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Abstract

In this paper we investigate the waiting time phenomena for the
one-phase Hele-Shaw and Stefan problems. We identify a general cri-
terion on the growth rate of the initial data for the Hele-Shaw problem
which determines the occurrence of a waiting time. For the Stefan
problem we show that the waiting time phenomena depends on the
balance between the initial data and the geometry of the initial posi-
tive phase.

0 Introduction

Let us consider a compact set K ⊂ IRn with smooth boundary ∂K. Sup-
pose that a bounded domain Ω contains K and let Ω0 = Ω−K and Γ0 = ∂Ω
(Figure 1). Note that ∂Ω0 = Γ0 ∪ ∂K.

Let u0 be the harmonic function in Ω0 with smooth fixed boundary data
u0 = f > 0 on K and u0 = 0 on Γ0. The classical Hele-Shaw problem, in
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n = 2, models an incompressible viscous fluid which occupies part of the
space between two parallel, narrowly placed plates ([ST],[EJ].) In this case
u0 denotes the initial pressure of the fluid and f denotes the rate of injection
from K into Ω0. Assuming that there is no surface tension, the pressure of
the fluid u(x, t) satisfies

(HS)























−∆u = 0 in {u > 0} ∩ Q,

ut − |Du|2 = 0 on ∂{u > 0} ∩ Q,

u(x, 0) = u0(x); u(x, t) = f for x ∈ ∂K.

where Q = (IRn −K)× (0,∞). Observe that the initial data u0 in (HS)
is determined by the initial domain Ω0.

We define

Γ(u) = ∂{u > 0},Γt(u) = ∂{u(·, t) > 0} − ∂K

respectively the free boundary of u and the free boundary of u at time t.
We also define

Ω(u) = {u > 0},Ωt(u) = {u(·, t) > 0}

respectively the positive phase of u and the positive phase of u at time t.
When it is obvious from the context we will omit u in the notation of Ωt(u)
and Γt(u).

Note that if u is smooth up to the free boundary, then the free boundary
moves with normal velocity V = ut/|Du|, and hence the second equation in
(HS) implies that V = |Du|. Also note that u is determined by Ω0 and f .

The classical Stefan problem accounts for phase transitions between solid
and fluid states, such as the melting of ice in contact with water ([Ru],[Me].)
Here we assume that the temperature varies only in fluid and the temper-
ature of the solid is maintained at 00C. Then the temperature distribution
of the fluid u(x, t) with nonnegative initial data u0 satisfies

(ST )























ut − ∆u = 0 in {u > 0},

ut − |Du|2 = 0 on ∂{u > 0}

u(x, 0) = u0(x)
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Figure 2.

We use the same notation for the free boundary and the positive phase
of u. (Here the free boundary of u is given as Γt(u) = ∂{u(·, t) > 0}.) Note
that in both problems (HS)-(ST) the free boundary expands in time.

We say that a solution of (HS) or (ST) has a (initial) waiting time t0 > 0
at P ∈ IRn if P ∈ Γ0 and P ∈ Γt(u) for 0 < t < t0.

For n = 2 [KLV] studied the behavior of self-similar solutions of (HS)
with Γ0 as ’wedges’ of the form

(0.1) {(r, θ) : |θ| = θ0}.

It is proven here that if θ0 ≥ π/4 then the free boundary strictly expands
and smoothes out, and if θ0 < π/4 then there is a waiting time at the vertex
of the wedge (see Figure 2.)

In fact parallel result holds (see [JeKi]) for radially symmetric solutions
in IRn, n > 2 with the threshold angle θ0 = θn, with which the initial data
has a quadratic decay rate at the vertex, i.e.,

u0(r, 0) ∼ r2.

For solutions of (HS) with Lipschitz initial domain Ω in IRn, n ≥ 2 it
is recently proved in [CJK] that if the Lipschitz constant of the domain is
smaller than a dimensional constant an, then the free boundary immediately
smoothes out, that is Γ(u) becomes analytic in space and time for a small
amount of positive time. In particular for n = 2 we have a2 = 1 = cot π/4,
which corresponds to the threshold angle θ0 = π/4 in the analysis of [KLV].
For n > 2 we have an smaller than cot θn due to technical reasons. For the
two- dimensional self-similar solutions of (ST), with Γ0 given as in (0.1) and
with u0 = 1 in Ω0(u), [K] shows that parallel results holds with a threshold
angle θ0 = π/6.

3



An open and interesting question, positively answered from above re-
sults, is whether there is a dichotomy on the free boundary behavior of (HS)
and (ST) near t = 0, that is whether it is always one of the two cases: either
the free boundary immediately smooths out, or there is a waiting time at a
point on the initial free boundary. (We mention that the regularity of the
free boundary may not last for all time due to the collision of free boundary
parts.)

In this paper we ask which information on the initial data determines the
occurrence of the waiting time at a given point on the initial free boundary
for both problems (HS) and (ST).

Our goal in this paper is

(1) to extend the results of [KLV] on self-similar solutions in IR2 to solu-
tions with Non-Tangentially Accessible initial domains in IRn and

(2) to investigate the waiting time phenomena for solutions of (ST) with
Lipschitz initial domain in IRn.

In regards to (1) the main idea for the proof is that the occrrence of
waiting time depends on the ’pushing force’ at the vertex, which is generated
in the neighboring regions and accumulated with respect to the distance to
the vertex. (See for example (1.3).)

In regards to (2) we will prove that the waiting time phenomena for (ST)
depends on the balance between the initial heat u0 and the geometry of the
initial positive phase Ω0 of u (see Theorem 1.6- 1.7). Roughly speaking the
waiting time occurs when the initial heat u0 can change into the latent heat
(harmonic function) without changing the geometry of the domain too much.
It is proven in [K] that with a strong, discontinuous initial heat u0 = 1 in
the positive phase and with Γ0 given as in (0.1), we require the half-angle
of the wedge θ0 > π/6 for the free boundary to immediately expand and
smooth out. With harmonic initial data, Γ0 needs to be flatter to smooth
out: we require that θ0 > π/4. This is plausible since the initial heat for
the first case is much stronger than in the second case, and thus melts the
ice more easily.

In Theorem 1.7 we will show that indeed the initial heat needs to be
much stronger than the harmonic initial data to make a difference in the
waiting time phenomena. More precisely we prove that if the initial data
has a degree of regularity depending on the geometry of the initial positive
phase, than the occurrence of the waiting time for (ST) will coincide with
the case of harmonic initial data. This is because if u0 is regular enough
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then the harmonic measure associated with the evolving positive phase does
not change too much while the initial heat changes into ’almost’ latent heat.
(For further discussion see section 5.) In particular when Γ0 is given as in
(0.1) it follows from Theorem 1.6-1.7 that any Hölder continuous initial data
u0 will generate the same waiting time phenomena with the case of harmonic
initial data, that is there is a waiting time if θ0 < π/4 and no waiting time
if θ0 > π/4.

