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Abstract

The earlier paper [KL] contains a Lemma on the lower bound of solution in terms
of its L1 norm, which is incorrect. In this note we explain the mistake and present a
correction to it under the restriction that the permeability constant m satisfies 1 < m <
2. As a consequence, the quantitative estimates on the converge rate (Main Theorem (c)
and Theorem 3.6 in [KL] ) only hold for 1 < m < 2. As for m ≥ 2 a partial convergence
rate is obtained.

In the previous paper [KL], the construction of barrier function in step 2. of Lemma 3.4
in [KL] is incorrect: this is due to the fact that the equation ut = (m− 1)u∆u + |Du|2 −C
with C > 0 is not well-posed when the solution becomes negative. In the case of 1 < m < 2
we present a corrected and simplified proof of Lemma 3.4, where the aforementioned error
is fixed by considering an alternative equation (0.3) in the density form. The validity of
Lemma 3.4 in case of m ≥ 2 remains open. Secondly, we point out that the proof and
the statement of Lemma 3.5 has been originally presented in the case of m = 2 without
clarification. We will correct this by stating the general result as well as the difference in
the proof.

Consequently, the result of Main Theorem (c) and Theorem 3.6 in [KL] is only valid for
1 < m < 2. As for m ≥ 2, the rate can be only obtained in terms of how far the free
boundary of the solution is from the support of the equilibrium (see Theorem 0.4).

Lemma 0.1 (Lemma 3.4 in [KL], corrected version). Let 1 < m < 2 and (x0, t0) ∈ IRn ×
(0,∞). Then there exists small constants k, k′, a0 > 0, depending on m,n and the C2-norm
of Φ in B1(x0), such that the following is true: Suppose, for 0 < a < a0,

a−n

∫

Ba(x0)
ρ(·, t0)dx ≥ ak.
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Then u(·, t0 + a) ≥ ak′

in Ba(x0).

Proof. 1. Let us define
ũ(x, t) := u(a(x − x0), a

2(t − t0)).

Since u ≤ 1 in IRn × [0,∞), ũ satisfies, in the viscosity sense,

ũt ≥ (m − 1)ũ∆ũ + |Dũ|2 − C1a(|Dũ| + aũ)

≥ (m − 1)ũ∆ũ + (1 − C1a)|Dũ|2 − 2C1a,

where the second inequality holds due to Cauchy-Schwartz inequality. Here the constant
C1 depends on the C2-norm of Φ in Ba(x0). Hence ū := (1 − C1a)ũ satisfies

ūt ≥ (m̃ − 1)ū∆ū + |Dū|2 − 2C1a, (0.1)

where m̃ = (1 − C1a)−1(m − 1) + 1 > m. Choose a0 small enough so that m̃ < 2.

Therefore the corresponding density function, i.e. ρ̄ = ( m̃−1
m̃ ū)

1

m̃−1 satisfies

ρ̄t ≥ ∆(ρ̄m̃) − 2C1

m̃ − 1
aρ̄2−m̃ ≥ ∆(ρ̄m̃) − C2aχ{ρ≥0}. (0.2)

2. Let w(x, t) denote the weak solution of

wt = ∆(w|w|m−1) − C2aχ|x−x0|≤2 (0.3)

with initial data
w(x, 0) = ρ̄(x, 0)χ|x−x0|≤1.

The weak solution w(x, t) then exists in IRn × [0,∞) by Theorem 5.7 of [V]. Moreover due
to [DiBGV], w is uniformly Hölder continuous in B2(x0) × [1/4, 1/2].

Note that any nonnegative solution of the (PME), ρt = ∆(ρm̃), is a supersolution of (0.3).
Therefore using an appropriate Barenblatt profile as a supersolution of (0.3) and using the
fact that ρ̄(·, 0) ≤ χ|x−x0|≤1, we have

{x : w(x, t) > 0} ⊂ {|x| ≤ 2} for 0 ≤ t ≤ 1/2. (0.4)

Therefore it follows that w is a subsolution of (0.2), and thus w ≤ ρ̄ for t ∈ [0, 1/2].

