P) system (and certain related systems)
which is defined on an array of intervals. Both in the context of the foliated models
and the “regular” models, we introduce a zero diffusion limit. It is our belief that these
two auxiliary devices may be of some independent interest. An immediate corollary to
the L'-properties of A is the fact that whenever a solution exists, the free boundary
stays strictly away from the system boundary. The items in this section are serve as
the foundational steps for global existence.

e Section 3 represents the substance of this paper and, if the results of the first two
sections may could be accepted on faith, may be processed with minimal back reference.
All possible conditions under which the derivation in Section 1 might eventually fail are
recapitulated and systematically eliminated. For the most part the underlying strategy
is primitive: A demonstration that the level of regularity obtained by the finite time
solution is of sufficient robustness to preclude all purported obstructions — all of which
amount to degeneracy of the zero set. The worst scenario for degeneration is that
the behavior of the free boundary is sufficiently wild that it produces a non—trivial
interval where it accumulates. To rule out this happenstance, we perform a multi-—scale
analysis; the subjects of Proposition 3.5 and Lemma 3.6. It is demonstrated that on
each interval-scale, sufficient regularity is retained so that, even by the accumulation
time, a non—trivial analytic solution can be produced which, necessarily, precludes the
possibility of accumulation.



1 Short times

The preliminary results are based on the short—time contraction principle of the follow-
ing iteration: given f,(z,t) and p,(t) such that p,(t) :== {z : fu(-,t) = 0} consists of a
unique point for each ¢ > 0, consider the function A, (t) defined by

An(t) == =(fn)z(Pn(t),1).
Let f(x,t) solve

of  0*f
ot 0a2 An(t) [5x=pn(t)—@ - 5$=pn(t)+g] ’ (1.1)

f(l‘,O) = fI(m)

Then the solution to the above becomes f,,1+1(x,1), i.e., serves to define p,4+1(t) and
An+1(t); observe that by the maximum principle, p,1(t) also consists of a single point.
As a start-up function f;(z,t), we may as well use the solution of (P) without sources.

Specifically, we define the map
D L%((0,t): X) — L¥((0,40); X), (1.3)
S = fots
where X := L (p; — ag, pr + ag) for some aq sufficiently small.
First let us write the solution f(z,t) of (1.2) using the Duhamel formula:

+1
flx,t) = / [(z,2'5t) fr(2") da’

# [0 nlt) = it = ) = s ) + st~ A0 @ Y
=1 + I,

where I" denotes the fundamental solution appropriate for the domain (—1,+1) with
Neumann boundary conditions:

D(z,2';t) = f: K(x — (2k 4 [-1]*l2"), 1) (1.5)
k=—o00
with ,
K(z,t) = ! e T,

Vart

The main result of this section is stated in the following:



Theorem 1.1. There exists a time to depending only on || fr| pe(—1,1), A1 and ag such
that

1
swp f =gllx <5 s [fu=gullx.
t€[0,to] t€[0,to]

where X := L>®(p; — ag, pr +ag) and the functions f, g solve (1.2) with right-hand side,

Corollary 1.2. There exists to > 0 depending only on || fr||p~(—1,1) and A\; such that
(P) has a solution f,p for all times t € [0,ty]. Moreover, f is smooth accross the free
boundary, and

A
Ato) > ZI > 0.

The proof of Theorem 1.1 is a consequence of the following series of results:
Lemma 1.3. For all x and y such that |z — y| < a/4, it holds that
D(r,y+a,t)+ Te(z,y Lt a, b))+ Tz, y £ a,t)| < G(a),
where the constant G(«) depends only on a (but diverges as o — 0.)

Proof. It follows from elementary analytical considerations. We show it for I';,, the rest

are similar. Writing
x — (2k + [-1]*lz")

2/t =t

I =

we have
—92 _ 3 —02
Ty(z,2'5t) fzt—t’ pe Uk Glz Qk—l— }|k\x/)2ﬂke ko (1.6)

with G1 a constant. Obviously, for any k, we can bound Gﬂ?,%e“’2 < G4 for another
constant G2, whatever the value of ¥ might be.

Next, since for the relevant 2’ = y+« we have that |z—2'| > «/2 and |z+2'—2| > gz
for a constant gz, we may sum the series replacing x + 2’ by the relevant worst case
scenarios. It is concluded that |T';| — unintegrated in the t—variable — is bounded by a
finite constant (which depends on «, but not on x, a’ or t). O

Lemma 1.4. Consider

1
hum:/"mmeﬁwmw

-1

+ / Do (2, pu(#) — @t — ) — Do (2, pu(t') + ast — )] M (t') dF’
0



Ift < (Wlao))Q is a time such that |pr — pn(t)| < ag for all t < t, then we can estimate

dIQ(iL‘,t) ¢
kA
\ = ]_Gwo) Do)l ds,

for allt < t and x € (p; — ap,pr + ag), where A\ > 0, p; are as described in the
hypothesis (i) — (iii), and G is as given in Lemma 1.3. Moreover, for

x € (pr — ao, pr + ao),

the linear term can be estimated as

dll(l‘,t) 1
< = <
. < 2)\1 for allt < cg\/ag,

where cg 1s a small constant independent of ag, etc.

Proof. The first estimate follows easily from Lemma 1.3, just taking into account that

[z = pn(t)] < |z — prl + [pr — pa(t)] < 2a0.

The second estimate follows from a straightforward estimate using the Green’s function
formula.

O

Corollary 1.5. Suppose, in the n'* stage of the iteration, that for all t < t we have

[ frllzoe(=1,1)
M) <2—"— 2
An(t)] < 7

Then we can find the following bound for the next step [ = fni1, given in Eq.(1.4):
there exists a time ty < t, depending on HfIHLOO(le) and \p, such that

and |pr — pa(t)] < ag (1.7)

for all t <ty and |z — pr| < ap.

Proof. This is a consequence of the two bounds from Lemma 1.4 and the hypothesis
(1.7). Indeed we may write, uniformly for x € (p; — ao, pr + ao)

1
fol@,t) < =5 Ar +4G ao) | fill = (-1 VE.

It is clear that for ¢ < ty with

1frll poo
Glao) (1 + 16— Vg = 1, (L8)
I
the desired bound will hold. It is noted that the time tg does not depend on the iteration
coefficient n. O



In the next two lemmas we show a L°°~bound for f, and f,, in a neighborhood of
the free boundary which is the required input for Corollary 1.5.

Lemma 1.6. Let t be as given above, and suppose that

I frll e =1,1)
\/i 9

sup |(fn)z(z,t)] <2 0<t<t, |x—pr|<ao, (1.9)

then
I frllzee(—1,1)

\/i )

sup |(fna1)z(z,8)| < 2 O0<t<t, |x—pr|<ao.
xr

Proof. As before, we let

1
fola,t) = / T, (o, a'; 1) fr(') do’

-1

+ /O Do, (pu(t') — @)t — 1) — T (2, pu(t') + @t — )] An(t') d’
. dIl((E,t) dIQ
=: T + %(l‘,t).

Regularity estimates for caloric functions (see [1], Chapter V, Theorem 8.1) imply

[/1]lLo (=1,1)

\/i )
For the nonlinear part we make use of the estimates for the Green’s function given in
Lemma 1.3 and the hypothesis (1.10). It holds

dli(z,t
sup’ (2, ) for |x — pr| < ao.
T

<
dx ‘

dls(x,t t
sup | 20 < Gao) [ o) ds < 4G @il Vs e =il < ao
x 0
Since V1 < m, we get
1f1lloo=1,1)
sup | fz(z, )| < 2——"——2.
wp (1) < 20
for all t < ¢. O

The last bound we need to show is the following local estimate for 9, f:

Lemma 1.7. Let t be as given above. Then for any |x — pr| < ao, the following holds:

||f1||L°°(—1,1)7 f<T
Vit

Proof. We use a very similar argument to the one of the previous lemma. Write the
solution as (1.4). For the linear part we use again classical estimates (c.f. [1], Chapter
V, Theorem 8.1) that imply

sup |0, f(z,1)] < 2

I frll Lo (=1,1)

01| <
|t1|— \/%



For the nonlinear part, consider

t
00| = Dua Iy < Gla) / ()] < 4G (a0) | f1ll e (o1.1)V,
0

where we have used Lemma 1.3 for the estimate of I'y, and Eq.(1.10).

