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Abstract

The L1-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemo-
tactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In
this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models
with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for
the proof of global existence below the critical mass is the use of pseudo-differential operators
to precisely evaluate the leading order quadratic portion of the potential energy (interaction
energy). Under the assumption of radial symmetry, blow-up is proved above critical mass us-
ing a maximum-principle type argument based on comparing the mass distribution of solutions
to a barrier consisting of the unique stationary solutions of the scale-invariant PKS. Although
effective where standard Virial methods do not apply, this method seems to be dependent on
the assumption of radial symmetry. For technical reasons we work in dimensions three and
higher where L1-critical variants of the PKS have porous media-type nonlinear diffusion on the
organism density, resulting in finite speed of propagation and simplified functional inequalities.

1 Introduction

The most widely studied mathematical models of nonlocal aggregation phenomena are the Patlak-
Keller-Segel (PKS) models, originally introduced to study the chemotaxis of microorganisms [29,
25, 23, 22]. In this paper we consider critical cases of the form,

ut +∇ · (u∇c) = ∆u2−2/d

−∇ · (a(x)∇c) + γ(x)c = u

u(0, x) = u0(x) ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd), d ≥ 3,

(1)

where L1
+(Rd;µ) :=

{
f ∈ L1(Rd;µ) : f ≥ 0

}
. We define m := 2 − 2/d. As weak solutions to (1)

conserve mass, we will henceforth refer to ‖u0‖1 = ‖u(t)‖1 = M(u). For all our work, we assume a(x)
is strictly positive which ensures the PDE for c is uniformly elliptic. In this context, critical refers
to the approximate balance of the opposing forces of diffusion and aggregation in the limit of L1

concentration, indicating that there must be a non-zero, but finite, amount of mass concentration at
any possible blow-up. This model is a generalization of the classical parabolic-elliptic 2D PKS model
which has received considerable attention over the years (see the review [23] and [24, 20, 10, 9, 7]).
It is well-known that such models exhibit critical mass phenomena: there exists some Mc > 0 such
that if M(u) < Mc then the solution exists globally, and if M(u) > Mc then the solution could
potentially blow-up in finite time (see for instance [10, 9, 8, 2]). We refer to the special case of
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a(x) ≡ 1, γ(x) = 0 as the scale-invariant problem, because solutions are invariant under an L1

scaling in space and this scaling symmetry plays a fundamental role in the global theory.

In this paper we estimate the critical mass, and under certain restrictions, show that this estimate
is sharp for the PKS model (1) with spatially variable coefficients in the chemo-attractant PDE.
We could not find a mathematical treatment of the model, however it raises questions which are
both mathematically interesting and relevant for biological applications where chemotaxis occurs in
a spatially inhomogeneous medium. For homogeneous problems, determining the critical threshold
has become a fairly classical procedure; e.g. using sharp functional inequalities to prove global
existence below the threshold and Virial methods to prove blow-up above (see more discussion
below). However, for inhomogeneous critical problems, these well-established methods generally
break down and either must be modified or alternative methods must be found (both shall occur
here). This, in turn, sheds some additional light on critical problems in general.

Our results confirm the intuitive fact that any blow-up is essentially a spatially localized phe-
nomenon and does not depend on the global properties of a(x) or γ(x). To be precise, we estimate
the critical mass to be given by

Mc =

(
2 minx∈Rd a(x)

(m− 1)C?cd

)d/2
,

where C? is the optimal constant in the Hardy-Littlewood-Sobolev inequality discussed in [8] (see
(6) below) and cd is the normalization constant in the Newtonian potential, given explicitly below
in (5). This estimate is of course in agreement with the constant coefficient cases discussed in [8]
and [2] (see Theorem 2 below for more information). We prove that if M(u) < Mc then the solution
is global and uniformly bounded in L∞((0,∞)× Rd) (Theorem 5). To complement this result, we
prove that if γ = 0 and a(x) is radially symmetric and monotone non-decreasing in a neighborhood
of the origin, then for all M > Mc we may construct a solution with M(u) = M which blows up in
finite time (Theorem 6).

We restrict ourselves to the case Rd for d ≥ 3 for several technical reasons. First of all, the local
existence and uniqueness theory in R2 does not appear to be worked out anywhere unless γ(x) is
strictly positive [1]. Second, even when γ is strictly positive, the R2 case seems to require a refined
treatment in the global existence argument (see Remark 5 in §2 for a discussion). Thirdly, there
are advantages in the blow-up argument due to the spatial localization provided by the degenerate
diffusion in d ≥ 3. Despite these potential difficulties, we do expect analogous results to hold in R2.

A key quantity in the study of (1) is the dissipated free energy, given by

F(u) =
1

m− 1

∫
um(x)dx− 1

2

∫
u(x)c(x)dx. (2)

The first term is usually referred to as the entropy and the latter term is referred to as the interaction
energy or potential energy. Formally, (1) is a gradient flow with respect to the Euclidean Wasserstein
distance for (2) (see e.g. [6]), but this will not be relevant for our work (however, see [7] for work
on the threshold problem with linear diffusion where this structure is the key tool).

It is well-known that solutions to systems such as (1) exist as long as they remain equi-integrable
[24, 13, 8, 2]. The use of sharp functional inequalities to identify when a mixed-sign energy such as (2)
is coercive (in the sense that it bounds a controlling norm) is classical, for example [35, 36, 10, 8, 2].
In the context of PKS and similar models, this amounts to using sharp Hardy-Littlewood-Sobolev
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inequalities to prove that when M(u) < Mc the free energy uniformly controls the entropy (in this
case the Lm norm) which in turn rules out any loss of equi-integrability (see [20, 10, 13, 8, 2]). In [2],
it was shown for a related class of systems with c = K∗u, for interaction kernels K in a general class,
that the critical mass is governed only by the asymptotic expansion of K at the origin. The idea of
the proof there is that the singularity of K at the origin provides the leading order approximation
of the quadratic potential energy

∫
uc dx and the remaining error is ‘subcritical’ in the sense that it

can be controlled by norms weaker than the entropy. Essentially, this is the approach taken here to
prove Theorem 5 in §2 below, however for (1), c is not given by a convolution. To recover, we use a
pseudo-differential operator to approximate the leading order contribution to the potential energy
as a quadratic term of the form

∫
u(x)u(y)K(x, y)dxdy. An asymptotic expansion is derived for

K(x, y) along the diagonal x ∼ y and the lower-order error term resulting from the approximate
inverse is shown to be subcritical. In order to use standard symbol classes we make the assumption
that a(x) and γ(x) are both smooth with bounded derivatives of all orders. Presumably, one could
weaken these hypotheses considerably if necessary. In particular, a full parametrix is not required,
only the first approximation of the inverse is required for our work.

Conventionally, the simplest way of proving blow-up for systems such as (1) above the critical
threshold is the well-known Virial method, used in for example [32, 8, 2]. Applied to the scale-
invariant problem in d ≥ 3 in [8], this method consists of two steps. First, one uses supercritical
mass and a scaling argument to construct initial data with negative free energy. Second, one shows
that negative free energy would force the second moment to zero in finite time. The first step can
likely be carried out here using the approximate inverse of the chemo-attractant PDE used in the
proof of the global existence result (Theorem 5). However, the second step would requires some
kind of approximate homogeneity which only leaves errors which can be over-powered by choosing
sufficiently concentrated initial data. Although we do not claim that this cannot be done for systems
such as (1), we could not carry out this program. Using the approximate inverse introduces nonlocal
error terms for which there seems to be no obvious way to control into blow-up. Hence, we instead
use a different finite time blow-up proof which is able to treat the local and nonlocal properties of
the solution with sufficient precision.