Using (0.3) and the definition of weak solution (or formally integration by parts) yields
that

∫

w(x, t)dx =

∫

w(x, 0)dx − cnC2at ≥ ak

2
− C3at,

where cn equals the volume of the n-dimensional ball with radius 2. Since k < 1, for small a
we have

∫

w(x, 1/2)dx ≥ ak/4. Let x∗ be the point where w(·, 1/2) assumes its maximum,
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then from (0.4) it follows that |x − x∗| ≤ 2 and w(x∗, 1/2) ≥ C4a
k for some dimensional

constant C4. Due to the Hölder regularity of w(·, 1/2), there exists 0 < γ < 1 depending
only on m and n such that

ρ̄(·, 1/2) ≥ w(·, 1/2) ≥ C4

2
ak in Bak2 (x

∗), k2 =
k

γ
. (0.5)

3. Let now U(x, t) := B(x, t; 1, C) =
(C(t+1)2λ−λ

2
|x|2)+

(t+1) be the Barenblatt profile given in

Lemma 2.18 of [KL], with 0 < λ = ((m − 1)d + 2)−1 < 1/2. Let us fix C = aλ/2 such that

C = aλ/2 (initial height) and

√

2C

λ
=

√

2

λ
aλ/4 (initial support size).

If k is sufficiently small, then U(x− x∗, 0) ≤ ũ(·, 1/2) due to (0.5). Moreover, a straightfor-
ward computation yields that aU(·, t), |DU |(·, t) ≤ c(t) :=

√
C(t + 1)λ−1 for 0 ≤ t ≤ a−1.

Now let

Ũ(x, t) := (U(x − x∗, t) − 2C1a

∫ t

0
c(s)ds)+

Then, since U(·, t) is concave, we obtain

Ũt ≤ (m − 1)Ũ∆Ũ + |DŨ |2 − C1a(|DŨ | + aŨ) in {Ũ > 0}.

Hence, by the comparison principle, ũ(x, t + 1/2) ≥ Ũ(x, t) in IRn × [0,∞). In particular

ũ(·, a−1) ≥ Ũ(·, a−1 − 1/2) ≥ a1−λ in B1(x0) ⊂ B3(x
∗).

We now conclude by scaling back to the original variable.

Next, we make corrections to the proof and statement of Lemma 3.5.

Lemma 0.2 ( Lemma 3.5 in [KL], corrected version). Let K be a compact subset of IRn

with u = 0 outside of K for all time. Then there exists a constant C > 0 depending on
m > 1, sup ρ and maxx∈K ∆Φ(x) such that the following holds: suppose

∫

BC(0)
ρ(·, t)dx ≤ c0 for t1 ≤ t ≤ t2 := t1 + log(1/c0).

then ρ(·, t2) ≤ Cck
0 in B1(0) with k = 2

m(n+1) .

Remark 0.3. 1. In step 2. of the original proof, where we let ρ̃ = ρ̃1 + ρ̃2, the initial data
should be divided as follows: ρ̃1(·, 0) = ρ0

a and ρ̃2(·, 0) = 1/10. The rest of the proof is the
same.
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2. The proof is written in the case of m = 2 without clarification: as for m 6= 2 one has to
replace the scaling for ρ̃ in the proof of step 2. by ρ̃(x, t) := a−1ρ(am/2x, at). Proceeding as
before with this scaling yields the above statement. We note that in the original statement
k = 1/(n + 1).

Using Lemma 0.1 - 0.2 and proceeding as in the proof of Theorem 3.6 in [KL], the following
holds.

Theorem 0.4 (Theorem 3.6 in [KL], corrected). Let Φ and u∞ be as in Theorem 3.2. Then
there exists K and α > 0 depending on m, supu0, k0,M1, A := minΦ(x)>C0

|DΦ| and n such
that the following is true:

(a) Γt(u) = ∂{u(·, t) > 0} is in the Ke−αt-neighborhood of the positive set {u∞ > 0}.

(b) If 1 < m < 2, then Γt(u) is in the Ke−αt-neighborhood of Γ(u∞).
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