Choosing t as in the previous lemma, it follows that

[ fillpee(—1,1)
Vit

as claimed. O

sup |0 f (x,t)]| < 2 forall t <t
T

The above lemma gives us an estimate in terms of the L°°—norm of the initial data.
Is is also possible to estimate the f, in terms of the L'-norm (which is in our case
constant in time), at the price of a worse denominator. We will not make use of this
lemma in this section, but later in the proof of global existence:

Lemma 1.8. Lett be as given above, and suppose that

sup |(fn)z (2, t)] <2||fli|\L[;();1,1)7 0<t<t, |z—pi|<ao. (1.10)
Then:
I frllzy(-1,1) .
Sup|(fn+1)x(xat)|§2 (\/7?)4 ) 0<t<tv |x—p1|<a07
sup | (fos1)we (. 1) < oMillrian 0<t<t, |z—pi|<ao.
x

Vs

Proof. The above estimates can be proven following the same steps as in Lemma 1.6
and 1.7. Instead of using the regularity estimates for the caloric function with the L>°—
norm of the function, we make use now of the L'-norm. From [5] (Theorem 9, section
2.3.c.) we know that

an
Sp dx
21

da?

/]l
< g

e
= W

where I; is defined as in Lemma 1.6. The rest of the proof follows similarly. O

x

In the next corollary we show that, for ¢t € [0,¢o] with ¢y given in Eq.(1.8), the
sequence of the free bounary points {p,(t)}, stays in (pr — ao, pr +ao), and is uniformly
Holder continuous in time.

Corollary 1.9. There exists a time to > 0, in particular as given in Fq.(1.8), such that
the solution f(-,t) constructed in (1.4) has a unique zero in (pr — ag,pr + ao),



for each fized time t < to, which we denote by p(t). Moreover, p(t) satisfies
lp(t) —p1| < 041\/£,

where ay only depends on the initial data and ag.

Proof. First, note that Corollary 1.5 implies monotonicity of f(-,t) in (p; — ag, pr + ao)
which assures the existence of at most one zero, p(t). Next, since f(p(t),t) = 0 for all

t, then
: fe(p(®),1)
p(t) = — I8P Y 1.11
(t) AT (1.11)
On the other hand, Lemma 1.7 gives a bound for the velocity |f;(z,t)| < 2“”'“%

in the time interval (0,%), and Corollary 1.5 bounds the slope |f;(z,t)| from below in
an interval |z —ps| < ag for t € (0,tp). Existence results for the ODE in Eq. (1.11)
implies the existence of this p(t).

As a consequence, the interval |p(t) — ps| is bounded by

>=(

Ip(t) — p1| < 8”JCIHL)\7_1’1)\/Z, for 0 < t < to.
I

The thesis follows because

SM”i&\@g Zao, (1.12)
I

where ¢ only depends on ag. O

Now we are ready to show that the map ® defined in Eq.(1.3) is a contraction in
the space L™ ((0,tp); X), and consequently to utilize t.

Proof of Theorem 1.1:
First note that if f,, € L>°([0, ], X) with f,(pn) = 0 satisfies

pn(t) € (pr — ao, pr + ao),

f O (—1,1
(K) Sup, | o, (2, )] < 2121Emo0n

fnx(pfwt) S _%a

then the previous results assure that the next step in the iteration f(z,¢) has a well
defined zero p(t) and satisfies also the same estimates. Note that above estimates hold
for n = 1: recall that we were using f1(z,t) as the solution without sources, where all
that has preceded holds trivially.

Let fn, gn € L*([0,t0], X) be such that f,(pn) = 0, gn(qn) = 0, Ay = —fr(pn),
& = —gn(gn), and that both satisfy conditions (K). Then we estimate the difference of



the images by our mapping ®: for any = € (p; — ao, pr + ao),
fz,t) — g(z,t) /Ot(F(x,pn —a;t—s) —D(x,p, +a;t —s))\(s) ds
- [ - a9 T+ a5t - 9)ea(s) s
—/Ot [C(2,pn — a;t — s) = D(@,pn + a5t — 5)] (An(s) — &a(s)) ds

t
+ / En(S)[C(@,pn — a;t — 5) = T(z, 0 — a5t — 5)
0
+D(z,pn +a;t —s) —T(z,q, +a;t — s)] ds
=: A1 + Ag.
First note that

t
|A1| < sup I/\n(t)—én(t)l/ T(z,pn —a;t —5) = T(z,pp +a;t — )| ds.
0

0<t<ty

We now need to estimate the difference |\, () — &,(t)| in terms of the quantity
Il frn. — gnllx. Therefore

|)‘n(t) - fn(t)| < |(fn)m(pn(t)>t) - (gn)a:(fn(t)7t)‘
<|(fr)a(Pn (), 1) = (gn)a(Pn (), )] + [(gn)z (P (t), ) — (gn)z(€n(t), )]

S”fn - gn”Cl(pz—ao,pz-&-ao) + H(gn)mw”X‘pn(t) - Qn(t”‘

Next we estimate and the C'-norm of f,, — g, with classical estimates for the caloric
functions the term ||(gn)ez||x with Lemma 1.7. Recall that the estimates hold in a
neighborhood of the free boundary far away from the source and sink. Therefore

Pat) — &n(0)] <1 ‘V;f’"”x ; 2”ff”L;’g‘1’” Pa(t) — g (D),

for each fixed time ¢. On the other hand, by an elementary geometrical argument, we
have

pult) = 4a (0] < 5Up o, 1) = ga 0] Ai

since the slope is bounded by 2 < |f,,,(z,t)| < 2”“‘“%. Hence

||fn - gn”X

Consequently, the term A; can be estimated using Eq.(1.13) and Lemma 1.3 as

(8= 6000 < |1+ il (L13)

8
Ay < 2viG(a) [1 n Ajnfznml,l)} TR

10



Similar arguments can be applied in the estimates for As: the conditions (K) gives
that

t
|A2|sz”f’”“;g‘1’”/ ID(2,pp — a;t — ) — T(x,qp — a;t — 5))| ds
0

t
+2f't(>/ T po+ a5t — ) — D(osqn + @it — )| ds
0

Vi

Next, note that (p, — a, ¢, — a) N (p;r — ag,pr + ag) = &. Here we are slightly abusing
the notation by assuming that p, < ¢,. It holds that, for each t < ¢,

t
/ IT(z,pn —a;t —5) =T(x,q, —a;t —s))| ds
0
t
<lpn—aqu|  sup / Ty (z,y;t — s)|ds
YyE(Pn—a,qn—a) J 0

1
< 4tG(a0)7[|‘fn - gn||X7

In conclusion we have

|f($7t) —g(z, 1) < C\/infn - gn||X7

where the constant c is given by

8
Cc:= G(a()) |:]. + )\I”f]”Loo(_Ll)] .

Since

8
G(a) [1 i Alnffnml,l)} Vi < 1,

the proposition is proved. O

Remark: We remark that the proof in [7] for short time existence made use of semi-
group methods. The derivation here, while admittedly less sophisticated, is certainly
more robust and is deliberately tailored to the upcoming developments. In particular,
we now have tangible criteria under which short time existence is purported to break
down (see also [9]). Indeed, a parallel derivation for the regularized problems allows,
at least for the compact case, a straightforward proof of global existence: Given local
summability of A(t) — the subject of next section — the asset of regularization easily
implies the various derivative bounds which are the central objective of the final section.

2 An L' bound on the flux (and the rescue plan at
the Neumann boundary)

In this section we show that, as long as the solution of (P) exists, the flux of the solution
at the zero set stays bounded. This result will be then used in the next section to provide

11



further estimates on the derivatives of the solutions. As a corollary, we will also show
that the zero set of the solution cannot approach the Neumann boundaries too closely.

To facilitate matters, we shall, in essence decouple the positive and negative pieces
of f and, in addition, describe problems of this sort on a larger space which restores
much of the linearity usually associated with diffusion problems.

Thus, first, we shall define (P’) to be a one-sided version of the system (P), that
is to say, (i) The positive part of f is set, identically, to zero (and has no source).
(ii) The zero p(t) is predetermined. We shall denote our density by p,, which can be
considered as the negative part of f, —min(0, f). Note that the integral of p,, which is
conserved over time, equals M,. Thus, in principle, in order to recover the system (P),
two such (P’) models can be glued together subject to “additional constraints” on their
mutual p(t). When two such models are to be used in tandem, the one on the left (now
representing the positive part of f) will be denoted by pp.