In contrast, in the case of the porous medium equation

(PME)m ut − mu∆u − |Du|2 = 0, u ≥ 0,

the waiting time occurrence is solely determined by the decay rate of the
initial data u0 (see [A], [AC]), independently of the geometry of the initial
positive phase.

For our investigation we use the notion of viscosity solutions, which
has been recently introduced in [Ki1]. An important property of viscosity
solutions which is frequently used in this paper is the comparison principle
(see Theorem 2.7), which enables us to compare our solutions with barriers
that we construct in various settings. The main tools we use in the paper
include

(1) comparison principle of solutions for (HS) and (ST),

(2) estimates on harmonic measures in Lipschitz and NTA domains, and

(3) properties of caloric functions in Lipschitz domains.

1 Statements of the main results

In this section we summarize the results of this paper. Here we use viscosity
solutions (see section 2 for definitions and properties) introduced in [Ki1] as
our notion of solutions.

1.1 Hele-Shaw problem

For x ∈ IRn we denote Br(x) := {y ∈ IRn : |y − x| < r}. we let Ω be a
bounded domain in IRn such that 0 ∈ ∂Ω and let K ⊂ B1/2(−en) ⊂ Ω.
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Definition 1.1. Ω is called non-tangentially accessible (NTA) when there
exists a constant M > 1 such that:

1. Corkscrew condition. For any ζ ∈ ∂Ω, r < 1 there exists
y = y(r, ζ) ∈ Ω such that r/M < |y − ζ| < r and Br/M (y) ⊂ Ω.

2. Ωc satisfies corkscrew condition.

3. Harnack Chain Condition. Let ε > 0 and let x1, x2 ∈ Ω ∩ Br/4(ζ) for

some ζ ∈ ∂Ω and r < 1. If dist(xj , ∂Ω) > ε and |x1 − x2| < 2kε, then
there exists a Harnack chain from x1 to x2 of length Mk such that the
diameter of each ball is bounded below by M−1min{dist(x1, ∂Ω),dist(x2, ∂Ω)}.

M is called the NTA constant.

NTA domains include Lipschitz domains and (slowly rotating) spiral
domains (see Figure 3.)

Definition 1.2. Let Ω be an NTA domain with NTA constant M and let
0 ∈ ∂Ω, −en ∈ Ω. We denote by Ii the component of Ω ∩ ∂B2−i(0) which
separates 0 from −en, i.e. 0 and −en are contained in the different compo-
nents of Ω− Ii (see Figure 3). We also denote by xi a point on Ii such that
B2−i/M2(xi) ⊂ Ω.

Note that by (i) and (iii) of the NTA conditions there exists such xk ∈ Ik.
Throughout Section 1.1 we assume that Ω is NTA with {xi}i as given

in Definition 1.1 and u is the viscosity solution of (HS) with Ω0 = Ω − K,
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0 ∈ Γ0. In the next two theorems we extend the result of [KLV] and show
that if Ω0 is NTA then the threshold decay rate of u0 for the waiting time
phenomena of (HS) is always quadratic.

Theorem 1.3. If there exists ε > 0 such that |u0(xi)| ≤ |xi|
2+ε for i =

1, 2, ..., then there exists a waiting time t0 > 0 for u(x, t) at 0. In particular,
t0 ≥ Cε1/βn where C depends on the NTA constant and βn is a dimensional
constant given in Lemma 3.2.

Remark There are initial (non-NTA) domains such that |u0(x)| ≤ |x|2+ε

but u has no waiting time. For a given angle θ0 let us define

Ω = B1(0) ∩ {xn < 0} − ∪i≥1(∂B2−i(0) − W (θ0,−en))

where
W (θ0,−en) = {x ∈ IRn :< x,−en >≥ |x| cos θ0}.

We choose θ0 < θn, where θn is a dimensional constant such that if
θ0 = θn then the harmonic function associated with Ω has a quadratic
decay at x = 0. Then for this range of θ0 we have |u0(x)| ≤ |x|2+ε for some
ε > 0.

Let Ω0 = Ω − B1/8(−
3
4en), then u has no waiting time at 0 ∈ Γ0 since

B1(0) ∩ {xn < 0} ⊂ Ωt for any t > 0.

Theorem 1.4. The following statements are true:

(a) If there exists a sequence nj → ∞ such that u(xnj
) ≥ |xnj

|2−εnj , then
u has no waiting time.

(b) If u(xi, 0) is comparable to |xi|
2 for i = 1, 2, ..., then u has no waiting

time.

We next consider the borderline case where u0 has quadratic decay at 0
with logarithmic perturbations. In [KLV] it is proved that if Γ0 is given as
a ’curved wedge’
{(r, θ) : |θ| ∼ π/4(1 − α

2|ln(r)|)} near 0 so that

(1.1) u0(z) ∼ Re{
z2

(−lnz)α
}+ as z → 0,

then there is a waiting time at the vertex if α > 1 and there is no waiting
time if α < 1. Next theorem extends this result of [KLV].
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Theorem 1.5. Assume that
(1.2) There exists m > 0 such that for every ζ ∈ Γ0 there exist balls B1 and
B2 contained in Ω0 and IRn − Ω0 such that rad(B1) = rad(B2) = m|ζ| and
ζ = ∂B1 ∩ ∂B2.
Then the following statements hold:

(a) If u0(xi) ≤ |xi|
2(1

i )
α for α > 1 and i = 1, 2, ..., then u has a waiting

time.

(b) If u0(xi) ≥ |xi|
2(1

i )
α for α < 1 and i = 1, 2, ..., then u has no waiting

time.

Remark
1. The case u0(x) ∼ |xi|

2(i)−α arises, for example, when Ω0 is given
as in (1.1) with n = 2. Roughly speaking these are the cases when Ω0

is a logarithmic perturbation of a domain where the associated harmonic
function decays exactly quadratically at zero.

2. (1.2), a C2-bound for Γ0 scaled with respect to the distance to the
vertex, is necessary for technical reasons in our proof. It is not clear whether
the statement holds without (1.2).

Theorem 1.5 (a) is a special case of the following general statement.
Roughly speaking ak corresponds to the ’vertex-pushing force’ generated
outside of the 2−k-neghborhood of the vertex.

Proposition 1.6. Let Ω be NTA with (1.2). Let a0 = 1 and

(1.3) ak = Πk−1
i=0 (1 + ai)2

2ku0(xi).

If lim supak < ∞, then there exists a waiting time.