The proof of finite time blow-up is based on a maximum-principle type argument on the mass
distribution of solutions. These arguments are primarily influenced by those found in the recent
work [27] but are also related to the blow-up argument in the classical work of Jäger and Luckhaus
[24]. We compare solutions of (1) to specifically chosen barriers, in fact the extremizers of the sharp
Hardy-Littlewood-Sobolev inequality which governs the critical mass, which are also stationary
solutions of the scale-invariant PDE (Theorem 4). Note that, in spite of the parabolic nature of the
problem, there is, in general, no standard maximum principle between solutions of (1). Although
mass comparison principles have been used for (1) before ([17, 18], see also [24, 5]) the use of refined
barrier arguments has not been explored, with the exception of [27] and [24]. More details are
discussed in Section §3.

The mass comparison argument we adopt is rather delicate and depends on certain regularity
properties of solutions as well as the barrier. Among other complications, the degenerate diffusion
in (1) implies that classical regularity is not available everywhere and the support of solutions move
at a finite speed. In order to deal with the generic presence of the free boundary, we utilize the
viscosity solution theory developed for degenerate diffusion equations with drift (see [26]) to prove
that strictly positive solutions remain positive until blow-up (see Appendix). Then we need to make
a careful approximation argument with smooth, strictly positive solutions, as in [27]. We add that
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here extra care must be taken due to the finite time blow-up (Lemma 6).

With some modification, this blow-up proof could also potentially provide estimates from above
on how quickly mass concentrates, providing also a lower bound on the blow-up time. Moreover,
when applied to the scale-invariant problem, our method can yield blow-up for a class of initial data
that the results in [8], obtained via a Virial method, does not cover (see Corollary 1 below). In
particular, we exhibit radially symmetric solutions with initially positive free energy that concentrate
in finite time. This seems to indicate that the approach we employ could potentially provide different
kinds of blow-up results elsewhere, even when straightforward Virial methods can be applied.

The finite time blow-up argument so far only applies to radially symmetric settings. It may
be possible to extend this argument to at least locally radial settings. To localize the argument,
we would need to carefully estimate the effect of coefficients a(x) from far-away regions on the
chemical function c(x, t). Such an estimate, if available in suitable norms, could potentially enable
consideration of c(·, t) and ρ(·, t) as “almost” radial profiles, making our blow-up argument feasible.

1.0.1 Notation

In what follows, we denote ‖u‖p := ‖u‖Lp(Rd) where Lp(Rd) := Lp is the standard Lebesgue space.
We will often suppress the dependencies of functions on space and/or time to enhance readabil-
ity. The standard characteristic function for some S ⊂ Rd is denoted 1S and we denote the ball
BR(x0) :=

{
x ∈ Rd : |x− x0| < R

}
. In addition, we use

∫
fdx :=

∫
Rd fdx, and only indicate the

domain of integration where it differs from Rd. We also denote the weak Lp space by Lp,∞ and the
associated quasi-norm

‖f‖Lp,∞ =

(
sup
α>0

αpλf (α)

)1/p

,

where λf (α) = |{f > α}| is the distribution function of f . We use N to denote the Newtonian
potential:

N (x) =

{
1

2π log |x| d = 2
Γ(d/2+1)

d(d−2)πd/2
|x− y|2−d d ≥ 3.

In formulae we use the notation C(p, k,M, ..) to denote a generic constant, which may be different
from line to line or term to term in the same formula. In general, these constants will depend on
more parameters than those listed, for instance those which are fixed by the problem, such as K and
the dimension, but these dependencies are suppressed. We use the notation f .p,k,... g to denote
f ≤ C(p, k, ..)g where again, dependencies that are not relevant are suppressed.

1.1 Background

The local theory for (1) is studied in [1]. Here we simply discuss the results of that work, which
follows closely the work of [10, 31, 3, 4, 2]. We begin with the definition of weak solution, which is
stronger than the concept of distribution solutions. The main purpose of this definition is to ensure
that weak solutions are unique.

Definition 1 (Weak Solution). A function u(t, x) : [0, T ] × Rd → [0,∞) is a weak solution of
(1) if u ∈ L∞((0, T ) × Rd) ∩ L∞(0, T, L1(Rd)), um ∈ L2(0, T, Ḣ1(Rd)), u∇c ∈ L2((0, T ) × Rd),
ut ∈ L2(0, T, Ḣ−1(Rd)), and for all test functions φ ∈ Ḣ1(Rd) for a.e t ∈ [0, T ],

〈ut(t), φ〉 =

∫
(−∇um(t) + u(t)∇c(t)) · ∇φ dx, (3)
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where c(t) is the strong solution to the PDE −∇ · (a(x)∇c(t)) + γ(x)c(t) = u(t) which vanishes at
infinity.

We state the following theorem summarizing the local theory of (1), developed in [1] as well as
[31, 8, 2].

Theorem 1 (Local Existence and Uniqueness). Let d ≥ 3, let a(x) ∈ C1 be strictly positive such
that both a(x) and ∇a(x) are bounded, let γ(x) ∈ L∞ be non-negative and u0 ∈ L1

+(Rd; (1+|x|2)dx)∩
L∞(Rd). Then there exists a maximal T+(u0) > 0 and a unique weak solution u(t) to (1) which
satisfies u ∈ C([0, T ];L1

+(Rd; (1 + |x|2)dx))∩L∞((0, T );L∞(Rd)) for all T < T+(u0) and u(0) = u0.
Additionally, F(u0) <∞ and we have the energy dissipation inequality,

F(u(t)) +

∫ t

0

∫
u(s)

∣∣∣∣∇ m

m− 1
um−1(s)−∇c(s)

∣∣∣∣2 dxds ≤ F(u0). (4)

We also have the continuation criterion: if

lim
k→∞

sup
t∈[0,T+(u0))

‖(u(t)− k)+‖1 = 0,

then necessarily T+(u0) =∞ and u(t, x) ∈ L∞(R+ × Rd).

The results regarding the critical mass in the constant-coefficient case are summarized in the
following theorem.

Theorem 2 (Critical Mass [8, 2]). Suppose a(x) = a and γ(x) = γ are both constants. Then the
sharp critical mass satisfies,

Mc =

(
2a

(m− 1)C?cd

)d/2
,

and if u(t) is a weak solution to (1) with M(u0) < Mc, then u(t) exists globally, e.g. T+(u0) =∞,
and we have u(t) ∈ L∞(R+ × Rd). Conversely for all M > Mc there exists a solution to (1) which
blows up in finite time with M(u0) = M . Here C? is the optimal constant in the Hardy-Littlewood-
Sobolev inequality (6) below and cd is the normalization factor in the Newtonian potential:

cd :=
Γ
(
d
2 + 1

)
d(d− 2)πd/2

. (5)

In [8], Blanchet et. al. exhibit a unique family of stationary solutions to the scale-invariant
problem which will be the barriers used in the proof of finite time blow-up here.

Theorem 3 (Stationary Solutions to Scale-Invariant Problem [8]). There exists a non-negative,
radially symmetric, non-increasing function V (x) supported in the ball of radius one with ‖V ‖1 =(

2
(m−1)C?cd

)d/2
which is the unique solution (up to L1 scaling and translation) of

∆V m = ∇ · (V∇N ∗ V ).

Remark 1. Note that if a > 0 and Ṽ = ad/2V , then

∆Ṽ 2−2/d =
1

a
∇ · (Ṽ∇N ∗ Ṽ )

and in light of Theorem 2 above, Ṽ are the unique (up to L1 scaling and translation) stationary
solutions to the problem {

ut +∇ · (u∇c) = ∆u2−2/d

−a∆c = u.
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In [8], it is also shown that these stationary solutions are the unique extremals of the following
Hardy-Littlewood-Sobolev type inequality.

Theorem 4 (Sharp Hardy-Littlewood-Sobolev Inequality [8]). There exists some optimal C? > 0
depending only on the dimension such that for all f ∈ L1

+ ∩ Lm,∫ ∫
f(x)f(y) |x− y|2−d dydx ≤ C?‖f‖2−m1 ‖f‖mm, (6)

and equality is achieved if and only if there exists α0 ∈ R, x0 ∈ Rd, λ0 ∈ (0,∞) such that

f(x) =
α0

λd0
V

(
x− x0

λ0

)
.