Secondly, we may define these sorts of systems — (P’) will be sufficient — on a foliated
space. Let N denote the natural numbers, including zero, and consider [—1,+1]N. We
shall refer to the individual elements as levels and, denote these, along with various
associated quantities with a superscript: [—1,+1]( [~1, —|—1](1), ... Let p(t): [0,T) —
(—1,+1) denote a continuous function. On each level, we have a copy of p(t) (al-
ways “located” in the corresponding position) and we consider a sequence of densities
p](JO) (z,t), p,(,l)(x,t), ..., with the n'" density supported in [p(t),1]™ c [~1,1]™). Ini-
tially, pz(,n)(x,O) = 0 for n > 0 while p,(,O) (x,0) = pp(x,0). Each of the p;") (z,t)’s obey
the diffusion equation with a source to be described below, Dirichlet boundary con-
ditions at their respective p(t) and Neumann condition at the corresponding z = 1.
Finally, each p,(,n)(a:,t), n > 1 has a source which is located at its respective p(t) + a
(where, we remind the reader, ¢ = min{a, %[1 — p(t)]}) and has strength provided by

A (1) = %pgb_l)(p(t),t). Thus, to be explicit, for n > 1:
Gon = 2oy = oy 00, )0y 1as @ € [<1,1)0,
(Yy) P (2, 1) = 0, x < p(t),
2o (1) =0, pi" (x,0) =0,

and, for n =0,

2
Gy — gy =0, e [-1,1]0),
(Yo) p(w,t) =0, z < p(t)

12



2
o2 (@, t) b oD@ level 2: [—1,41]®

A (@)

(1)
/\\\, oy’ (@, 1) level 1: [71,+1](1)

oy (1)

0 0
A0 @) T —— — P @) Tevel 0: [~1,41]©

p(t)

Figure 1: Illustration of the foliated model. Each level has its own density which
vanishes at p(t). Sources at the k+ 15 level — always located at p(t) &+ a — have strength
that is determined by the flux through p(t) on the k'" level. Notice that this completely
decouples the flux—source interactions rendering the one-sided problems (p, = 0, p(t)
determined) an essentially linear problem. However, for the two—sided problems, with
p(t) dynamically generated, precise criteria for determination of p(t) without defoliation
remains a fully interacting problem.

In the context of the foliated model, we may calculate various quantities for the
original model. Of particular relevance, it is seen that:

S o @, 1) = pyla, ) (2.14)
n=0

and

t o0 1
/ A#)dt' =Y "n / P\ (z,t)dx. (2.15)
0 n=0 p(t)

To vindicate the above claims, it is required to demonstrate that the higher levels
are sparsely populated and that therein, away from the source, the derivatives of the
pU) converge absolutely. Indeed this follows from straightforward computations using
Duhamel’s formula, from which it is clear that the relevant densities and derivatives
decay (at least) geometrically as j — oo.

Defining
=30 (2.16)
n=0

it is clear that p, satisfies the system (P’). We claim that this implies p,(x,t) = pp(z, )
for the simple reason that solutions to (P’) are unique. Indeed, if we consider, in general,
the problem (P’) even with density of indefinite sign then, following the contraction
arguments of Section 1, we obtain a unique solution for short times. Since p(t) is

13



predetermined, there is no difficulty if A(¢) — 0 or even changes sign. Thus, at least for
short times, the difference between any solutions with identical initial data stays zero
and this argument can be iterated for as long as the predetermined p(t) remains well
behaved. This establishes Eq.(2.14)

As for Eq.(2.15), we define

1
MM (t) = / p\ (x,t)dx (2.17)
p(t)
it is seen that ) M,g") (t) is conserved — and hence identically equal to M,. Moreover,

M, — Méo)(t) is given by

t
My — MO () = M{P(0) = MO (t) = > - M (1) = /0 AW (#)dt! (2.18)
n>1

i.e., the mass lost on the first level is exactly that which fluxed up to the higher levels.
Similarly we have for every level, the identity

t
> M) = / Ot (2.19)

n>0 0

and summing both sides of Eq.(2.19), we obtain Eq.(2.15)

2.1 The zero diffusion limit

This subsections concerns an requisite device which will be used in the proof of Propo-
sition 2.2; in essence, this limit describes the behavior of various relevant systems at
short time scales where diffusive effects can be neglected. The pertinent result, Propo-
sition 2.1, is all that will be needed and is, in essence, apparent on physical grounds.
Therefore, this subsection may be skimmed on a preliminary reading.

We shall have use for the foliated problem in the absence of diffusion which emerges
as a limit of short time problems. As a first step, let us consider (without foliation) a
sequence of ordinary Dirichlet — Neumann problems with a density o€ (z,7) on [—1, 4+1] x
[0, ] where £ <« 1. The system reads:

of(z,7) =05, (x,7)=0; —1<aw<+1, 0<7<e¢
o(xz,7) =0, x<p(t) (2.20)
o(1,7) =0,
with p.(7) a predetermined function to be described below and a preprescribed initial
condition o(z,0) that is independent of e. We define, as usual,

A& (1) = o5 (p(7), 7). (2.21)

For 0 <t <1, let po(t) denote a smooth function with values in [—1, +1]. We will take
pe(7) = po(e~17). The zero diffusion limit is defined by allowing ¢ — 0. First, we define

Ae(t) := eXE(et) (2.22)
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as a function on [0, 1]. With the above in mind, the zero diffusion limit is contained in
the following:

Proposition 2.1. Let 0°, X° etc. be as described above with o(x,0) € L' non-negative
and, for simplicity, it is supposed that pg is monotone and differentiable. Then, M.
converges, e.g., weakly:

Ae(t) — Xo(t) := po(t)a(po(t),0). (2.23)

Similarly, the limiting density, o(x,t), is given by
J(:Cat) = X{w>p0(t)}o—(x70)' (224)

Proof. Let ¢(t) denote a smooth test function on (0,1) supported away from the end-
points. Then, by definition,

/ (O ()t = / T (eI (1) dr (2.25)
0 0

We rewrite A(®) in terms of the gradient:

/01 P(t)A:(t)dt = /05 oy (pe(T),7)dr = /06 [/p:(ﬂ U;m(I7T)dI] pdr (2.26)

where the suppressed argument of ¢ in the last two terms is e ~!7 and we have used the

Neumann condition in the disintegration step. Using the heat equation we may replace
o, by of and using the Dirichlet condition at p.(7) we arrive at

/Olw(t))\s(t)dt:/oag—lso/ [/p:(ﬂ af(x,T)dm] . o

It is noted that the £~! is nonsingular since the argument of the ¢ is tailored for the
range [0,1]. Next, it is claimed, in the limit ¢ — 0, we may replace ¢°(x,7) in the
integrand by o(z,0). Indeed, in brief, we add and subtract the desired term after first
cutting out the region p.(7) <z < p.(7)+ A, for A < 1 at the cost of an error of order
llo(z,0)||ccA. The difference fpls(r)+A[U€ (x,7) —o(x,0)]dz can be decomposed into the
difference of two positive terms each of which has a physical interpretation:

e The negative term represents all mass that was initially in > p.(7) + A which
diffused into pe(7) < z < po(7) + A or into p.(7') (with p.(7") < p<(7)) at some time
7/ < 7 during the interval [0, 7].

e The positive term represents all mass that was initially in = < p.(7) + A which

diffused into > p.(7) + A (where pe(7') < p:(7)) without encountering the Dirichlet
zero at p.(7') at any 7/ < 7 during the interval [0, T].
Both of these terms are controlled by the mass currently/initially in p.(7) < x <
Pe(7) + A (which is in turn controlled by ||o(z,0)||ccA) plus mass which, in time less
than ¢ has diffused across a region of size A. The diffusive contribution may be bounded
by a term of the form Rexp —(rA?/e) with R and r constants of order unity.
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In short,

dr + [|¢' | K (e) (2.28)

A}m&@azézﬁwLimd%mm

with K — 0 as ¢ — 0. At this point, the substantive term in the above equation can
be reintegrated back with the result

/0 PO (t)dt = / (Do) (po(t), 0)dt + ||/ K (¢) (2.29)

and the first result is established. The result for the density itself can be obtained
by a derivation parallel to that which allowed us to replace o¢(z,7) with o¢(z,0) for
x > p(7); we omit the details. O

On the basis of the above proposition, we arrive, at least for monotone py(t), at the
zero diffusion limit: o¢(z,t) = —poo(x,0)d,, ) with prescribed initial condition o(z,0).
Taking some heed of the fact that the zero diffusion density is usually discontinuous at
x = po(t) it is noted that, in light of the solution in Eq.(2.24), we may replace the right
side in the preceding relation by —poo (po(t)*,)0p,)- (We remark, incidentally, that
it is arguable that a “source term” of this type actually belongs on the right side of the
first equation in the standard Dirichlet — Neumann systems displayed in various places
earlier in this work e.g., in Eq.(2.20), but in these contexts is always suppressed by the
Dirichlet condition.) Finally, if pg(t) is not monotone, these result may be derived by
first replacing po(t) with the function which measures the maximum excursion to the
right up till time ¢. Then it can be checked that oy(x,t) = —poo(po(t)™,)d,, (1) still
holds with the original py reinserted.