1.2 Stefan problem

Throughout section 1.2 we denote u the viscosity solution of (ST) with initial
data u0(x) such that {u0(x) > 0} = Ω0 is a Lipchitz domain in IRn. Let
K be a compact set in Ω with a smooth boundary and let h0(x) be the
harmonic function in Ω0 − K with boundary data 0 on Γ0 = ∂Ω0 and 1
on ∂K. After a rotation and translation, we may assume that 0 ∈ Γ0 and
Γ0 = {x = (x′, xn) : xn = f(x′)} with a Lipschitz function f in a small
neighborhood of 0 with f(0) = 0. In this section we denote C as a positive
constant depending only on the Lipschitz constant of f and dimension n.
Let positive constants α1 < α2 and C satisfy
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1

C
rα2 ≤ h0(−ren) ≤ Crα1

for sufficiently small r > 0. We call α1 and α2 respectively the minimal
and maximal decay rate of h0 at 0.

Theorem 1.7. If the maximal decay rate of h0(x) at 0 is less than 2 then
u has no waiting time at 0.

Theorem 1.8. Let u(x, 0) ∈ Cδ(Ω̄0) and let α1 ≤ α2 to be the minimal and
maximal decay rate of h0 at 0. If α1 > 2 and α2 − α1 < δ/2 then u has a
waiting time at the origin.

Remark u may not have a waiting time if α2 − α1 ≥ δ/2, in particular
if u0 is discontinuous. A good example is the one studied in [K], where Ω0 is
given as in (0.1) with n = 2 (therefore α2 = α1) and u0 is the characteristic
function of Ω0. In this case there is no waiting time if the wedge angle θ0 is
between π/4 and π/6 even though the decay rate of h0 satisfies α1 = α2 > 2.
In section 5 we construct another example where Ω0 is an oscillatory domain
and u0 ∈ Cδ but α2 − α1 > δ/2.

2 Viscosity solutions

In this section we introduce the notion of viscosity solutions for (HS) and
(ST) which we will use in this paper. Roughly speaking, viscosity sub and
supersolutions are defined by comparison with local (smooth) super and
subsolutions. In particular classical solutions of either problems are also
viscosity sub and supersolutions.

Definition 2.1. We say that a pair of functions u0, v0 : D̄ → [0,∞) are
(strictly) separated (denoted by u0 ≺ v0) in D ⊂ IRn if

(i) the support of u0, supp(u0) = {u0 > 0} restricted in D̄ is compact and

(ii) in supp(u0) ∩ D̄ the functions are strictly ordered:

u0(x) < v0(x).

For a nonnegative real valued function u(x, t) defined in a cylindrical
domain D × (a, b), we define
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Ω(u) = {(x, t) : u(x, t) > 0}, Ωt(u) = {x : u(x, t) > 0},

Γ(u) = ∂{(x, t) : u(x, t) = 0}, Γt(u) = ∂{x : u(x, t) = 0}.

Let Q = (IRn−K)×(0,∞) and let Σ be a cylindrical domain D×(a, b) ⊂
IRn × IR, where D is an open subset of IRn. The following definitions are
introduced in [Ki1].

Definition 2.2. A nonnegative upper semicontinuous function u defined in
Σ is a viscosity subsolution of (HS) if

(a) for each a < T < b the set Ω(u) ∩ {t ≤ T} is bounded; and

(b) for every φ ∈ C2,1(Σ) such that u− φ has a local maximum in Ω(u) ∩
{t ≤ t0} ∩ Σ at (x0, t0),

(i) − ∆φ(x0, t0) ≤ 0 if u(x0, t0) > 0.

(ii) (φt − |Dφ|2)(x0, t0) ≤ 0 if (x0, t0) ∈ Γ(u) if − ∆φ(x0, t0) > 0.

Note that because u is only upper lowercontinuous there may be points
of Γ(u) at which u is positive.

Definition 2.3. A nonnegative lower semicontinuous function v defined in
Σ is a viscosity supersolution of (HS) if for every φ ∈ C 2,1(Σ) such that
v − φ has a local minimum in Σ ∩ {t ≤ t0} at (x0, t0),

(i) − ∆φ(x0, t0) ≥ 0 if v(x0, t0) > 0,

(ii) If (x0, t0) ∈ Γ(v), |Dφ|(x0, t0) 6= 0 and
−∆ϕ(x0, t0) < 0,

then

(φt − |Dφ|2)(x0, t0) ≥ 0.

Definition 2.4. u is a viscosity subsolution of (HS) with initial data u0 and
fixed boundary data f > 0 if

(a) u is a viscosity subsolution in Q̄,

(b) u = u0 at t = 0; u ≤ f on ∂K;
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(c) Ω(u) ∩ {t = 0} = Ω(u0);

Definition 2.5. u is a viscosity supersolution of (HS) with initial data u0

and fixed boundary data f if u is a viscosity supersolution in Q̄ with u = u0

at t = 0 and u ≥ f on ∂K.

For a nonnegative real valued function u(x, t) defined in a cylindrical
domain D × (a, b),

u∗(x, t) = lim sup
(ξ,s)∈D×(a,b)→(x,t)

u(ξ, s).

Definition 2.6. u is a viscosity solution of (HS) (with boundary data u0

and f) if u is a viscosity supersolution and u∗ is a viscosity subsolution of
(HS) (with boundary data u0 and f .)

Viscosity solutions of (ST) are similarly defined (see [Ki1] for definition).
The following properties of viscosity solutions are frequently used in our
paper.

Theorem 2.7. (comparison principle, [Ki2]) Let u, v be respectively viscos-
ity sub- and supersolutions (of (HS) or (ST)) in D × (0, T ) ⊂ Q with initial
data u0 ≺ v0 in D. If u ≤ v on ∂D and u < v on ∂D ∩ Ω̄(u) for 0 ≤ t < T ,
then u(·, t) ≺ v(·, t) in D for t ∈ [0, T ).

Theorem 2.8. (a) For a given domain Ω0 in IRn, there are the maximal
and minimal viscosity solutions of (HS) in Q with boundary data 1
and initial data u0. If the minimal viscosity solution does not have
an initial waiting time, then it is the unique viscosity solution of (HS)
with given boundary data.

(b) u is harmonic in Ω(u). Indeed u(x, t) = ht(x), where

ht(x) = inf{v ∈ P with v = 1 on ∂K and v ≥ 0 on Γt}.

where P is the set of superharmonic functions in Ωt which are lower
semicontinuous in Ω̄t.