1.2 Summary of Results

We now state the main results.

Theorem 5 (Global Existence). Let d ≥ 3 and a(x) ∈ C∞(Rd) be strictly positive and γ(x) ∈
C∞(Rd) be non-negative such that Dαa and Dαγ are bounded for all multi-indices α. Then,

Mc =

(
2 minx∈Rd a(x)

(m− 1)C?cd

)d/2
, (7)

and any weak solution u(t) to (1) with M(u) < Mc exists globally and u(t) ∈ L∞(R+ × Rd).

Remark 2. Using the methods of [13, 2], Theorem 5 can be extended to cover more general
filtration equation-type nonlinear diffusion on the RHS of the PDE for u(t) (e.g. ∆A(u), A ∈ C1

and non-decreasing with 0 < lim infz→∞A
′(z)z2/d−1 <∞, instead of simply ∆u2−2/d).

That Theorem 5 is sharp under the hypothesis of radial symmetry is demonstrated by the
following result.

Theorem 6 (Finite Time Blow-Up). Let γ(x) ≡ 0 and let a ∈ C1(Rd) be radially symmetric, strictly
positive and such that both a and ∇a are bounded. Suppose also that a(0) = min a(x) and that there
exists a neighborhood |x| < δ0 such that a(x) is radially non-decreasing. Then for all M > Mc,
there exists a solution u(t) with M(u) = M which blows up in finite time, e.g. T+(u(0)) <∞.

Remark 3. The requirement that a and ∇a be uniformly bounded are only used to satisfy the
hypotheses of Theorem 1, which ensures we have a well-understood local existence, uniqueness and
stability theory.

The critical mass (7) only depends on min a(x), hence one expects the blow-up solution con-
structed in Theorem 6 should concentrate a sufficient amount of mass near where that minimum is
achieved. Exactly how concentrated the initial data is required to be is characterized by (8) in the
following proposition, which requires at least part of the initial data be more concentrated than a
particular rescaled extremal of the sharp HLS (Theorem 4). Theorem 6 is proved by comparing the
true solution against a barrier, and (8) below is the requirement that the solution and the barrier
are ordered at time zero. Remark 4 clarifies how (8) requires u0 to concentrate around where the
minimum is achieved at least when M(u0)↘Mc.
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Proposition 1. Let u0 ∈ L1
+(Rd; (1+|x|2)dx)∩C0(Rd) be radially symmetric such that Mc < M(u0)

and suppose that there is an R0 ≤ δ0 and an M0 with Mc < M0 < M(u0) such that for 0 ≤ r ≤ R0

we have ∫
|x|≤r

(
a(R0)1/2

R0

)d
V

(
x

R0

)
dx ≤

(
Mc

M0

)∫
|x|≤r

u0(x)dx. (8)

Then the weak solution u(t) associated with u0 blows up in finite time. Moreover, if we define
µ := Mc/M0 < 1, we have the following estimate of the blow-up time:

T+(u0) ≤ µ2/d−1 σRd0
a(R0)(d− 1)Mc(µ−2/d − 1)

<∞, (9)

where σ is the surface area of the unit sphere in Rd.

Remark 4. In light of Remark 1, (8) implies that

M0

(
a(R0)

a(0)

)d/2
≤
∫
|x|≤R0

u0(x)dx.

Hence, in order to construct blow-up solutions with M(u0) ↘ Mc, in general we need to choose
increasingly concentrated initial data by sending R0 → 0.

As mentioned above, Theorem 6 and Proposition 1 also provide new results for the homogeneous
problem, a(x) ≡ 1, γ(x) ≡ 0. The Virial method used in [8] proves blow-up for all solutions with
negative free energy, without the need for radial symmetry. On the other hand, Theorem 6 and
Proposition 1 require radial symmetry but do not require any assumptions on the free energy.
Indeed we have the following Corollary of Proposition 1, which in particular, shows the existence
of solutions with arbitrarily large initial free energy that blow up in finite time.

Corollary 1. Let u0 ∈ L1
+(Rd; (1 + |x|2)dx) ∩ C0(Rd) be radially symmetric, strictly positive in a

compact neighborhood of the origin and satisfy

M(u0) >

(
2

(m− 1)C?cd

)d/2
.

Then the weak solution u(t) associated with u0 of the scale-invariant problem (a(x) ≡ 1, γ(x) ≡ 0)
blows up in finite time. In particular, for every F0 ≥ 0, there exists a solution u(t) with F(u(0)) > F0

which blows up in finite time.

2 Global Existence

The proof of Theorem 5 hinges primarily on providing a precise decomposition of the potential
energy, ∫

u(x)c(x)dx,

into a leading order critical part and another part that is subcritical. This is the purpose of the
following section.
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2.1 Approximate Inverse of Chemo-attractant PDE

We use the standard symbol classes studied in for example [30], summarized in the following defi-
nition.

Definition 2 (Symbol Class Ss, s ∈ R). Suppose b(x, ξ) ∈ C∞(Rdx × Rdξ) satisfies∣∣∣∂βx∂αξ b(x, ξ)∣∣∣ .β,α (1 + |ξ|)s−|α|,

for multi-indices α, β. Then we say both b and the associated pseudo-differential operator (ΨDO)
Tb defined by

Tbf(x) =
1

(2π)d/2

∫
b(x, ξ)f̂(ξ)eixξdξ

are in the symbol class Ss and say the symbol b or the operator Tb are of order s. We also denote
b(x, ξ) = sym(Tb).

Notice that with this definition Ss1 ⊂ Ss2 whenever s1 < s2. Also, since the symbols are required
to be smooth, these operators do not carry too much low-frequency information, unlike multiplier
or symbol classes that allow singularities at the origin. For the standard relevant facts regarding
these symbol classes, such as the symbolic calculus, localization estimates, boundedness on Sobolev
spaces and singular integral representations, see Chapter 6 of [30].

Consider the PDE
Lc := −a(x)∆c−∇a(x) · ∇c+ γ(x)c = u. (10)

By definition, L is a pseudo-differential operator in S2:

Lc =
1

(2π)d/2

∫ (
γ(x) + a(x) |ξ|2 − iξ · ∇a(x)

)
ĉ(ξ)eixξdξ.

Consider the approximate inverse of L, the S−2 class ΨDO

AHu :=
1

(2π)d/2

∫
Φ(ξ)û(ξ)eixξ

a(x) |ξ|2 − iξ · ∇a(x) + γ(x)
dξ,

where Φ(ξ) =
∏d
j=1 φ(ξj) with φ(t) a smooth function such that 0 ≤ φ(t) ≤ 1 which is identically

one for |t| ≥ 1 and vanishes in a neighborhood of zero. We remark that if γ(x) is strictly positive,
we do not need the cut-off Φ(ξ). By the symbolic calculus [Chapter 6, Theorem 2 [30]],

AHLc = c+ TEc,

where the operator TE ∈ S−1 and the associated symbol E has the following asymptotic expansion

E ∼ Φ(ξ)− 1 +
∑
|α|≥1

(2πi)−|α|

α!
∂αξ sym(AH)∂αx sym(L),

in the sense that the error in truncating the series for N > |α| is a symbol of class S−1−N .

Although both AH and TE are bounded operators from Lp to itself for 1 < p < ∞ (Chapter
6 [30]), if γ(x) is not strictly positive then L−1, the true inverse, is not. Necessarily, the low-
frequency portion of L−1 is still present implicitly in TEc. Instead of being bounded on Lp to itself,
L−1 satisfies the following: for 1 < q < d/2, d/(d− 2) < p <∞ and 2

d + 1
p = 1

q ,

‖c‖p = ‖L−1u‖p . ‖u‖q. (11)
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This can be seen at least formally by multiplying both sides of (10) by c(d−2)p/d−1 integrating, and
applying the homogeneous Sobolev embedding.