It is clear that the zero diffusion limit may be transfered directly to the foliated
model. Indeed, all that is really needed is the correct identification for the strength of
the various source terms which has been provided by Eq.(2.23). Thus, relevant to the
problem at hand, we obtain:

[057]e = A (O8p 40 — BE) P8 (D), )0py;  x € [~1,1)

(Z) P (2,) = 0; x < p(t),
pi (,0) =
for n € N and
(031 = =p(t) pS (p(E) T, )8y 0); xe[-1,1)©
(Zo) o (@, 1) = 0; x < p(t),

P (2,0) = py(x,0).
where in all of the above, A (t) is given by

A (t) — pz()"_l) (p(t)+, t)p(t)
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For future purposes, it noted that in the primary case

p(t)

t 1 1
/ AV @y dt = M, — / pp O (1) do = M, — / pp(2,0) doe = / p(z,0)dx.
0 p(t) p(t) -1

The results of this subsection will be useful for the analysis of our system under
conditions of short time rapid displacement of the zero. Notwithstanding the formidable
appearance of the (Z)-system, the mechanics is actually quite simple: mass on each
level simply gets displaced, as p(t) sweeps through it, to the next level at the position
corresponding to p(t) + a. As such, is observed that in this limit, the density on each
level is supported to the right of the furthest excursion of p(t).

2.2 Proof of summability.

We have assembled the preliminary ingredients necessary for the central result of this
section:

Proposition 2.2. For any T < 0o, as long as the solution of (P) exists in [0,T), then

/OT)\(t)dt < 00.

Proof. As we shall see, the consequences of a finite time divergence violate sensible
notions of the slow scale for the diffusive transport of substantial material over large
distances. The pertinent observation is that for small time intervals, there is minimal
initial diffusion over any appreciable distance and in the absence of diffusion, the “essen-
tial supports” of the p— and b—densities become so widely separated that later diffusion
in the time allowed cannot possibly account for complimentary transports.

Suppose then that the above display does not hold. Then for any 6t and K (5t < 1
and K > 1 to be specified when necessary) there is a t; with t; + ¢t < T such that

t1+0t
/ \b)dt > K.
t

1

For simplicity let us reset t; to zero and work with ¢ € [0, §t]. The midrange objective is
to show that under the stipulation of a large flux in a short time, p(¢) must rapidly head
towards the boundaries. We consider, for the time being, the one—sided perspective.

Here it is noted that if a < 1, and p(t) does not enter the right rescue zone (namely
x > 1 — 2a) and we ignore diffusive effects, then there are at most the order of 1/a
levels that get occupied in the as p(t) sweeps through its range. Thus, in accord with
Eq.(2.15), to obtain very large fluxes in very small times, it is indeed necessary to
quickly approach the vicinity of the boundary.

To analyze circumstances where diffusion is present and p(t) gets “close” to the
boundary, let us consider for A € (0,a) (where, presumably, A/a is “small”) the sys-
tem (P’y) which is defined exactly as the system (P’) but with a replaced by A. (Also,
one may presume, with a corresponding rescue plan, but this shall not enter into our con-
siderations.) Let us contemplate, for identical initial conditions and identical p(t) which
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remains outside the (P'y) rescue zone, a comparison between the (P’y) and the (P’) sys-
tems (with diffusion included). We make two claims both of which are straightforward
to verify on the basis of an underlying particle model constructed from non—interacting
stochastic elements. The first claim is that the total flux in the A—system is not smaller
than that of the usual system. The second claim is that in two such (P’y) systems with
differing zeros: p(t) < ¢(t) (with both staying out of the rescue zone) the flux in the
p—version is not larger than the flux in the g—version.

To establish these claims, let us discuss an underlying particle model for (Y,,): First
consider, for fixed p(t) and A*)(¢) a single layer problem. This is a straightforward
diffusion problem which, as is well known, can be achieved as the limit under diffusive
(parabolic) scaling of a system of independent particles. The particles occupy the
sites [-N,—N 4+ 1,...N — 1, N] and, at unit rate each particle randomly selects a
neighboring site to which it jumps. Particles which jump into (the discretized version
of) p(t) disappear and particles appear at the appropriate location of the source with
a rate governed by A(t). Limit results of this sort are readily derived or can be gleaned
from standard texts on the subject e.g., [4], [10]. What is only slightly less elementary
is the derivation in [3] Lemma 3.2, which allows unambiguous identification of the
(limiting) flux through the zero as the (limiting) rate at which particles disappear into
the discretized p(t). With this in mind it is seen that, in the foliated problem, we may
set up the system in such a way that the particles disappearing at the zero on the
k't level reappear at the source on the k + 15¢ level. We may refer to such events as
promotions.

We may now consider coupling two such systems, (P’) and (Py) with identical
initial conditions. Here, each particle is paired with its corresponding partner with the
random left-right jumps deemed to be identical. Our first claim concerns a (P’y )-system
compared with an ordinary (P’) system with a common p(¢) under the stipulation that
p(t) does not enter the rescue zone of the A—system. Here, it is seen that each particle in
the A-system is in the same position, ahead or at a higher level than its corresponding
partner. In the latter case, if the corresponding (A-system) particle is ¢ levels higher
the corresponding position is no further behind than ¢ times (the appropriate measure of
the length) A. This follows easily by induction. If it is true before a jump it is obviously
true after the jump when both particles stay on the same level or the A—particle gets
promoted up one level. On the other hand, if the a—particle receives such a promotion,
it will get shunted @ units (measured appropriately) backwards. Since p(t) never enters
the rescue zone determined by the (P’y)-system this is at least A in the appropriate
units and the desired statement is seen to always hold after the jump.

Similarly consider two (Py) systems with identical initial conditions but differing
zeros — p(t) and ¢(t) with g(t) > p(t) and the stipulation that, at least ¢(t) stays out
of the A-rescue zone. Then the same argument applies: particles in the g—system are
“ahead” of their partners in the p—system exactly in the sense described above. Indeed,
the proof of this assertion follows almost word for word.

In both cases, with the microscopic ordering of the two systems in hand, the ordering
of the fluxes now follows immediately. Indeed, the discrete analogs of the right hand
side of Eq.(2.15) are ordered as a direct consequence of the microscopic ordering and
the left hand side is recovered in the continuum limit.
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Returning to the problem at hand, let us suppose that p(t) — in a (P) or (P") model
— is such that on [0, §t], (with ¢ small and still to be specified later)

mtaxp(t) <1-—4A. (2.30)

Then we claim that the flux is limited (e.g., by the order of A=!). To prove the claim,
we use a comparison to a P’y system with its own ¢(¢). Here ¢(0) = p(0) and then q
(almost) immediately jets out to x = 1 — 2A, then backs to 1 — 4A and stays there till
time 6¢t. The portion of the trajectory that occurs at ¢t = 0T can be analyzed on the
basis of the zero diffusion limit: Letting Na < 2/A denote the number of levels in the
initial surge which get occupied. Then, by Eq.(2.15), the initial portion of the flux is
not more than NaM,,.