(c) For a given initial data v0 ≥ 0 with its positive set Ω0(v) bounded in
IRn there are the maximal and minimal viscosity solutions of (ST) in
IRn × [0,∞). If the minimal viscosity solution does not have an initial
waiting time, then it is the unique viscosity solution of (ST) with given
boundary data.
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Remark
It is an open question that whether or not there is a unique viscosity

solution of (HS) or (ST) when there is a waiting time.

3 Proofs of the main result: Hele-Shaw problem

In this section we prove the main results for Hele-Shaw problem. Let 0 ∈ Γ0

and K ⊂ B1/2(−en) ⊂ Ω ⊂ B10(0). Throughout the paper we denote
Ak = B2−k(0) − B2−k−1(0) (k ≥ 1).

The key observation that will be used throughout this section is that
there is a waiting time at 0 ∈ Γ0 if and only if there exists t0 > 0 such that
Γt0 ∩ Ak 6= ∅ for every k ≥ 1. In order to decide whether there exists such
t0 > 0 or not, we will use induction and estimate the change of the harmonic
measure for each annulus Ak in time. First we prove Theorem 1.3.

Definition 3.1. ω(x, ·,Ω) is the unique probability measure on ∂Ω such
that ω(x,E,Ω) = w(x) where w is the harmonic function in Ω, which has
boundary value 1 on E and 0 elsewhere on its boundary.

First we state properties of NTA domains we use in the proof.

Lemma 3.2. ([JK], Lemma 4.1) Let Ω be NTA contained in B10(0). There
exists a dimensional constant βn > 0 such that for any ζ ∈ ∂Ω, 0 < 2r < 1
and positive harmonic function u in Ω ∩ B2r(ζ), if u vanishes continuously
on B2r(ζ) ∩ ∂Ω, then for x ∈ Ω ∩ Br(ζ),

u(x) ≤ C(
|x − ζ|

r
)βnsup{u(y) : y ∈ ∂B2r(ζ) ∩ Ω}

where C depends only on the NTA constant.

Lemma 3.3. ([JK], Lemma 4.11) Let Ω be NTA contained in B10(0). For
ζ0, ζ ∈ ∂Ω and r < 1, let Bs(ζ) ⊂ Br/2(ζ0). If
x ∈ Ω − B2r(ζ0) and x0 is a point in the middle of Br(ζ0) ∩ Ω, then

ω(x0, Bs(ζ),Ω) ≈
ω(x,Bs(ζ),Ω)

ω(x,Br(ζ0),Ω)

where C1 ≈ C2 means that the ratio between C1 and C2 is bounded above
and below by a constant that depends on the NTA constant.

Proof of Theorem 1.3.
Recall that Ii (i ≥ 1) is the component of Ω0 ∩ ∂B2−i(0) which separates 0
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from −en. Denote by M the NTA constant of Ω. Let Si be the component
of Ω0 − Ii, which contains 0 on its boundary (see Figure 4).

Let a = c0ε
1/βn where c0 = c0(M) will be determined later and βn is the

dimensional constant given in Lemma 3.2. We will show that there exists
t0 > 0 such that for every i ≥ 1,

(3.1) Γt0 ⊂ (∪i
j=1Nj) ∪ Ñi+1

where Nj is the a2−j-neighborhood of Γ0 ∩ ∂(Sj −Sj+1) and Ñi+1 is the
a2−i-neighborhood of Γ0 ∩ ∂(Si+1).

Let us choose t0 such that

t0 = c1a

where c1 = c(M, c0) will be also determined later.
By a barrier argument, we can see that (3.1) holds when i = 1 for t0 if

c1 is chosen small enough. We will use an induction for the proof of (3.1).
Assume that (3.1) holds for i = k − 1. We will show that (3.1) also holds
with the same t0 for i = k.

Since Ω0 is an NTA domain, if we let a � c(M) and if (3.1) holds for
i = k−1, then we can see that Ωt0 is contained in a NTA domain Ω′

k−1 such
that (3.1) is satisfied with Γt0 replaced by ∂Ω′

k−1 and for i = k − 1.
Let v be a harmonic function in Ω′

k−1−K with boundary value 1 on ∂K

and 0 on ∂Ω′
k−1, then u(x, t0) ≤ v(x). We will show that v(xk) ≤ |xk|

2+ε′ for
some ε′ > 0. (Recall that xk is a point on Ik such that B2−i/M2(xk) ⊂ Ω0.)

Define I ′i,k−1 be the component of Ω′
k−1∩∂B2−i(0), which contains Ii and

let S′
i,k−1 be the component of Ω′

k−1 − I ′i,k−1, which contains Si (see Figure
4.) For simplicity we will omit the k- dependence on I ′

i,k−1 and S′
i,k−1 from
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now on. Let
Ωi = Ω0 ∪ S′

i

and let vi be the harmonic function in Ωi with boundary value 1 on ∂K and
0 on ∂Ωi −∂K. Observe that vi−1 − vi is a positive harmonic function in Ωi

with boundary value vi−1 on ∂Ωi ∩ Ωi−1 and 0 elsewhere on its boundary.

Claim 1. Assume that (3.1) holds for i = k − 1. Then for 2 ≤ i ≤ k

vi−1(xk)

vi(xk)
≤ 1 + Caβn

where C depends only on the NTA constant M .

Proof of Claim 1. Let 2 ≤ i ≤ k. Since S ′
i−1 − S′

i is contained in the

2a2−(i−1)−neighborhood of ∂Ωi−1, Lemma 3.2 implies that for y ∈ ∂Ωi ∩
Ωi−1

(3.2)















vi−1(y) ≤ C(
dist(y, ∂Ωi−1)

2−(i−1)
)βnsupx∈S′

i−1−S′
i
vi−1(x)

≤ Caβnsupx∈S′
i−1−S′

i
vi−1(x)

and

(3.3) sup{vi−1(x) : S′
i−1 − S′

i} ≤ Cvi−1(xi−1).

Also we obtain

(3.4) vi−1(xi−1) ≈ vi(xi−1).

since Lemma 3.2 and Lemma 3.3 imply that for 1 < j < i − 1 and
y ∈ ∂B2−j (0) ∩ Ω

ω(y, ∂B2−j+1(0),Ωi−1)

ω(y, ∂B2−j+1(0),Ωi)
≤ 1 + C2(j−i)βn .