We may formally write down the operator AH as a singular integral operator by interchanging
the integrals:

AHu(x) =
1

(2π)d

∫ ∫
u(y)

Φ(ξ)eiξ(x−y)

a(x) |ξ|2 − iξ · ∇a(x) + γ(x)
dydξ

=
1

(2π)d

∫
u(y)

[∫
Φ(ξ)eiξ(x−y)

a(x) |ξ|2 − iξ · ∇a(x) + γ(x)
dξ

]
dy

:=

∫
u(y)KH(x, y)dy.

The integral for KH(x, y) is not absolutely convergent so we cannot naively apply Fubini’s theorem
in the above computation rigorously, but it can be justified by a standard limiting procedure, as
in [30]. The key technical lemma for the proof of Theorem 5 is the following characterization of
KH(x, y).

Lemma 1 (Asymptotic Expansion for KH(x, y)). Let KH(x, y) be defined as above by the condi-
tionally convergent integral

KH(x, y) :=
1

(2π)d

∫
Φ(ξ)eiξ(x−y)

a(x) |ξ|2 − iξ · ∇a(x) + γ(x)
dξ.

Then we then have the following asymptotic expansion which holds uniformly in x ∈ Rd,

KH(x, y) =
Γ(d/2 + 1)

d(d− 2)πd/2a(x)
|x− y|2−d + o(|x− y|2−d) as y → x (12)

=
cd
a(x)

|x− y|2−d + o(|x− y|2−d) as y → x,

with cd given above by (5). Moreover, recall that for all δ > 0 and N > 0 (see for example pg 235
[30]),

|KH(x, y)| .δ,N |x− y|−N , |x− y| > δ. (13)

Proof. The bound (13) is a standard consequence of AH ∈ S−2. Such localization should not be
surprising since the the low frequency contribution of L−1 is not included in AH due to the cut-off
Φ. Hence, we focus on (12). Note the trick

1

D
=

∫ ∞
0

e−tDdt.

Hence,

KH(x, y) =
1

(2π)d

∫ ∞
0

∫
Φ(ξ)eiξ·(x−y+t∇a(x))−ta(x)|ξ|2−tγ(x)dξdt

=
1

(2π)d

d∏
j=1

∫ ∞
0

e−tγ(x)

∫ ∞
−∞

φ(ξj)e
iξj(xj−yj+t∂xja(x))−ta(x)ξ2j dξjdt.
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Now define the complex change of variable zj = (ta(x))1/2ξj − i
xj−yj+t∂xja(x)

2(ta(x))1/2
,

∫ ∞
−∞

φ(ξj)e
iξj(xj−yj+t∂xja(x))−ta(x)ξ2j dξjdt =

e
− |xj−yj+t∂xj a(x)|

2

4ta(x)

(ta)1/2

∫
Γj

φ

(
Re zj

(ta(x))1/2

)
e−z

2
j dzj

:=
e
− |xj−yj+t∂xj a(x)|

2

4ta(x)

(ta(x))1/2
fj(t),

where Γj is the contour
{

Im zj =
xj−yj+t∂xja(x)

2(ta(x))1/2

}
.

Applying the above change of variables to the expression for KH(x, y) implies

KH(x, y) =
e−(x−y)∇a(x)/(2a(x))

(2π)d(a(x))d/2

∫ ∞
0

t−d/2

 d∏
j=1

fj(t)

 e−tγ(x)−t |∇a(x)|
2

4a(x)
− |x−y|

2

4ta(x) dt.

We make the following additional change of variables,

t =
|x− y|2

4a(x)ζ2
,

which then yields

ζ =
|x− y|

(4ta(x))1/2
and dt = −|x− y|

2

2a(x)ζ3
dζ.

In terms of ζ, KH(x, y) can be now written as

KH(x, y) =
e−(x−y)∇a(x)/(2a(x))

(π)d(2a(x))
|x− y|2−d

∫ ∞
0

ζd−3

 d∏
j=1

fj(t(ζ))

 e− |x−y|24a(x)ζ2

(
|∇a(x)|2
4a(x)

+γ(x)

)
−ζ2

dζ.

Due to the smoothness of φ and a and the strict lower bound on a we have the uniform (in x)
convergence of the integral (note that here ζ is fixed and zj is the complex integration variable)

lim
y→x

fj(t(ζ)) = lim
y→x

∫
Γj

φ

(
2 |ζ|Re zj
|x− y|

)
e−z

2
j dzj =

∫
R
e−z

2
j dzj = π1/2.

Similarly we also have

lim
y→x

∫ ∞
0

ζd−3

 d∏
j=1

fj(t(ζ))

 e− |x−y|24a(x)ζ2

(
|∇a(x)|2
4a(x)

+γ(x)

)
−ζ2

dζ = πd/2
∫ ∞

0
ζd−3e−ζ

2
dζ,

uniformly in x ∈ Rd due to the uniform continuity of ∇a(x), a(x), and γ(x) as well as the strict
positivity of a. Recalling elementary facts about the Gamma function we have,∫ ∞

0
ζd−3e−ζ

2
dζ =

1

2
Γ

(
d

2
− 1

)
=

2

d(d− 2)
Γ

(
d

2
+ 1

)
.

Hence,

KH(x, y) =
Γ
(
d
2 + 1

)
d(d− 2)πd/2a(x)

|x− y|2−d + oy→x

(
|x− y|2−d

)
,

and (12) is proved.
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The error term TEc in the approximate inverse can be controlled by the following lemma. Here
we take advantage of the smoothing nature of TE ∈ S−1 to show that in the potential energy, this
term is subcritical in the sense that the effective power of ‖u‖m associated with the term is strictly
less than m. Naturally, one must eventually use (11) in order to prove this lemma.

Lemma 2 (The error term is subcritical). Let d ≥ 3, suppose u ∈ L1(Rd) ∩ Lm(Rd) and c is the
strong solution of (10) which vanishes at infinity. Then,∫

uTEcdx . ‖u‖2−2θ
1 ‖u‖2θm , (14)

for some 0 < 2θ < m = 2− 2/d.

Proof. Define

p =
4d

2d− 3
.

Define the standard Fourier multiplier 〈̂∇〉sf :=
(

1 + |ξ|2
)s/2

f̂(ξ). Since the multiplier 〈∇〉1/2 is

self-adjoint we have, ∣∣∣∣∫ uTEcdx

∣∣∣∣ ≤ ‖〈∇〉−1/2u‖ p
p−1
‖〈∇〉1/2TEc‖p

Define
1

q
=

1

p
+

2

d
=

2d+ 5

4d
< 1.

As mentioned above, Definition 2 implies that since TE ∈ S−1, we also have TE ∈ S−1/2. Hence,
TE is a bounded operator Lp to W 1/2,p [Chapter 6, Proposition 5 [30]]. Using this and the elliptic
Lp estimate (11) we have

‖〈∇〉1/2TEc‖p . ‖c‖p . ‖u‖q.

One may easily verify that
1

q
=
p− 1

p
+

1

2d
,

and therefore the inhomogeneous Sobolev embedding theorem implies

‖〈∇〉−1/2u‖ p
p−1

. ‖u‖q.

Hence, we see the relevance of q as we have in total,∣∣∣∣∫ uTEcdx

∣∣∣∣ . ‖u‖2q .
In order to interpolate between L1 and Lm, we obviously need q < m = 2 − 2/d, which follows
easily from d ≥ 3. Then, for

θ =
(2d− 5)(2d− 2)

4d(d− 2)
∈ (0, 1)

we have, ∣∣∣∣∫ uTEcdx

∣∣∣∣ . ‖u‖2−2θ
1 ‖u‖2θm .

To prove subcriticality it remains to confirm that we have 2θ < m, which again follows from
d ≥ 3.
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2.2 Proof of Theorem 5

In this section we complete the proof of Theorem 5.