Notice that (still in the g—system with parameter A) all the mass on various levels
is trapped in the respective regions {x > 1 — 2A} with the zero — ¢(¢) — a distance
2A away. Thus, in the remaining time, the remaining flux is determined by diffusion
through the stationary ¢(t) i.e., how much can flux across various neighborhoods of size
2A in time §t. To this end let us now fix 6¢ “small enough”. To be specific, (61)'/4 = yA
for « sufficiently small ensures that the amplitude for diffusion across 2A — a unit mass
at 1 — 2A and a Dirichlet zero at 1 — 4A is less than

e = e(6t) = e~ /B,
More precisely, consider the problem

Wy — Wy =0, z€(1—4A,1)
’LU(.’E, 0) = 5x:172A7
w(l —4A,t) =0, w,(1,t)=0.

The quantity of masstiffuses from z =1 —2A to z = 1 — 4A in the interval of time 6t
is of the order e~ (24)"/9t yindicating the above definition of e.

We may also interpret ¢ probabilistically: Starting at the k™ level, a fraction (less
than) € of the initial mass makes it to the k 4+ 15 level in time §t and a fraction (more
than) 1 — & stays behind. Of the former, a fraction (less than) e gets promoted to the
k + 27d level etc. In short, the upward distribution of diffused mass after time 6t is
dominated by the a geometric random variable Y, with parameter ¢, and so the total
flux coming from a unit mass which at ¢ = 0% was on the k'" level in [I — 2A,1] is

bounded by

]E(Y):5(1—5)+252(1—5)+...:155. (2.31)
This latter quantity — independent of £ — must be multiplied by the mass that was on
the kM level at ¢ = 01 and summed. Since the total mass on all levels adds up to M,

this provides a bound on the diffusive contribution [Adt that is given by

eM,
1—-¢

. (2.32)

Thus, back in the real problem for fixed A > 0 sufficiently small (i.e., compared with
the minimum of @ and (1 — a) as will be clear below) we may choose dt small enough
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and take the content of Eq.(2.32) and add this to our M,Na, and then stipulate the
sum of these two to be less than one half of the total K. Under these circumstances,
there must be a first time [6t], < &t such that p([0t],) > 1 —4A and moreover, at this
time [6¢],, the total flux is less than 1 K.

With the above in hand, we incorporate the constraints of the full problem — namely
a pp and a p, both in play with fluxes at p(¢) that are supposed to match. The first
implication is that there is another such time [dt], at which all of p is in [—1, —1 + 2A]
and moreover, even at the later of these two times, there is more than half the fluxing
left to be done. Let I, denote the set

Iy = {t € [[6t], 6t] | p(t) < —1 + 4A} (2.33)

and similarly for I,,. (Here, finally, we choose A small enough so that the intervals of
size 4A about x = £1 do not intersect and are themselves separated by a gap of at least
4A.)

It is clear, from the b—perspective that | ;e Adt is small. Specifically, an estimate of
b

the form in Eq.(2.32) applies. Indeed, at the earlier time all of p;, was confined to the
region x < —14 2A and has less time, for ¢ € I, than ¢ to achieve diffusion across the
gap of length scale 2A. Similarly, from the p-perspective the flux during I is small.
Since I, C I or vice versa, it is seen that there is no time after max{[dt],, [0t]} in
which the requisite remaining flux can be achieved. Thus a contradiction is reached if
the total flux is as large as was stipulated in the paragraph following Eq.(2.32). O

As an immediate consequence, we may conclude that — at least in any finite time
interval — p(t) stays away from a neighborhood of the Neumann boundary.

Corollary 2.3. Let T < oo denote any time up to which the solution to (P) exists.
Then there is an n > 0 (depending on T') such that

p(t) €[-14n1-n] for0<t<T.

Proof. Suppose not. We may then assume that p(t) approaches —1 as ¢t — T. In
particular, there exists a sequence t,, — T where €, = p(t,) + 1 satisfies €,11 = €2.
This means that the new excursion of p(¢) went past the previous excursion of the

source. We may assume n > 1 so that p; —a = %Qr

Let gp—1 = fttn"_l AXBD(#)dt, where XV (t) is the flux from the first term in the
foliation model, (Y,,) introduced above, with initial data f(x,t,_1). (Le., we defoliate
at each t;_; and then run the foliated model till time t;; recall we have assumed ¢, < 1
so the rescue plan is in operation.) In the context of the zero diffusion model —(Z,,)— all
the mass between p(t,,) and p(t,—1) is fluxed through the zero set at least once. On the
other hand all the mass removed via all the fluxes at all the zero sets is then deposited
to the left side by the source terms and, in the end, resides in [p(t,) — €5, p(tn)].
Therefore we would have

gn = / pb(matn)dx > In—1
[P(tn+1)7p(tn”

which would be an obvious violation of Proposition 2.2.
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We shall show, more or less, that the diffusion cannot alter this situation in a
significant way, i.e., the above display will be replaced by

gn Z gnfl[l - wOen]

with wg of order unity. In light of the rapid convergence of the ¢,’s to zero, this is
sufficient.

Consider, then the situation at ¢t = ¢, the moment before defoliation. Obviously g,
is represented by the total mass in the upper levels which we remind the readers resides
in Ups1[—1,p(t,)]*®). All of these masses will be fluxed through p(t) in the time interval
[tn, tns1] ezcept those portions which, by time ¢, have diffused into [~1, —1+¢€2]. We
claim that the fraction which manages to do so is of the order ¢,. Indeed, consider
an “element” of mass deposited on the k" level at time ty € [tn—1,t,], at position
p(ty) —a> -1+ %en. This element has time ¢,, —t4 to evolve whereupon it experiences
an (abrupt) defoliation event bringing it to level zero after which it has an additional
increment t,,41 —t, to achieve this task — all the while trying to avoid the Dirichlet zero
at p(t). [Inty, <t < t,, thisis because otherwise it would be deposited on the k+15¢ level
whence we will estimate it in that context and for ¢,, <t < t,41 because then it would
indeed contribute to g,+1.] Notwithstanding the defoliation tribulation, this is entirely
equivalent to the amplitude of a unit source placed at p(ty4) —a at time zero diffusing into
[-1,—1+ €2] in time At = t,,41 — t, with Dirichlet conditions at the (predetermined)
zero p(ty + w); 0 < w < At with Neumann conditions at = —1. It is not hard to
see that the amplitude is increased by the removal of the Dirichlet boundary condition
whereupon it is readily checked that, regardless of At, the amplitude is monotone with
the distance of the initial position p(ts) —a. We may therefore uniformly estimate the
fraction lost by

€ €
& sup(Gy (2~ &) + Go(2)] (2.34)
where G, (+) is a standard normalized Gaussian of width o and the two terms represent
the contribution from the actual and image source. However, the supremum is of the
order €} (which comes about when At itself is the order €2) thence the portion of g,,_;
lost to diffusion is of the order claimed in the display prior to Eq.(2.34). O

3 Global-time existence of the solution

In the previous section we showed that the problem has unique solution for a small time
interval tg. In this section we will show that we can iterate this process to produce the
unique solution of our problem for global times.

Let us restart the process at the time ¢;. This will lead to the existence (and
uniqueness) of a solution in the time interval (to,?1); we shall continue to iterate the
process as long as we can; all quantities tg, ag, etc. will be indexed according to the
iteration stage.

According to Eq.(1.8), the length of the time interval ,+1 — t,, in which the con-
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traction can take place is

)1/2 — )‘(tn)

(tn-i-l —tn G(an)[)\(tn) + 16 ||f('7t”)||L°°(_171)] 7

We remind the readers that G(a) — 0o as a — 0.

Suppose there exists a break-up time 0 < t* < oo: it means that we can no longer
find a small time interval during which Theorem 1.1 holds. This happens exactly when,
for any sequence t, — t*, at least one of the following holds:

(i) limsup, ”f('atn)”Loo(_lJ) =00 or

(ii) liminf, e A(t,) — 0, or

(iii) limsup,, . [ fee|(p(tn), tn) — 0.