Since vi−1−vi is a positive harmonic function in Ωi with boundary value
vi−1 on ∂Ωi ∩ Ωi−1 and 0 elsewhere on its boundary, (3.2), (3.3) and (3.4)
imply that

vi−1(xk) − vi(xk) ≤ ω(xk, ∂B2−i(0), B2−i(0) ∩ Ωi)sup∂Ωi∩Ωi−1
vi−1(y)

≤ Caβnω(xk, ∂B2−i(0), B2−i(0) ∩ Ωi)vi−1(xi−1)

≈ Caβnω(xk, ∂B2−i(0), B2−i(0) ∩ Ωi)vi(xi−1)

≤ Caβnvi(xk).
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for some C > 0 depending on the NTA constant M . 2

Claim 1 combined with
v(xk)

v1(xk)
≤ C and

vk(xk)

u0(xk)
≤ C yields that

v(xk)

u0(xk)
≤ C1(1 + C2a

βn)k

where C1 and C2 depend only on M .
Hence if we choose c0 in the definition of a small enough such that

C2a
βn < (1/10)ε, then

(3.5) v(xk) ≤ Cu0(xk)(1 + (1/10)ε)k ≤ C|xk|
2+ε(1 + (1/10)ε)k ≤ C|xk|

2+ε′

for ε′ = ε − log2(1 + (1/10)ε) > 0.
Now using (3.5) and the relation u(x, t0) ≤ v(x), we prove (3.1) for i = k.

Let B be a ball in Ωc
0 such that

(1/M)(a/2)2−k ≤ rad(B) ≤ dist(B,Sk) ≤ (a/2)2−k .

Let (c(M)/a)B be the concentric ball containing B with the radius of
(c(M)/a)rad(B). Let φ be a radially symmetric solution of (HS) in Σ :=
(c(M)/a)B × [0, t0) with fixed boundary data C(2−k)2+ε′ on ∂((c(M)/a)B)
and with initial positive set (c(M)/a)B − B. Then (3.5) and Lemma 3.2
imply that u ≤ φ on the parabolic boundary of Σ. Hence by Theorem 2.7
u ≤ φ in Σ. Since

t0 := c1a ≤ c1a2ε′k,

it follows from the comparison with u and φ that if we choose c1 small
enough then (3.1) holds for i = k. Now we can conclude.

2

Proof of Theorem 1.4
We will prove that for both (a) and (b), for any t > 0 there is k0 = k0(t)

such that Γt(u)∩Bk0(0) = ∅. First let us assume (a). Due to the Corkscrew
condition on Ω, for sufficiently big n > 0, there exists yn such that |yn| '
|xn| and B|xn|/M (yn) ⊂ Ω0. Moreover due to Lemma 3.2 and the Harnack
inequality,

u0(x) ≥ C|xn|
2−εn in B|xn|/2M (yn).

Now if one considers a radially symmetric solution φ of (HS) with K =
B|xn|/2M (yn) and Ω = B|xn|/M (yn), φ ≤ u by Theorem 2.7. Since |Dφ| ≥
C|xn|

1−ε on Γt(φ) up to t = t0 when Γt0(φ) = B2|xn|(yn), one obtains
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t0 ≤ C
2|xn|

|xn|1−ε
= C|xn|

ε.

Due to Theorem 2.7, Ωt(φ) ⊂ Ωt(u) for each t > 0 and it follows that
Γt(u) ∩ B|xn|(0) = ∅ if t > t0. Since t0 → 0 as n → ∞ we can conclude.

Now for the case (b), for any sufficiently small r > 0 due to Definition
1.1 condition 2, there is 1/M < m < 2 and y ∈ Ω such that Bmr(y) ⊂ Ω and
B̄mr(y) ∩ ∂Ω is nonempty. Let φ be a radially symmetric solution of (HS)
with Ω = Bmr(y), K = Bmr/2(y) and f = r2. By comparing u to φ for each
r > 0, it follows that for any t0 > 0 there is k0 > 0 such that for k > k0 a
fixed portion of Γ0(u) in Ak expands in the direction of en = (0, .., 1) ∈ IRn

by distance C2−k. In particular if 0 ∈ Γt0(u), then for any t0 > 0 there
exists ε > 0 such that

sup
x∈Ii

u(x, t0) ≥ |2−i|2−ε for sufficiently large i.

Hence by (a) u(0, t0 + s) > 0 for any s > 0. Since t0 is arbitrary, we can
conclude. 2

Proof of Proposition 1.6.

Let t0 > 0 be sufficiently small. Suppose that there exist ai <
m

10
(0 ≤ i ≤ k − 1) such that Γt0 ∩Ai is contained in the ai2

−i-neighborhood of
Γ0 ∩ Ai for 0 ≤ i ≤ k − 1. By a similar argument as in Claim 1

u(xk, t0) ≤ CΠk−1
i=0 (1 + ai)u(xk, 0)

since we can take the dimensional constant βn in Claim 1 as 1 due to our
extra assumption on Ω0.

A barrier argument as in the proof of Theorem 1.3 yields that Γt0 ∩ Ak

is contained in the ak2
−k-neighborhood of Γ0 ∩ Ak where

ak := C
Πk−1

i=0 (1 + ai)u(xk, 0)

2−2k
· t0.

Observe that if we can show ak <
m

10
, then by induction there exists a

waiting time at 0. Since we can take t0 > 0 sufficiently small, we can con-
clude that if lim sup ãk < ∞ for the sequence ãk = Πk−1

i=0 (1 + ãi)2
2ku(xk, 0),

ã0 = 1, then there exists a waiting time. 2

(a) of Theorem 1.5 follows from Proposition 1.6. Next, we prove the
second part of Theorem 1.5.
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Definition 3.4. For ζ ∈ Γ0, let

H(ζ, t) := dist(ζ,Γt).

Proof of (b) of Theorem 1.5.
1. Let t0 > 0 and partition [0, t0] into 0 = s0 < s1 < · · · < sP = t0. By a

simple barrier argument with a radially symmetric test function we obtain
that

H(ζ, s1) ≥ C
u(xi, 0)

2−i
· s1

for every ζ ∈ Γ0 ∩ Ai. Hence by a similar argument as in Claim 1

u(xk, s1) ≥ Πk−1
i=0 (1 + C

u(xi, 0)

2−2i
· s1) · u(xk, 0).

2. Repeating our argument, we also obtain that for 1 ≤ m ≤ P

(3.6) u(xk, sm) ≥ Πk−1
i=0 Πm−1

j=0 (1 + C
u(xi, sj)(sj+1 − sj)

2−2i
) · u(xk, 0)

and for any ζ ∈ Γ0 ∩ Ak

(3.7) H(ζ, sP ) ≥ C
n−1
∑

m=0

u(xk, sm)(sm+1 − sm)

2−k
.

3. In terms of integration, (3.6) yields

(3.8)

u(xk, t) ≥ u0(xk)Π
k−1
i=1 (1 + C22i

∫ t
0 u(xi, s)ds)

≥ 2−2kk−αt
∑k−1

i=1 22iu0(xi)

≥ 2−2kk−αt
∑k−1

i=1 i−α

≥ 2−2kk1−2αt

where the second and third inequality holds due to the assumption on
the decay rate of u. Observe that 2α−1 < α since α < 1. Hence if we define
a sequence b1, b2, ... such that b1 = α and bn+1 = 2bn − 1, then there exists
l = l(α) such that bl ≤ 0.
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4. Now we are ready to show that there is no waiting time for u at the
origin. Let us fix t0 > 0 and define

bj = j
t0
2l

, j = 0, .., l.