Proof. We prove Theorem 5 by producing a uniform in time bound on the entropy (which is basically
just the Lm norm). This in turn proves that the solution is uniformly equi-integrable and Theorem
1 completes the proof.

By the energy dissipation inequality (4) and the definition of AH we have,

1

m− 1

∫
umdx− 1

2

∫
uAHudx−

1

2

∫
uTEcdx ≤ F(u0).

By (14) (Lemma 2) we then have, for some 0 < 2θ < m = 2− 2/d,

1

m− 1

∫
umdx− 1

2

∫
uAHudx− C‖u‖2−2θ

1 ‖u‖2θm ≤ F(u0).

Using Lemma 1, for every ε > 0, we may choose a δ > 0 such that∫
uAHudx ≤

∫ ∫
|x−y|<δ

(
cd
a(x)

+ ε

)
u(x)u(y)

|x− y|d−2
dxdy + C(δ)‖u‖21,

where cd, given by (5), is the normalization constant in the Newtonian potential. Hence, by the
sharp Hardy-Littlewood-Sobolev inequality (6) we have,(

1

m− 1
− C?

2

(
cd

min a(x)
+ ε

)
‖u‖2/d1

)
‖u‖mm ≤ C‖u‖2−2θ

1 ‖u‖2θm + C(δ)‖u‖21 + F(u0).

If M(u) < Mc with Mc given by (7) then we may choose ε sufficiently small such that the first term
is positive. Since m > 2θ this then implies a global uniform-in-time bound on ‖u(t)‖m. This in
turn implies a global L∞ bound on u(t) by the continuation criterion in Theorem 1.

Remark 5. It appears the proof of Theorem 5 would require some refinement in order to treat the
R2 case. Certainly, the asymptotic expansion of KH(x, y) along the diagonal x ∼ y would need to be
refined in order to capture the logarithmic singularity accurately (Lemma 1). Moreover, Lemma 2
would also need to be adjusted in order to yield an error which is subcritical relative to the positive
part of the entropy

∫
u(log u)+dx. In the place of the HLS (6), the logarithmic HLS would instead

be used [14].

3 Finite Time Blow-Up

As discussed in the introduction, the inability to make obvious use of a Virial method motivates our
use of a barrier method based on maximum principle-type arguments. We begin with the following
rescaling: let Mc < M0 < M(u0) be as in the statement of Proposition 1, define

µ := Mc/M0 < 1 (15)

and let
ρ(t, x) := µu(µ1−2/dt, x). (16)

Then M(ρ) = M(u)µ > Mc and ρ solves{
ρt +∇ · (ρµ1−2/d∇c) = ∆ρ2−2/d

−∇ · (a(x)∇c) = µ−1ρ.
(17)
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As mentioned above, we will use mass comparison arguments involving suitably chosen barriers
(sub-solutions) to force the finite time concentration of mass in (17). We define the following
comparison function ū = ū(t, x),

ū(t, x) =
a(R0)d/2

R(t)d
V

(
x

R(t)

)
, (18)

where we take R(t) as a solution to the initial value problem{
Ṙ(t) =

Mc(1−M2/d
0 M

−2/d
c )

a(R0)σR(t)d−1

R(0) = R0.
(19)

Here σ denotes the surface area of the unit sphere. Note that R(T?) = 0 with

T? := T?(M0, R0, d) =
Rd0σ

(d− 1)a(R0)Mc(µ−2/d − 1)
<∞. (20)

We define the mass distributions

M(t, r) =

∫
|x|≤r

ρ(t, x)dx, M(t, r) =

∫
|x|≤r

ū(t, x)dx.

Notice that (8) is equivalent to M(r, 0) ≤M(r, 0) for all r ∈ [0, R0], which means that the rescaled
initial data is initially more concentrated than the barrier ū on the neighborhood r ≤ R0. It is also
important to note that the total mass of the barrier ū is generally more than the critical mass Mc

but less than or equal to the total mass of ρ which itself has less mass than the true solution u.
Suppose that M(0, r) ≤ M(0, r) for all r ≥ 0. We will show that this ordering is preserved up

to the blow-up time of u or ū, e.g.

M(t, r) ≤M(t, r) for 0 ≤ t < min (T?, T+(u0)) .

As alluded to above, in the language of maximum principle-type arguments, ū plays the role of
a subsolution in terms of the mass concentration. As ū concentrates into a delta mass at t = T?,
we must have T+(u0) ≤ T?, which will conclude the proof of Theorem 6. The intuition for why the
proof ultimately works is based on the fact that the rescaled system (17) pulls mass into the origin
faster than the PDE that ad/2(R0)V solves (see Remark 1). That is, the rescaling (16) transfers
the property of having supercritical mass into surplus attractive power when compared against
stationary solutions of roughly comparable mass. The surplus attractive power is what gives us the
ability to choose R(t) at the rate given in (19) and hence prove that the solution is concentrating
fast enough to be squeezed into blow-up by a self-similar barrier ū.

We use mass comparison arguments influenced by those found in [27] to prove that the mass
ordering (3) is preserved. By quantifying how much mass is being transported into or away from
the origin, such arguments are surprisingly natural and allow easy treatment of advective terms
in comparison arguments. It is this additional precision in the treatment of advection that allows
the proof to work. The arguments in [27] were also influenced by the mass comparison arguments
used in the treatment of the porous media equation (see [34, 33] and the references therein). Our
argument is similar also to the subsolution blow-up argument of Jäger and Luckhaus [24], where
they treated the homogeneous problem with linear diffusion on bounded domains. However, we
feel that our barriers provide a more flexible construction that can be easily applied to different
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situations. We point out that in our case we compare weak solutions to properly chosen barrier
functions but we do not necessarily have comparison between weak solutions.

An important complication arises at the free boundary of the positivity set of u(t). Here, classical
regularity breaks down and the mass comparison arguments no longer provide a rigorous argument,
or even a convincing formal one. To deal with this technical issue we lift to strictly positive solutions,
which are smooth due to uniform parabolicity on compact sets. Comparison with vanishing error
is proved against these solutions, for which the formal arguments are rigorous. Passing to the limit
requires some standard approximation arguments regarding the stability of (17).

3.1 Preliminaries: Approximation and Regularity

In this section we detail the important approximation and regularity properties of (1). These results
are more or less expected, but since they are of independent interest and important for making our
arguments rigorous, we include brief sketches of the proofs.

Lemma 3. Suppose u0 ∈ C0(Rd)∩L1
+(Rd; (1 + |x|2)dx) and let u(t) be the associated weak solution

which satisfies u(0) = u0. Then for all ε > 0,

(a) ∇c is continuous and bounded, and ∆c is bounded on t ∈ [0, T+(u0)− ε).

(b) u(t, x) ∈ C0([0, T+(u0)− ε)× Rd).

Proof. (a) By definition of blow-up time T+, u is bounded up to t = T+ − ε. By a Gagliardo-
Nirenberg-Sobolev-type inequality (see e.g. Theorem 7.28 in [21]), for all 1 < p <∞,

‖∇c‖p .p,d ‖c‖p + ‖D2c‖p.

Hence, for any d < p <∞ by Morrey’s inequality we have,

‖∇c‖∞ . ‖c‖p + ‖D2c‖p.

Solutions to the PDE for c satisfy the global elliptic gradient estimate (see for example [1]),
for p > d/(d− 2),

‖D2c‖p . ‖u‖p + ‖u‖ dp
2p+d

.

Hence by the elliptic Lp estimate (11)

‖∇c‖∞ . ‖u‖p + ‖u‖ dp
2p+d

.

In fact, Morrey’s inequality implies that ∇c is C0,α Hölder continuous for all exponents α < 1.
From the PDE for c we have,

‖a(x)∆c‖∞ ≤ ‖u‖∞ + ‖∇a‖∞‖∇c‖∞

‖∆c‖∞ ≤
1

min a
(‖u‖∞ + ‖∇a‖∞‖∇c‖∞) .