At the time ¢* two possible configurations may happen: the limit of the free boundary
p(t) is an unique point as t — t*, or a puddle of zero forms at ¢ = ¢*. In both cases
we will show that the arguments lead to a contradiction, showing the non-existence
of such a t*. In the non-puddle case (Section 3.1) a contradiction will be yielded by
proving that all relevant norms given in (i)-(iii) are bounded up to ¢t = ¢*. In the puddle
case (Section 3.2) the strategy is a bit different. We first show that (essentially) all
derivatives of f are bounded up to t = t*: we then will show that such regularity result
is too strong to hold at a break-up time, therefore concluding that the break-up time
t = t* does not exist.

We start showing what happens when the free boundary has an unique limit.

3.1 Non-puddle case: lim; 4 p(t) = p(t*)

In this case we can show that, due to classical estimates on caloric functions, none of
the three breaking factors listed above takes place, therefore yielding a contradiction.

Let t* denote the breaking time. When the limit is unique, the source p(t) — a and
the sink p(t) + a also have an unique limit as ¢ — t*. Moreover, the locations of the
source and sink at the time ¢ = ¢* are a—away from the point = = p(t*).

This allows to find a spatial neighborhood of p(t*) and a time interval (before t*) in
which the source and sink never entered in that neighborhood during that time interval.

Let
)
8
and define Is as a small neighborhood with radius 6 of the point p(t*), ie., Is =
(p(t*) = 9, p(t*) +0). Then there exists 0 < t5 < t* such that Is5 x [ts,t*] is far from (the
trajectory of the) sink or source.

>0
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In terms of estimates, the fact that sink and source are far away from [Is5 implies
that we can use classical estimates for the homogeneous heat equation, as in the proofs
Lemma 1.7 and 1.6.

Let us start the problem (P) with initial datum f; := f(x,ts5). Following the same
contraction argument for the local existence, we can show that there exists an unique
solution f(x,t) in the time interval (ts,ts+ Atq). Iterating the process another time, we
can extend the solution to a bigger time interval (¢, t5 + Aty + Aty), with Aty > 0. The
extension process could continue by iteration. The following is due to local estimates
for solutions of the heat equation:

Lemma 3.1. Let f(z,t) solve (P) in the time interval (ts,ts + At). Then

fxu' 1
|F ) (x,t5 + At)| < CW in Is.

where %) denotes the k-th spatial derivative of f. The constant C > 0 does not depend
on At nor the data at t = t5.

Proof. We omit a formal proof; the result follows from the splitting as in Eq.(1.4).
We use standard caloric estimates for the linear part and, for the non-linear part, we
may isolate the sources use L*° norms on the fundamental solutions along with the
L'-properties for A(t) (as proved in Section 2). O

The above lemma implies that in Is, f and all its derivatives are uniformly bounded
up to t =t*:

|f 8 (2, t5 +7)| < C(M,, + My)(A) /D for 0 < At < t* —t5.

Therefore case (i) and (iii) are eliminated.

Moreover f; is also uniformly bounded near t = ¢* in Is, and thus f(z,t) uni-
formly converges to a C*>°—function F'(z) as t — t*. Let us call this function f(z,*).
Then f(z,t) solves the heat equation in I5 x [ts,t*]. Below we show that F(z) is
non-degenerate at 2 = p(t), thus eliminating (ii).

In order to establish this non—degeneracy, we first establish analyticity (and some
sensible properties) of F in Is:

Lemma 3.2. For everyts <t < t* fized, the function f(-,t) is analytic in Is. Moreover
the function f(-,t*) is positive to the left of p(t*), and negative to the right of p(t*).

Proof. We write

+1
fat) = / P(z,2's) f1(a!) do’

-1

+ /O [T(z, (p(t') —a);t —t') = T(z, (p(t') +a);t — ") A(t') dt’
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The part of the solution coming from the linear term is analytic (see [5] Section
2.3.c). For the nonlinear part, since = € I5, there is no immediate singularity from the
sources. We may replace x — z = z + iy with |y| < 1 which makes f a well-defined
function of z and ¢. Moreover f(-,t) is complex differentiable i.e., satisfies the equation

0 0

or dy
and is therefore analytic. As for ¢ = t*, note that the formula still holds for F(x) =
fla,tr).

For the second claim observe that f(x,t) solves the heat equation in the domain
Is x [ts,t*) with continuous zero set p(t), and with initial data f(z,ts) which was
positive to the left of p(ts) and negative to the right of p(¢5). Furthermore on the
lateral boundary of Is, f(z,t) > 0 on the right and f(z,t) < 0 on the left, for ¢t < ¢*.
Therefore the claim follows directly from one—sided comparisons. O

0

We now turn to the possibility of (ii). Assume that

fa(p(t7),t7) = 0.
The following holds

Proposition 3.3. Under the assumptions of the non—puddle case, let t* the first time
at which the gradient at the free boundary degenerates i.e., p(t*) is well-defined and
fa(p(t*),t*) = 0. Then, also,

foa(p(t"), %) = 0.

Proof. The proof follows from a very simple observation: Suppose that f..(p(t*),t*) #
0. This fact cannot coexist with the properties of the function f: The function f is pos-
itive for < p(t*) and negative for z > p(¢*) with purportedly vanishing derivative and
very smooth behavior across the free boundary (indeed f is spatially analytical in space
in a neighborhood of the free boundary, as we have just shown). But f,.(p(t*),t*) # 0
implies that in a sufficiently small deleted neighborhood of p(t*), f is non—zero and of
the same sign. O

The question is now how to define the velocity of the free boundary at the time t*.
Note that as long as f,(p(¢),t) stays away from zero, the speed of p(t) is given by

o Jaa(p(t),1)
p(t) = AT

but, as we have just shown, this is an indefinite form if the first derivative degenerates
at x = p(t).

So, in order to find the speed of p(t) at this critical time ¢*, let us take the Taylor
expansion of the equation f(p + Ap,t + At) = 0. Then, the following holds:

0=Ff(p+Ap,t+At) = f(p,t) + fu(p,t)Ap + frlp, ) At
U aal AP + 2100 ApAE + A

+ %[fmcx[Ap]g + Sfxa:t[Ap]QAt + fottAp[AﬂQ + fttt[AtP} + .
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The third and higher order terms are ostensibly negligible so, focusing attention on
the second order terms and using the diffusive relation between spatial and temporal
derivatives, we find

We would like now do determine if this speed in finite or infinite: from the Hopf Lemma
we know that in a parabolic problem, as long as the free boundary has finite speed, the
derivative at the boundary is strictly positive (or negative) for all time. This implies
that in our case, at the time t* the speed of p is not finite. Consequently the value
frzz(p(t*), %) has to be zero (because fiyz» cannot be infinite). Now we can repeat
Lemma 3.3 for the derivatives f;., and fi;..» and conclude that at (p(t*),t*), both of
these derivatives are zero. It is clear that the procedure continues indefinitely:

p:

Lemma 3.4. Under the assumptions of Proposition 3.3 all the spatial derivatives of f
evaluated at (p(t*),t*) vanish.

Proof. We proceed by induction. Suppose that the first 2(n — 1) spatial derivatives of
f at (p(t*),t*) vanish (which by the above is known for n small enough). Then, the
content of the (n —1)%* order in the Taylor expansion is vacuous and we turn to the nth
order. (Note that writing Ap ~ pAt, this may be viewed as the n'® order in At.) We
obtain

n
n . _
0=>»" <m> )00 07 ™™ Flip(r+) %) (3.1)
m=0
We exchange temporal for spatial derivatives: 9;'~"™ — 92"~2™ and, on the basis of the
inductive assumption, notice than only the m = 0 and m = 1 terms survive whence
] 1 fGen
b= —Em; (3.2)
where the superscript denotes the order of the spatial derivative and these quantities
to be evaluated at (p(t*),t*). Repeating the argument prior to this lemma, the Hopf
Lemma and regular behavior at the free boundary necessitates that the odd derivative,
the 2n — 15°, vanish. But this term was purported to be the coefficient of the leading
order in the spatial Taylor expansion of f(x,t*) about x = p(¢*). By invoking even
non-negativity /non—positivity in the neighborhood of p(¢*) this implies the vanishing
of the 2n'" derivative as well. O

We now easily finish off case (ii). The preceding implies that all the derivatives
of f(x,t*) are zero at x = p(t*). Analyticity, one subject matter of Lemma 3.2, then
dictates that f(z,t*) is identically zero in the entire neighborhood Is. This is a contra-
diction since we saw in the other part of Lemma 3.2 that any solution at the time ¢* is
strictly positive for < p(t*) and negative for & > p(t*). Therefore the gradient of the
function at the free boundary p(t) stays strictly negative for any time ¢ > 0. We are
done if there are no puddles.