Then by inductively applying the estimate (3.8) replacing u(xk, t) by
u(xk, bj) and u(xi, 0) by u(xi, bj−1) for j = 1, 2, ..., l we have

u(xk,
t0
2

) = u(xk, bl) ≥ 2−2k[Πl
i=1(bi − bi−1)

2l−i

]k−bl ≥ 2−2k(
t0
2l

)2
l

In other words u decays slower than quadratically at t = t0/2. Hence
due to Theorem 1.3, u(0, t0) > 0. Since t0 is arbitrary, we can conclude.

2

4 Proofs of the main result: Stefan problem

In this section we assume Γ0 to be locally Lipschitz along the direction
en = (0, .., 0, 1) in a neighborhood of the vertex 0. More precisely in a small
neighborhood of the origin we assume that Ω0 is given as {(x′, xn) : xn >
f(x′, 0)} where f is Lipschitz with Lipschitz constant L.

The following lemmas are important in our analysis in this section. In
particular, Lemma 4.3 shows that the initial heat with fixed Lipschitz posi-
tive phase changes to be (almost) harmonic over the amount of time t ∼ d2,
where d is the distance between the given point in the positive phase and
the free boundary. In our free boundary problem (ST), this change will
affect the expansion of the initial positive phase over time and vice versa.
Lemma 4.1 gives us a control over the change of the initial heat before it
changes to be (almost) harmonic, that is for the time interval 0 ≤ t ≤ d2.

Lemma 4.1. [Di]
Suppose u0(x) ∈ C0(IR

n) ∩ Cδ(IRn) for some δ > 0 and let u(x, t) solve
the heat equation in IRn × [0,∞) with initial data u0. Then there exists a
constant A depending only on n, δ and the Hölder constant of u0 in B1(0)
such that

|ut|(x, t) + |uxixj
|(x, t) ≤ Atδ/2−1

in B1(0) × (0, 1) for any i, j = 1, 2, ...n.

Let Qa be the a-cube Ba(0) × (−a, a) in IRn+1.
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Lemma 4.2. [ACS] Let u be a caloric function in Q1 ∩ D, where
D ∩ Q1 = {xn > f(x′, t)} where f is Lipschitz and (0, 0) ∈ ∂D. Then
there exists a constant δ > 0 depending on n, the Lipschitz constant L of D,
and the ratio r between the supremum of u in Q1 and u(−en, 0) such that
∇u · en ≥ 0 in D ∩ Qδ.

Lemma 4.3. [ACS] Let u,D and r, L be as in Lemma 4.3. Then there exist
ε, δ > 0 depending on n, r, L such that

u + u1+ε; u − u1+ε

are subharmonic and superharmonic, respectively, at each time in Qδ ∩D.

Lemma 4.4. (Dahlberg, see [D]) Let u1, u2 be two nonnegative harmonic
functions in a domain D of IRn of the form

D = {(x′, xn) ∈ IRn−1 × IR : |x′| < 2, |xn| < 2M,xn > f(x′)}

with f a Lipschitz function with constant less than M and f(0) = 0.
Assume further that u1 = u2 = 0 along the graph of f . Then for

D1/2 = {|x′| < 1, |xn| < M,xn > f(x′)}

We have

0 < C1 ≤
u1(x

′, xn)

u2(x′, xn)
·
u2(0,M)

u1(0,M)
≤ C2

with C1, C2 depending only on M .

Lemma 4.5. (Caffarelli, see [C1]) Let u be as in Lemma 4.4. Then there
exists c > 0 depending only on M such that for 0 < d < c un(0, d) :=
∂u
∂xn

(0, d) ≥ 0 and

C1
u(0, d)

d
≤ un(0, d) ≤ C2

u(0, d)

d

where Ci = Ci(M).

Let u and h0 to be as in section 1.2.

Lemma 4.6. If h0(x) has less than quadratic decay at 0, then there is no
waiting time for u.
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Proof
1. First we choose a small t0 > 0. Below we will show that, u(0, t) > 0

for t > t0. Since t0 is arbitrary we can then conclude. Also without loss of
generality, we may assume that Γ0 is Lipschitz in B1 along the direction en.

2. Let w solve the heat equation in the domain

Σ := Ω0 × [0, t0]

with initial data u(x, 0). Since Σ is Lipschitz in space and time, In a
small neighborhood Bh(0) × [t0, t0 + h2], h = h(t0) there is ε depending
only on the Lipschtz constant of Γ0 in B1 such that w1 := w − w1+ε is
superharmonic in Σ.

3. Let us choose C = C(t0) large enough that Cw1 ≥ w at (−hen, t0).
Then by continuity of w in time and by Lemma 4.4 applied at each t,

w ≥ w1 ≥ Ch0 in Bh(0) × [t0, t0 + ε]

for small ε > 0.
In particular it follows that, for some k > 0,

w(−ren, t) ≥ Ch0(−ren, t) ≥ Ch0(−ren, 0) > Cr2−k for t ∈ [t0, t0 + ε].

4. Lastly, observe that w ≤ u by the maximal principle of the heat
equation. Hence for sufficiently small r > 0

u(−ren, t) ≥ Cr2−k for t ∈ [t0, t0 + ε].

Since Ω0 is Lipschitz, BCr(−ren) ⊂ Ω0.
Next we consider a radially symmetric subsolution φ(x, t) of (ST) in

Σ := (IRn−BCr/2(−ren))× [t0, t0 +ε] whose initial and fixed boundary data
are given as

−∆φ(x, t0) = 0 in BCr(−ren) − BCr/2(−ren),

φ(·, t0) = 0 on ∂BCr(−ren), φ(·, t) = Cr2−k on ∂BCr/2(−ren).

By comparing u and φ in Σ, it follows that

u(0, t0 + rk/2) > 0 for sufficiently small r > 0.

Hence we conclude.
2
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Proving the occurrence of the waiting time is more involved since we need
to observe the behavior of the solution during a time period 0 < t < t0.

Proof of Theorem 1.8
1. Recall that we assume u0(x) ∈ Cδ(Ω̄0) and the minimal and maximal

decay rate a and b of h0 satisfies 2 < α1 ≤ α2 and α2−α1 < δ/2, where h0 is
the harmonic function in Ω0 − K, K a compact subset of Ω with boundary
value 0 on ∂Ω0 and 1 on ∂K. Throughout the proof we will denote C as a
positive constant which only depends on δ, L and n.