(b) Theorem 6.1 of DiBenedetto [19] together with (a) yields (b) (see also Theorem 3.1 of [27]).

Lemma 4 (Regularity of V ). The extremal V of Theorem 3 is in C1(Rd).

14



Proof. Recall that V solves the elliptic PDE

∆V m = ∇ · (V∇N ∗ V ).

As shown in [8], it follows from elliptic regularity theory that V is C2 in its positive set, {|x| < 1},
and vanishes continuously at |x| = 1.

Now let us prove that the gradient of V (x) uniformly vanishes to zero as x approaches |x| = 1.
Integration by part in the ball {|x| ≤ r} as well as the radial symmetry of V yields the following
for |x| < 1:

− x

|x|
· ∇V m(x) = (V |∇V m−1|+ V m−1|∇V |) = − x

|x|
· ∇(N ∗ V )V

Dividing by V , we obtain

|∇V m−1|+ V m−2|∇V | ≤ |∇(N ∗ V )| for |x| < 1.

Note that |∇(N ∗ V )| is bounded since V is bounded and compactly supported. It follows that
V m−2|∇V | is bounded as |x| → 1. Since m < 2, V m−2 diverges to infinity as |x| → 1: it follows
that |∇V | must vanish as |x| → 1, and we can conclude.

Lemma 5 (Regularity of Strictly Positive Solutions). Let u0 ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd) be

strictly positive a.e.. Then for all ε > 0, the associated weak solution u(t) with u(0) = u0 is smooth
and strictly positive on (0, T+(u0)− ε)× Rd.

Proof. Due to Lemma 8 in the appendix, u stays strictly positive for all 0 ≤ t < T+(u0). Con-
sequently u is a solution of a uniformly parabolic quasilinear PDE of divergence form, and the
regularity of u follows from classical regularity theory [28].

Lemma 6 (Stability of the blow-up time). Let {un0} ⊂ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd) and un(t)

denote the associated weak solutions of (1) with un(0) = un0 defined on the intervals [0, T+(un0 )).
Suppose further that

(a) supn (‖un0‖∞ + ‖un0‖1) <∞ and

(b) un0 → u0 strongly in L1 for some u0 ∈ L1
+(Rd; (1 + |x|2)dx) ∩ L∞(Rd).

Let u(t) be the solution to (1) with u(0) = u0, and define T0 > 0 such that,

T0 := sup

{
T ∈ (0,∞) : lim inf

n→∞
sup
t∈[0,T ]

‖un(t)‖∞ <∞

}
.

Then for all T < T0, there exists a subsequence such that unk → u in C([0, T ], Lp(Rd)) for all
1 ≤ p <∞. If additionally un0 ∈ C0(Rd) and un0 → u0 locally uniformly, then we also have unk → u
locally uniformly on [0, T ]× Rd. Moreover, T+(u0) = T0 ≤ lim infn→∞ T+(un0 ).

Proof. From the local existence theory and the fact supn (‖un0‖∞ + ‖un0‖1) < ∞, it is assured that
T0 > 0 (see [2] or [8]). Let 0 < T < T0. By the precompactness arguments of the local existence
theory (see [2, 1]) we may extract a subsequence {unk} which converges in C([0, T ];Lp(Rd)) for all
1 ≤ p < ∞ to a weak solution, and by uniqueness of weak solutions, the limit must be u(t). In
particular, we may extend u(t) to include any time interval such that

lim inf
n→∞

sup
t∈[0,T ]

‖un(t)‖∞ <∞.
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By the proof of Lemma 3 and Theorem 6.1 of [19], if un0 → u0 locally uniformly, it moreover
follows that unk(t) → u(t) locally uniformly up to extraction of an additional subsequence. By
the continuation criterion in Theorem 1, it is necessary that T0 ≤ lim infn→∞ T+(un0 ) but there is
no a priori reason for them to be comparable (for instance, T0 could be finite, but T+(un0 ) ≡ ∞).
However, blow-up times are at least semi-continuous. From the first part of the lemma, u(t) exists
on all compact time intervals of [0, T0). Since unk(t)→ u(t) locally uniformly on this time interval,
if T0 < ∞, then we necessarily have lim inft↗T0 ‖u(t)‖∞ = ∞ and therefore T+(u0) = T0. This
proves the lemma.

3.2 Mass Comparison

In this section we develop the comparison arguments and prove Theorem 6.
First, note that ū(t) is a classical solution to the transport equation

∂tū+∇ · (ū Ṙ
R
x) = 0. (21)

Of course, for all t, ū(t, x) is also a weak solution to the scale-invariant problem (Remark 1),

1

a(R0)
∇ · (ū∇N ∗ ū) = ∆ūm. (22)

We have the following lemma which describes the PDE satisfied by the mass function corre-
sponding to ρ(t).

Lemma 7 (Evolution of Mass Function). Let ρ(t, x) be a smooth radially symmetric solution to
(17). Then, M(t, r) :=

∫
|x|≤r ρ(t, x)dx satisfies

∂tM(t, r) = σrd−1∂r

(
∂rM(r)

σrd−1

)m
+
µ−2/d

a(r)

M(r)

σrd−1
∂rM(r), (23)

where σ is the surface area of the unit sphere in Rd.

Proof. By radial symmetry

ρ(t, r) =
1

σrd−1
∂rM(t, r)

and by the divergence theorem and the radial symmetry of a,

a(r)

∫
|x|=r

∂rc(t, x)dS = − µ−1

σrd−1
M(t, r). (24)

Now, using the divergence theorem and radial symmetry,

∂tM(t, r) =

∫
|x|=r

x

|x|
·
(
∇ρm − µ1−2/dρ∇c

)
dS

= σrd−1∂r

(
∂rM(t, r)

σrd−1

)m
− µ1−2/d

σrd−1
∂rM(t, r)

∫
|x|=r

∂rc(t, r)dS

= σrd−1∂r

(
∂rM(t, r)

σrd−1

)m
+
µ−2/d

a(r)

∂rM(t, r)

σrd−1
M(t, r).
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Suppose u0 satisfies (8) and let ρε(t) solve (17) with initial data

ρε(0) = ρ0 + ε
e−|x|

2/4

(4π)d/2
.

By Lemma 5, ρε(t, r) remain smooth and positive on their time interval of existence (0, T+(ρε(0))).
We are now ready to state and prove the mass comparison result which will complete the proof

of Theorem 6.

Proposition 2. Suppose that T < min(T?, T+(ρε(0))) and let Mε(t, r) :=
∫
|x|≤r ρε(t, x)dx. Further

suppose M(0, r) ≤Mε(0, r) for all r ≥ 0. Then we have

M(t, r)−Mε(t, r) ≤ 0 in [0, T ]× Rd.

Proof. Similar to the proof of Lemma 7, by (22) we have,

σrd−1∂r

(
∂rM(r)

σrd−1

)m
+

1

a(R0)

M(r)

σrd−1
∂rM(r) = 0, (25)

and by (21),

∂tM(r) = −
∫
|x|=r

ū(r)
r

R
ṘdS

= − r
R
Ṙ∂rM(r). (26)

By Lemma 4, these equations both hold in the strong sense everywhere, but for this proof we will
only need them in the positivity set. For notational simplicity, define M(t, r) := Mε(t, r).

Consider the space-time region (t, r) ∈ QT , where

QT = {(t, r) : t ∈ [0, T ], r ∈ [0, R(t)]} .

As M(ū) ≡M(t, r) in |x| ≥ R(t), we need only prove the comparison result in QT , from which the
result on (0, T )× Rd follows.

For a given constant λ > 0 (to be chosen later), let us consider the function

f(t, r) := (M(t, r)−M(t, r))e−λt in [0, T ]× R+.