Remark As it turns out, the techniques of this subsection actually apply, almost
without modification, to the case of a sufficiently small puddle; in particular, when
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the diameter of the puddle does not exceed a as measured from the closest endpoint
to the boundary. However this observation does not provide any simplification for the
forthcoming: We provide a treatment for purported puddles of any non-zero size.

3.2 The puddle case: £ :=liminf; .+ p(t) < R := limsup,_,. p(t)

Here the situation requires more careful analysis: first we claim that if a puddle forms
at t = t* then all spatial derivatives of f are bounded in the whole domain, at least
along a sequence of times converging to ¢t*. (For precise statement see Proposition 3.5
below). This result, along with another analyticity argument, will immediately yield
a contradiction. It is re-emphasized that, in the regularized case, such results follow
essentially from quadrature. However, these estimates deteriorate as the regularization
is removed so we shall not pursue this venue.

If £ and R are defined as in the heading of this subsection it is clear that

R
/ I, t)dt — 0as ¢ 1 (%)
L

(This is because the zero travels between the endpoints of the puddle so fast that there
is not enough time for mass to diffuse into or flux through the zero set as t — t*; c.f. the
proof of Proposition 2.2.)

In what is to follow, we will consider some ty < ty < t* which is adjustable and of
no actual significance. Roughly speaking ty is the purported time when “things begin
to go wrong”. In particular, let us choose tg close enough to ¢t* such that

R 1
(BH) sup / [f|(z, t)dx < m min(Mp, Mp).

to<t<t* J L

3.2.1 Derivative bounds
Proposition 3.5. Suppose

litm glfp(t) =L <R = limsupp(t).

t—t*

Then for any £ € N, there exists a constant Cy such if 3 > 0 is sufficiently small then
the following holds: for any sequence t, — t* such that p(t,) — R,

limsup | (z,t,)] < Cyp for any z € [R — B, R + f3].

n—oo

A parallel result holds for L.

Proof. Since p(t,) — R, we can choose 3 so that a(R) > 30 and also R — £ > . This
means that for all n sufficiently large,

p(tn) +alp(tn)) > R+ 20 (3.3)

i.e., at the times t = t,, the sink is well outside the interval under consideration. More-
over at some point ¢ in [to, t*],
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p(t) —alp(t)) < R — 28 for t > 1. (3.4)

Thus, for ¢t > £ and for any x¢ € [R — 3, R + 3], the source only represents a distant
agitation. With this in mind, let us reset ty such that Eq.(3.3) holds for all n and
Eq.(3.4) holds for all times greater than ty. Due to an upcoming plethora of indices, we
might as well define t,, := ¢#, with (only) the property of Eq.(3.3) to be reserved for
later.

Our goal is to estimate magnitude of the £** derivative of f(wzg,t#) for zo € [R —

B, R + (]. Tt will prove convenient to work with the auxiliary variable which measures
the time remaining:

0:=0(t)=t" —t (3.5)

for ¢ € [tg,t”]. Let us define a slowly diverging function B(f):

B(6) := \/Bo|log 6]/, (3.6)

with By to be chosen in the next paragraph.

We denote by X := z¢ — a which locates p(¢) when the sink directly contributes to
f(zo,-) and its derivatives. If we denote by C(t) the distance between p(t) to Xy then
by the Green’s function formula

t# ,
|f(5)(x0,t#)| S/ %efc(t) en (3.7)

to

for some L = L(¢). We start by defining the set H C [ty, t¥] via
H={t|C(t) < B(O)Vo}. (3.8)

Our first claim is that H is the only important set for the ostensible development of
singularities in f(zg, ). Indeed

At) 2 ANtE) g2 t* _

0

which converges and is small independent of t# < t* for By > L. Henceforth we may
focus on events that take place when ¢t € H where, for all intents and purposes, there is
no help from the exponential factors (But, on the positive side, H is disjoint from the
tail end of [to, t7]).

To aid with our objectives, it will be convenient to divide [ty, ##] into disjoint regions
that are of equal size on a logarithmic scale: Let H > 1 denote a sufficiently large
number the precise (minimum) value of which will be determined in what is to follow.
Roughly speaking, we wish the k*" region to be of size H~! of the k — 15*. Specifically,
we may proceed as follows: The k' region will be denoted by gi, k = 0,1,... and the
size,

|gx|, will satisfy |gx| = H"|go|. (Thus |go| = Z72(t# — ty)). Therefore

go = [to,to +lgol), --- s9%x = [to + |go| + -+ |ge—1l,to + [go| + -+ [grl].  (3.10)
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Note that the value of # at the right end of gy, is a constant (that is very near one) times
the size of gr41.

We shall also need two spatial regions: As, Az which are given by
Ay = (Xo+b,X0+20), Asz=(Xo+2b,Xo+ 3b)

with b > 0 chosen small enough so that these sets are inside [£, R] lying well (on the
scale of b) to the left of R. (see Figure 2 below.) Moreover b is large enough (or ty late

enough) so that
b >> B(0(ty))\/0(to).

Gk+2

Gk+1

|log(t — t%)| O ,E ....................

Gk—1

Gk— .

Ao ! A

Figure 2: An epoch spread out over several (logarithmic) scales. The density p,, is non—
zero the right while the density pp is non—zero to the left of the dotted line which marks
the trajectory of p(¢). The buildup of p, in the region Ag o (to a total amount of Q3 2)
takes place throughout the epoch. The content of Proposition 3.5 and Lemma 3.6 is
that epochs are confined to regions of a single scale—size.

Next we define epochs that are punctuated by certain exits from and entrances
to the region As. The beginning of an epoch, denoted by T, is when p(t) enters
Ay from Az and will not revisit Az before first having touched the appropriate Bv6
neighborhood of Xy. In particular, p(Tmin) = Xo + 2b. The time Tymax is when p(t)
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leaves the B+v/6 neighborhood of X and does not touch these neighborhood types till
another visit to Asz. To be specific, Tnax Will be the moment of this departure, so
P(Tmax) = Xo + [BV0)|r,.... For future purposes, we shall define X, as the point of
departure: X =: p(Tmax). There is a third time, namely 7y when p(t) actually enters
the appropriate Byv/6 neighborhood but this time does not play a major role.

Our first claim is that if epochs are localized e.g., to a single g; then their contribu-
tion to || £ (xo,)|| is tractable. Indeed, assume for simplicity that times

(1]

min

Uy

< T[J]

max

<7l o o7

T min m

are the only punctuation marks in g;. Then

[J]
Tmax \(t 1
/ Qe—c(t)/ezmdt < HT/ A(t)dt (3.11)

L
r[r}i]n 0 k+1 JgrNH

where 011 :=t% — (to + ... + |gx|) = |grr1] is the time remaining by the end of g.

Next we show that the integral to be done is actually of the order of exp[—1/6y].
(1]

min’

This will be facilitated by the perspective of p,: Note that at ¢t = T the density

pp(;v,FLll]in) vanishes for x < Xy + 2b and has some positive profile for x > Xy + 2b.
Starting from this profile, we are supposed to compute the flux of p, through p(t) while
t € H. Tt is not hard to see that this is less than the total flux through (the vicinity
of) X with Dirichlet boundary conditions at © = X + B0, and an initial profile of a
delta mass at Xy + 2b. The strength of the —mass might initially taken to be the total
of M,. But to account for the possibility of reflux from the p—source (sink) — which is
much further away, let us add to this the quantity

t*
A::/ Adt < oo
0

which estimated all that ever has fluxed and all that ever will flux. This leads to the
estimate

/ H/\(t)dt < Coemc2/0k (3.12)
gk

where Cy < 0o and ¢p > 0 are constants which do not depend on k, or the end time 7.