2. The plan is to construct a supersolution ṽ of (ST) in a neighborhood
of the origin which has a waiting time at the origin and to compare ṽ with
u to conclude our theorem. For this purpose first we will construct a super-
solution h̃ of (HS) such that u ≤ ṽ ≤ h̃ in a small neighborhood of 0 and for
a small time.

3. Let r > 0 be sufficiently small. First we construct a supersolution
h(x, t) of (HS) in Br(0) × [0, 1) such that

(i) Ω0(u) ∩ Br(0) ⊂ Ω0(h) ∩ Br(0) and Ω̄0(u) ∩ ∂Br(0) ⊂ Ω0(h);

(ii) Γ(h) has a waiting time at (0,0);

(iii) β2 − β1 < δ/2, where β1 and β2 are the maximal and minimal rate of
h(x, 0);

(iv) Γ(h) is Lipschitz in space-time.

Note that we cannot use a solution of (HS) with initial free boundary
Γ0 as a barrier for u most importantly since we do not know if it satisfies
property (iv) and hence we cannot apply Lemma 4.2 and 4.3.

4. To construct such h satisfying (i)-(iv), first we choose a sufficiently
small a > 0 and define Ω′ to be the support of the following function:

U(x) := sup
y∈B2a|x|(x)

u(y, 0).

Since h0(x) has its minimal decay rate more than 2 near the origin, the
harmonic function in Ω′ − K with boundary value 0 on ∂Ω′ and 1 on ∂K
has a minimal decay rate 2+ ε′ for some ε′ > 0, if a > 0 is sufficiently small.
(Its proof is the same as that of Theorem 1.2.) Next for 0 ≤ t ≤ 1 we define
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(4.1) U t(x) := inf
y∈Ba(t)|x|(x)

U(y)

where a(t) := 2a −
a

2
t|x|ε

′/2. Next we let

Ω′
t = Ω(U t)

and let ht(x) be the harmonic function in Ω′
t −K with boundary data 0 on

∂Ω′
t and 1 on K.
If we define h(x, t) := ht(x), then (i),(ii),(iv) follow from its construction

and (iii) is also satisfied if a is sufficiently small, since 2 + ε′ → α1 as a → 0
due to the proof of Theorem 1.2.

Now we show that h(x, t) is a supersolution of (HS) in Br(0)×[0, 1]. Note
that h(x, t) ≤ |x|2+ε′ . Hence due to the exterior ball property of Ω′

t ∩ Br(0)
and by Lemma 4.5,

|∇xh| ≤ C|x|1+ε′ on Γt(h) ∩ Br(0)

where C depends on L, n and a.
On the other hand the normal velocity of Γt(h) is given as a|x|1+ε′/2 by

its construction. Therefore for sufficiently small r > 0 it follows that h is a
supersolution of (HS) in Br(0) × [0, 1] with property (i)-(iv).

5. Recall that β1 ≤ β2 is given as respectively the minimal and maximal
decay rate of h(x, 0) near the origin and β2 − β1 < δ/2 by our construction
of h. We. will first prove the theorem for the case 2 < α1 ≤ α2 < 2 + δ.
Note that in this case we have β2 < α2 < 2 + δ.

Let us fix 0 < l << r and let α(t) be given as

α(t) = tδ/2−β2/2

on [0, t0], where t0 is chosen such that
∫ t0
0 α(t)dt = 1. Note that α(t) is

integrable since δ − β2 > −2 by our hypothesis.
With above choice of α(t)

(4.2) h̃(x, t) := α(t)h(x − len,

∫ t

0
α(t)dt).

is also a supersolution of (HS) in Br(0)×[0, t0]. Observe that h̃ has a waiting
time at the vertex len.
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6. Now we construct a supersolution ṽ of (ST) such that u ≤ ṽ for a
small time and ṽ has a waiting time. Let v solve the heat equation in Ω(h̃)
with a proper initial data v0(x) to be chosen. We would like to construct
the initial data v0(x) whose support lies inside Ω0(h̃) such that v0 and v
satisfies

(i) v(x, 0) ∈ Cδ(IRn),

(ii) u ≺ v on the parabolic boundary of the following set:

O := {(x, t) : |x − len| ≤ t1/2, 0 ≤ t ≤ t0}.

Without loss of generality we may assume that

(4.3) u0(x) ≤ c0|x|
δ

where c0 = c0(δ, L, n) is sufficiently small constant which will be chosen
later. Since u0 ∈ Cδ(IRn) and u0(0) = 0. For simplicity we may assume
C = 1. Let φ(x) = φ(|x|) to be a smooth function such that 0 ≤ φ ≤ 1,
φ = 1 on |x| ≤ 1/2 and φ = 0 if |x| ≥ 1. We then let

v0(x) =

∫

Ω0

|y|δφ(
x − y

g(x)
)dy

where g(x) = a|x| + l. Observe that, since l << r, the support of v0 is
contained in Ω(h̃) ∩ O.

Note that u0 ≺ c0v0 by properties of φ and g. Moreover from a straight-
forward computation it follows that v0(x) ∈ Cδ(IRn).

7. First we show that u ≺ c1v on the lateral boundary of O, where
c1 = Cc0. Let (y, s) be on the lateral boundary of O, i.e., s = a2|y − len|

2.
By (4.3) and Theorem 4.1

u(y, s) ≤ Cc0|y|
δ.

On the other hand due to Theorem 4.1,

v(y, τ) ≥ C|y|δ if 0 ≤ τ ≤ |y|2 and if d(y,Ω0) ≤ (a/2)|y|.

We claim that for any m > 0 and 0 ≤ s ≤ a2m2,

(4.4). d(p,Ω0) ≤ am/2 if p ∈ Γs(u) ∩ ∂Bm(0).
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If (4.4) holds, then from above estimates it would follow that u(y, s) <
Cc0v(y, s) if (y, s) ∈ Ω(u).

To show (4.4), first note that by our hypothesis for any m > 0 and
p ∈ Γ0(u) ∩ ∂Bm(0), BC1am(p + amen) ⊂ ΩC

0 for C1 depending on the
Lipschitz constant of Γ0. For m > 0 let

t(m) = sup{t > 0 : u(p + am/2en, t) = 0.}

By a barrier argument we will show that

(4.5) t(m) ≥ a2m2,

which proves (4.4).
Note that due to Theorem 4.1 u(y, τ) ≤ Cc0|y|

δ for 0 ≤ τ ≤ |y|2, and in
particular

(4.6) u(·, τ) ≤ Cc0m
δ on B3m(p + amen) for 0 ≤ τ ≤ m2

Let φ be a supersolution of (ST) in Σ := (IRn − BC1am(p + amen)) ×
(0,m2) whose initial and fixed boundary data are given as























−∆φ(x, 0) = 0 in B3m(p + amen) − BC1am(p + aren),

φ(·, 0) = 0 on ∂BC1am/2(p + amen),

φ(·, t) = Cc0m
δ on ∂B3m(p + amen).