Note that f(0, r) ≤ 0. If f(t, r) ≤ 0 in QT there is nothing to prove, so suppose that it is positive
somewhere. Then f(t, r) has a strictly positive maximum in QT , which is achieved at some point
(t?, r?). Necessarily, r? > 0. If r? = R(t?) then by r? being the location of the maximum, we must
have

0 = ∂rM(t?, r?) ≥ ∂rM(t?, r?) = σrd−1
∗ uε(t?, r?).

Since uε is strictly positive, it follows that r? < R(t?). This implies that due to maximization,

(A) ∂t(M(t?, r?)−M(t?, r?)) ≥ λ(M(t?, r?)−M(t?, r?)).

(B) ∂rM(t?, r?) = ∂rM(t?, r?).

(C) ∂rrM(t?, r?) ≥ ∂rrM(t?, r?).
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Using the mass equations satisfied by each function we have, by (23), (26) and (25),

∂t(M −M)(t?, r?) = σrd−1
? ∂r

(
∂rM

σrd−1
?

)m
+

1

a(R0)

M

σrd−1
?

∂rM

− σrd−1
? ∂r

(
∂rM

σrd−1
?

)m
− µ−2/d

a(r?)

M

σrd−1
?

∂rM − ∂rM
r?

R(t?)
Ṙ(t?).

where all terms are evaluated at (t?, r?). By (B) and (C), we can order the higher order nonlinearity
coming from the diffusion as well as relate the advection terms,

∂t(M −M)(t?, r?) ≤
∂rM

σrd−1
?

(
1

a(R0)
M − µ−2/d

a(r?)
M

)
− ∂rM

r?
R(t?)

Ṙ(t?).

Using that r? ≤ R0 and by assumption a(r) is non-decreasing on r ∈ [0, R0] we have,

∂t(M −M)(t?, r?) ≤
1

a(r?)

∂rM

σrd−1
?

(M −M)(t?, r?)

+ ∂rM

[
(1− µ−2/d)

a(r?)

M

σrd−1
?

− r?
R(t?)

Ṙ(t?)

]
(t?, r?).

Since V is radial and non-increasing, we have

∂r(r
1−d∂rM(t, r)) = σ−1∂r(ū(t, r)) ≤ 0.

In addition we have M(0, t) = 0 and M(R(t), t) = Mc. Note that h(r) := Mc(
r

R(t))d solves

∂r(r
1−d∂rh(r)) = 0 in (0, R(t)) with boundary data h(0) = 0 and h(R(t)) = Mc. Therefore it

follows from a maximum principle argument for the elliptic equation ∂r(r
1−d∂rh) = 0 that

M(r, t) ≥Mc(
r

R(t)
)d. (27)

Using the above observation we have

∂t(M −M)(t?, r?) ≤
1

a(r?)

∂rM

σrd−1
?

(M −M)(t?, r?)

+
∂rM

rd−1
?

[
(1− µ−2/d)

a(r?)

M

σ
− M

Mc
R(t?)

d−1Ṙ(t?)

]
(t?, r?).

Due to (19), and using the fact that a(r) is non-decreasing, we have

∂t(M −M)(t?, r?) ≤
1

a(r?)

∂rM

σrd−1
?

(M −M)(t?, r?)

+ ∂rM

[
(µ−2/d − 1)

a(r?)σr
d−1
?

(M −M)

]
(t?, r?).

Since λ(M −M) ≤ ∂t(M −M), the result follows by choosing

λ > sup
t∈[0,T ]

‖ū(t)‖∞
1

a(0)µ2/d
.

18



We may now prove Theorem 6.

Proof. (Theorem 6) Let u0 satisfy the hypotheses of Proposition 1 and let {ρε} and T? be given as
above. By the hypotheses of Proposition 1,

M(0, r) ≤M(0, r) ≤Mε(0, r) for r ∈ [0,∞) for any ε > 0.

Let T0 be defined as in Lemma 6, which satisfies T+(ρ0) = T0 ≤ lim infε→0 T+(ρε(0)). Therefore,
it suffices to show T0 ≤ T?.

To this end, suppose T0 > T?, which implies that {ρε(t)} and ρ(t) exist on [0, T?] for sufficiently
small ε. Moreover, by Lemma 6, there exists a sequence ρεk → ρ in C([0, T?];L

1(Rd)) and locally
uniformly. Combined with Proposition 2, this implies

M(t, r) ≤M(t, r), (28)

for all 0 ≤ t < T?. Since ū concentrates at time T?, (28) implies that ρ(t) must also concentrate at
T?, contradicting the assumption T+(u0) = T0 > T?.

We briefly sketch a proof of Corollary 1.

Proof. (Corollary 1) Let u0 be as in the statement of Corollary 1. We only need to verify (8) in order
to apply Proposition 1. Let R1 be such that M0 =

∫
|x|≤R1

u0dx > Mc. Then obviously (8) holds for

any r > R1. By assumption, McM
−1
0 u0 is strictly positive on some compact ball {|x| ≤ r1}. Hence

we may choose R0 sufficiently large such that R−d0 V (R−1
0 x) < McM

−1
0 u0(x) for |x| ≤ r1 and clearly

(8) holds up to at least r = r1. As for r1 ≤ r ≤ R1, McM
−1
0

∫
|x|≤r u0(x)dx is non-decreasing and

hence bounded below on the compact annulus by the value at r = r1. Hence, we may choose R0

even larger to ensure that (8) holds also for r1 ≤ r ≤ R1 and therefore everywhere. Hence, we may
apply Proposition 1 and the result follows.

We now prove that we may construct blow up solutions with arbitrarily large initial free energy.
We follow a similar procedure as Lemma 3.7 in [8]. Let VM ⊂ L1

+ ∩ Lm be the set of non-negative,
radially symmetric non-increasing functions in L1 ∩ Lm with mass M . By the above reasoning, if
u0 ∈ VM is continuous with finite second moment then the associated solution u(t) to the scale-
invariant problem with u(0) = u0 blows up in finite time. Now we prove that

sup
h∈VM

F(h) = +∞.

Suppose for contradiction that
A := sup

f∈VM
F(h) <∞. (29)

Following the same scaling argument as in Lemma 3.7 of [8], we may use the HLS (6) to show
(29) implies a reverse Hölder-type inequality for any h ∈ L1

+ ∩ Lm which is radially symmetric
non-increasing:

‖h‖mm‖h‖
2/d
1 .M ‖h‖22d/(d+2).

However, this inequality is clearly false, as m > 2d/(d+2) implies we may easily construct a sequence
of functions with uniformly bounded L2d/(d+2) norm and unbounded Lm norm. Indeed, consider
fδ = (δ + |x|)−α1B(0,1)(x) with α ∈ (d/m, (d + 2)/2) with δ ∈ [0, 1]. Then ‖fδ‖1 ≥ ‖f1‖1 > 0 but
‖fδ‖2d/(d+2) is uniformly bounded and limδ→0 ‖fδ‖m = ∞. Hence it follows by contradiction that
A = +∞. By density, we may restrict to continuous functions with finite second moment in VM
and show that there are solutions to the scale-invariant problem with initial free energy arbitrarily
large which blow up in finite time.
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Appendix: Pressure Form Comparison

By Lemma 3, for any ε > 0 we have

L := sup
ε≤t≤T ∗−ε

|∆c| <∞. (30)

Let us define the pressure form of u:

v =
m

m− 1
(u)m−1. (31)

Then formally v solves the following equation:

vt = (m− 1)v∆v + |Dv|2 +∇v · ∇c+ (m− 1)v∆c.

We proceed to prove the“viscosity solution” property of the pressure v. The notion of viscosity
solutions are first introduced for Hamilton-Jacobi equations by Crandall-Lions ([16]) and later for
fully nonlinear elliptic-parabolic equations ([15]) as well as free boundary type problems (see [11],
[12] and [26] for porous medium-type problems.) The advantage of the approach lies in pointwise
control of solutions and, in our setting, their free boundaries. More specifically we will show that
the initially positive solutions cannot touch down to zero at later times, i.e. that contact lines
cannot be nucleated.