The key issue therefore is to show that the epochs do not extend over many g—scales.
Indeed, it is remarked that, an extension of the above reasoning tracking a single epoch
through scales K1 < k < K5 would yield a bound of the form

C
(0K2 )L

replacing the corresponding right hand side of Eq.(3.11). And, as unlikely as it may
seem, if K7 > K5 this could be large. We further remark that some positive powers of
C(t) = | Xo — p(t)| originating from various places are available (inside the integrand)
for the estimate. But even in the best case scenario — namely the estimate for the norm

omo1/0m (3.13)
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of f(xo,t) itself — there is still a logarithmic divergence (x K2 — K1) weighing in against
the exponential prefactor. Finally, it might be technically noted that since t# < t* it
must be the case that all but a finite number of the g; are devoid of epochs. However
the technicality is of no practical significance since we seek bounds that are uniform in
t# < t*. We turn to the task at hand.

Consider an epoch defined by the times Tmin and Tmax. Let Az o denote the left and
middle third of the Az region namely

8
Mgz ={z|Xo+2b <2< Xo+ b} (3.14)

and let us estimate the accumulation of mass in the region A3 at time ¢t = Tiax. Note
that in addition to the flux from the outside of the region, there is the initial mass that
was in Az at time ¢t = Ty, This is actually of negative utility. We cannot rely on
it staying in the region and we do not wish to account for where it might go during
Tmin < t < Tmax. However, in accord with condition (BH), this could only account for
1/10 of M,. Then by mass conservation there is a significant portion of M, outside of
to the right of R.

Thus, we shall rely on this material that diffusing in from the right. Here, it is
worthwhile to recollect that the underlying condition of the epoch is that p(t) stay out
of As. So, placing the guaranteed fraction of M, at the extreme right - z = +1 — and
placing Dirichlet boundary conditions at @ = Xy + 2b we obtain the estimate

Q32 = /A Pp (T, Tmax)dz > C3 ge 2/ 0(Tmin) =0(Tmax)] (3.15)
3,2

where C3 9 > 0 and c3 2 < 0o are constants independent of the parameters of the epoch.

Now just about all of Q3 2 and more will be swept into p(t) between time Tpax and
the next time that p(t) crosses all the way to the right side of the region Az. This may
happen immediately but it might incur the passage of other possible (long) epochs.
However, from the stipulations about the time sequence (t,) it is inevitable that this
will happen before t = t#.

Our final substantive claim is that ()3 o is essentially dominated by the flux through
the left boundary of A, in the time interval [Tpax, 7] by a delta—source of strength
M, + My + A placed at Xy = Xo + BVo Toay &b time Tpax. The implication provides
an upper bound which we state as a separate lemma:

Lemma 3.6. Let Q32 be as described. Then

Qs < Cyea/0 ) (3.16)
where ¢y and Cy do not depend on the parameters of the epoch nor on the time t7.
On the basis of Lemma 3.6 and Eq.(3.15), we may conclude that
0(Tmax) = €10(Tmin) (3.17)

with ¢; > 0 independent of the parameters of the epoch and the time ¢#. Thus consider
H to be sufficiently large (H > 1/c;) and let us double cover [ty, t#] with two overlapping
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partitions of the general type described — both with parameter H — in such a way that
(on the logarithmic scale) the midpoints of one partition form the endpoints of the
other.

Then according to Eq.(3.17), all epochs are caught in individual elements of one
or the other partition. This enables us to sum (twice) the analogue of Eq.(3.13) with
matching k’s all the way to kK = oo which demonstrates the desired result. O

Proof of Lemma 3.6.

Consider the situation at ¢ = Tmax Where that there is non-zero py, for x < X, and
non-zero pp, for & > X,. The initial densities (and ensuing fluxes) are, evidently such
that p(t) will exit from the neighborhood of X and, soon enough, cross all the way into
Ajs. Later — maybe much later on the log—scale — it will cross all the way through Ag.

Now consider j(z,t) defined in the domain X# := [~1, X +3b] X [Tmax, ] as follows:
(a) (O —A)p = A(t)du=p(t)—a ;

(b) 8mﬁ(_1vt) =0;
(c) p(Xo+3bt)=0;
(d) ﬁ(v’ﬁ‘, TmaX) = Pb('aTmaX) + (p(m) - pp(xvt)X(XoJrQb,XoJr%b) (x) ;

where ¢ is the mirror image of p, (-, Tmax) in Ag reflected about x = Xy + b, i.e.,
o(x) = pp(2(Xo + b) — 2, Tmax) X (X0 —b, Xo) (T)-

We denote a(t) := {z : a(x,t) = 0} and denote by * be the first time when af(t)
touches Xy + 3b. There are two observations:

e First, by maximum principle for caloric functions it follows that p < j in %, and
thus

p(t) < aft)  for Tmax <t < tF (3.18)
This, of course, places tF < t#.

e Secondly, observe that p(x,t) > p(2(Xo + b) — z,t) in ¥, again by the maximum
principle for caloric functions. In particular,

at) € [Xo+b, Xo +30] = Ag UAz; Ty <t <t (3.19)

Since [ (2, Tmax)dr = Q2,3 and [ j(x,t+)dx = 0, t = t+, it follows that

ti

Q23 = / (=pz)(a(t'),t')dt" + / pz(Xo + 3b,t")dt’. (3.20)

max Tmax

Moreover since we know «; € Az U Ay for all t € [Tmax,ti], by obvious dominance
the second term in Eq. (3.20) is bounded by the flux of h(z,t) through x = X, + 30,

31



where h(z,t) solves the heat equation in the region to the right of Xy + b during the
times [Timax, t¥] with initial data the same as j at t = Tyay and Dirichlet conditions both
sides of Ay U As. Since t¥ < t# we may write that the fraction of Q3,2 that is lost via
the right boundary is less than Cse~¢/¢(Tmax) where the C5 and ¢ only depends on b.
(So that the total which is lost is no more than Qg’nge_cf’/e(Tmax). As far as we are
concerned it is sufficient that this is less than half of Q3 3.)

It remains to estimate the first term in Eq.(3.20). For this purpose, let us consider
g(z,t) solving the same problem (a) — (d) in ¥ as p, except that g(x,t) has Dirichlet
boundary conditions at z = Xy + b. By caloric inequalities the flux of § through «(t)
(where «(t) > b) in the interval [Tyay, t¥] is, from the perspective of the left, less than
the flux of g through the line x = Xy + b. Finally we may further modify g to a g
which has the Dirichlet condition at * = Xy + b has all conceivably available mass —
namely M, + M, — is placed at X. Moreover, the source term is placed as far forward
as possible and allowed (more than) all of its available flux as soon as possible. This
amounts to adding A to the M, and M, which are in the mass at x = X,. Thence

IE Chaa),)dt <[5 (—ga)(2b, ¢t

Tmax Tmax
< Cyeos/0Tma)

where ¢4 and C4 only depends on b, M), etc. O

Now may now we finish the proof of Theorem 0.1.

Corollary 3.7. There does not exist a finite break-up time t*.

Proof. We already eliminated the non-puddle case in Section 3.1, so let us discuss the
puddle case. Let £ and R be as above. Let t,, — t* be such that p(t,) — R. In
particular, choose n large enough such that |p(t,) — 8] < € < $a. Here let us define
fn(x) = f(x,t,). The function f,(x) has a unique zero at p(t,). In Lemma 3.2 it was
proven that (for an sufficiently large) f, is an analytic function in any subset of the
open interval (p(t,) — ga, p(tn) + 2a). This implies that f,(x) is analytic in the interval
(R — B,R + () for large enough n.

Moreover due to Proposition 3.5 the sequence {f,} is uniformly bounded and uni-
formly Lipschitz continuous in the 23 neighborhood of R. Hence Ascoli-Arzela Theorem
ensures the existence of a subsequence f,, such that f,, — ¢(z) as ¢, — ¢* uniformly
in (R-08,R+p0).

Now, since the sequence of analytic functions f,, converges uniformly, the limiting
function ¢ is also analytic in (R — 3,R + 3). Let us observe the profile of ¢ near
R. From the choice of the sequence t,, it is clear that ¢(x) is positive to the right of
x = R. (Indeed for any € > 0, for sufficiently large n depending on € the function f(x,t)
solves the heat equation with source term in 3. := [-R + €, +1] X [t,, t*) with positive
boundary data at R 4+ ¢ and ¢t = ¢, and Neumann boundary data at x = 1. Therefore
f(z,t) stays strictly positive in ¥, staying uniformly away from zero as ¢ — t*.) On the
other hand ¢ is identically zero to the left of R. These two facts interdict the possibility
of analyticity for the function ¢. O
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