Since c is not C2 up to the zero set of u, ∆c is not well-defined on the free boundary
∂{u > 0} = ∂{v > 0}. This causes a technical problem for directly applying a standard notion of
viscosity solutions to v. Hence we will directly prove the necessary properties to be used in our
analysis in the next section.

Definition 3. For nonnegative functions u and v defined in a small neighborhood Σ of (x0, t0), we
say

(a) u crosses v from below at (x0, t0) if

u ≤ v in Σ ∩ {t ≤ t0} and u(x0, t0) = v(x0, t0).

(b) u crosses v from above at (x0, t0) if

u ≥ v in Σ ∩ {t ≤ t0} and u(x0, t0) = v(x0, t0).
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Proposition 3. For any given domain Σ ⊂ Rd × [0, T ∗ − ε), let φ be a nonnegative continuous
function in Σ which is C2,1 in {φ > 0}, with |Dφ| > 0 on ∂{φ > 0}. Let v be the pressure form of
u as defined in (31). Then the following holds:

(a) Suppose v crosses φ from below at (x0, t0) in {u > 0} ∩ {t ≤ t0} in Σ. Then we have

φt − (m− 1)φ∆φ− |Dφ|2 −∇φ · ∇c− (m− 1)Lφ ≤ 0

(b) Suppose v crosses φ from above at (x0, t0) in {u > 0} ∩ {t ≤ t0} in Σ. Then we have

φt − (m− 1)φ∆φ− |Dφ|2 −∇φ · ∇c+ (m− 1)Lφ ≥ 0.

Here the constant L is as given in (30).

Proof. 1. Note that u and v are smooth in their positive set, and there the result follows easily.
Hence, the only difficult case is when (x0, t0) ∈ ∂{v > 0}.

2. Let us take cε := c ∗ ηε, where ηε is the standard mollifier. Let uε be the weak solution of

(uε)t = ∆(uε)
m +∇ · (uε∇cε),

with initial data uε(x, 0) = u(x, 0). Since cε is C2, it follows from [26] that uε is a viscosity solution in
the sense defined in therein. In particular, it is shown in [26] that the statements in the proposition
hold for vε: the pressure form of uε. Below we will approximate u by uε to prove the proposition.
Since cε is uniformly bounded in C1,1 norm, uε is equi-continuous due to Theorem 6.1 of [19]. Using
this fact, parallel arguments leading to Proposition 3.3 of [27] yields that uε uniformly converges to
u, and thus vε to v.

3. Let us now show (a) when v crosses a nonnegative function φ ∈ C2,1({φ > 0}) from below
at (x0, t0) ∈ ∂{v > 0}. Let us perturb φ so that v really crosses φ, not just touching. This can be
done by replacing φ with

φ̃(x, t) = (φ(x, t)− a(t− t0 − b))+,

where a and b are small positive constants.
4. If (a) fails then, since φ(x0, t0) = 0, then φ satisfies

(φt − (m− 1)φ∆φ− |Dφ|2 −∇φ · ∇c− (m− 1)Lφ)(x0, t0) > 0.

Now let us pick a small δ > 0 and take φδ(·, t) := (φ+)(·, t) ∗ ηδ +m(δ) where η(x) is a standard
mollifier which is smooth and has exponential decay at infinity, and m(δ) is a constant. Choose
m(δ) accordingly so that v is strictly below φδ at t = t0 but crosses φδ from below at t = t0 +O(δ).
Note that this is possible because η does not have a compact support.

Then due to continuity of the derivatives of φ in its support and the corresponding convergence
of φδ to φ, φδ satisfies

(φδ)t − (m− 1)φδ∆φδ − |Dφδ|2 −∇φδ · ∇cε − (m− 1)Lφδ > 0. (32)

in O(δ0)-neighborhood of (x0, t0) if ε, δ << δ0.

Since vε converges uniformly to v as ε → 0, vε crosses φδ from below at (xδ, tδ), which lies in
O(δ0)-neighborhood of (x0, t0) if ε and δ are chosen small enough.
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Note that at (x0, t0) we have

(vε)t ≥ (Dφδ)t, |Dvε| = |Dφδ| and ∆vε ≤ ∆φδ.

this contradicts (32) and the fact that vε satisfies

(vε)t − (m− 1)vε∆vε − |Dvε|2 −∇vε · ∇cε − (m− 1)Lvε ≤ 0

Corollary 2 (Local comparison in pressure variable). In any given parabolic, cylindrical neighbor-
hood Σ, let φ be a C2,1 function in {φ > 0} with |DΦ| > 0 on ∂{φ > 0}.

(a) Suppose that φ satisfies

φt − (m− 1)φ∆φ− |Dφ|2 −∇φ · ∇c− (m− 1)Lφ > 0 in Σ.

Then v cannot cross φ from below in Σ.

(b) Suppose φ satisfies

φt − (m− 1)φ∆φ− |Dφ|2 −∇φ · ∇c+ (m− 1)Lφ < 0 in Σ.

Then v cannot cross φ from above in Σ.

An immediate consequence of the above proposition is the preservation of positivity for u.

Lemma 8. Let u(x, t) be the weak solution associated with the strictly positive continuous initial
data u0(x) > 0. Then u(x, t) is strictly positive everywhere up to the blow-up time T+(u0).

Proof. Let v be the corresponding pressure form of u. Let us recall that the Barenblatt profile is
given as

B(x, t) := t−λ
(
C − k |x|

2

t2µ

)
+

where C > 0 is a positive constant and

λ =
d(m− 1)

d(m− 1) + 2
, µ =

λ

d
, k =

λ

2d
.

B(x, t) then solves the porous medium equation in its pressure form in the viscosity sense (see [26]):

Bt − (m− 1)B∆B − |DB|2 = 0.

Let us now define
B̃(x, t) := e−Mt sup

y∈BM−Mt(x)
B(x, t) for 0 ≤ t ≤ 1.

Then due to Proposition 2.13 in [26] B̃ satisfies

B̃t − (m− 1)B̃∆B̃ − |DB̃|2 +M |DB̃|+MB̃ ≤ 0

for 0 ≤ t ≤ 1. Let us choose
M = (m− 1) max (‖∇c‖L∞ , L) .

(Note that the first term in above upper bound is bounded before the blow-up time).
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Since B(x, t) vanishes uniformly to zero as C → 0, so does B̃. Hence for any τ > 0 one can
choose C = C(τ) sufficiently small so that B̃(x, τ) ≤ u0. Then Corollary 2 yields that

B̃(x, t+ τ) ≤ u(x, t) for 0 ≤ t ≤ 1.

Since τ can be arbitrarily large and B̃ has its support expanding to the whole domain as τ grows
to infinity, we conclude that u is strictly positive for 0 ≤ t ≤ 1.

We can iterate above argument up to the blow-up time to conclude (since the solution and L
remain bounded until blow-up).
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[4] A.L. Bertozzi and D. Slepčev. Existence and uniqueness of solutions to an aggregation equation
with degenerate diffusion. Comm. Pure. Appl. Anal., 9(6):1617–1637, 2010.

[5] P. Biler, G. Karch, P. Laurençot, and T. Nadzieja. The 8π-problem for radially symmetric
solutions of a chemotaxis model in the plane. Math. Meth. Appl. Sci., 29:1563–1583, 2006.

[6] A. Blanchet, V. Calvez, and J.A. Carrillo. Convergence of the mass-transport steepest descent
scheme for subcritical Patlak-Keller-Segel model. SIAM J. Num. Anal., 46:691–721, 2008.

[7] A. Blanchet, E. Carlen, and J.A. Carrillo. Functional inequalities, thick tails and asymptotics
for the critical mass Patlak-Keller-Segel model. arXiv:1009.0134, 2010.
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