Due to (4.6) u is then less than φ on the lateral boundary of Σ. Moreover
since u0 ∈ Cδ(IRn), u0 ≤ C3φ for sufficiently large C3. Hence we can
compare u and C3φ in Σ and it follows that

t(m) ≥ min[m2, C4am2−δ] ≥ a2m2.

for sufficiently small m.
8. Next we show that for some 0 < c2 < 1, c2 only depends on Landn,

ṽ(x, t) := c2v(x, t) is a supersolution of (ST) in O for a proper choice of α(t).
Since Γ(v) = Γ(h̃) and h̃ is a supersolution of (ST) in O, we only need to
show that

|Dv(x, t)| ≤ C|Dh̃(x, t)| on Γ(v).

Observe that due to Theorem 4.1

v((−s + l)en, t) ≤ Csδ
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for 0 ≤ t ≤ s2. Thus we can apply Lemma 4.3 and obtain ε > 0 depending
only on L, a and n such that v1 = v + v1+ε is subharmonic in Bs(len) for
any z ∈ Γa2s2(v). Moreover by definition of v1 we have

v1(x, a2s2) ≤ Csδ if d(x,Γa2s2(v)) ≤ as.

On the other hand, since h increases in time,

h(−sen, t) ≥ h(−sen, 0) ≥ sβ2

where β2 is the maximal decay rate of h(x, 0). By definition of α(t) and by
previous estimates, for a given constant C2 > 0 we can choose C1 > 0 in the
definition of α(t) such that we have

C2h̃(x, t) ≥ v1(x, t) at (x, t) = (−sen, a2s2), 0 < s < t0.

Now due to Lemma 4.4, we have Ch̃ ≥ v1 in O, and therefore Ch̃ ≥ v
in O. Since Ch̃ ≥ v and Γ(v) = Γ(h̃), we obtain C|Dh̃| ≥ |Dv| on Γ(v).
Hence it follows that there exists a positive constant c2 = c2(δ, L, n) such
that ṽ := c2v is a supersolution of (ST) in O.

9. Now we choose c0 in (4.3) small enough such that c1 ≤ c2. Then by
previous arguments it follows that u ≤ ṽ on the parabolic boundary of O.
Now Theorem 2.7 yields that u ≤ ṽ in O, yielding that u(len, s) = 0 for
0 ≤ s ≤ t1, where t1 is independent of l. Lastly we use the fact that l is
arbitrarily small to conclude that u has a waiting time at 0.

10. It remains to prove the theorem when 2 + δ ≤ α2. We claim that in
this case one can always have a bigger Lipschitz domain Σ which contains
Ω with 0 ∈ Σ and the maximal and minimal decay rate α′

2 and α′
1 of the

corresponding harmonic function satisfies that

2 < α′
1 ≤ α′

2 < 2 + δ.

Then we can proceed as in previous step to conclude. Hence our last
step is to prove our claim.

11. Proof of the claim:
Suppose that 2 + δ ≤ α2. Since α2 − α1 < δ/2 by our hypothesis, it

follows that α1, α2 > 2 + δ
2 . Let h be a constant such that 0 < h <

δ

2
and

α2 = α1 +
δ

2
− h; rα2 ≤ sup

|x|=r
u(x) ≤ rα1 .

25



Let δ/2 < δ′ < δ and let

Ω1 = Ω0 ∪ (W (
π

2(2 + δ′)
,−en) ∩ B1(0))

where
W (θ, ν) = {x ∈ IRn :< x, ν >≥ |x| cos(θ/2)}.

We also let v1(x) be the harmonic function in Ω1 − K with boundary data
1 on ∂K and 0 on ∂Ω1. Then

sup
|x|=r

v1(x) ≥ r2+δ′ for 0 < r < 1 and δ/2 < δ′ < δ.

If sup|x|=r v1(x) ≤ r2+k for some k > 0, then let Σ = Ω1. If not then
we inductively construct Σ as follows. Let zi be a point in the middle of

Ai ∩ W (
π

2(2 + δ′)
,−en) where Ai = B2−i(0) − B2−i−1(0). Let i1 > 0 be the

smallest number such that |zi1 |
2+ δ

2 ≤ v(zi1) ≤ 10|zi1 |
2+ δ

2 . Let

Ω2 = (Ω1 − B2−i1 (0)) ∪ Ω0

and let v2 be the corresponding harmonic function in Ω2−K with boundary
value 1 on ∂K and 0 on ∂Ω2. Then for 2−i1 < r < 1

cr2+δ′ ≤ sup
|x|=r

v1(x) ≤ Cr2+(δ/2).

Since Ω0 is a Lipschitz domain, for

x ∈ Ω2 ∩ B2−i1 (0) = Ω0 ∩ B2−i1 (0)

we have

v2(x) ≈ u(x) ·
v2(zi1)

u(zi1)
≈ u(x) ·

v2(zi1)

u(zi1)

≤ C|x|α1 |zi1 |
2+ δ

2
−α2 = C|x|α1 |zi1 |

2−α1+h ≤ C|x|2+h.

If v2(x) ≥ |x|2+δ′ , then let Σ = Ω2. If not, we repeat above argument,
i.e. let i2 be the smallest number such that i2 > i1 and v2(zi2) ≈ |zi2 |

2+δ/2

and let
Ω3 = Ω2 ∪ (W (

π

2(2 + δ′)
,−en) ∩ B2−i2 (0)).

Let Σ be a region obtained inductively as above. At each steps Ωi may not
be Lipschitz, but with a slight modification of Ωi we can get a Lipschitz
domain without changing the minimal and maximal decay rates. 2
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5 A counterexample for Theorem 1.8

As in section 4, let u0 ≥ 0, Ω0(u) = {u0 > 0} be a Lipschitz domain and
let u be the viscosity solution of (ST) with initial data u0. The proofs of
Theorems 1.7 and 1.8 suggests that the initial positive phase Ω0 changes
into a new phase while the initial data transforms into (almost) harmonic
function, and the waiting time phenomena occurs when this new phase,
associated with the corresponding harmonic initial data, has a waiting time
at the vertex. Similar observation has been also made in the example of [K]
mentioned in the introduction.

Based on above observation we will construct a counterexample for The-
orem 1.8 where the harmonic function h0 associated with Ω0 has more than
quadratic decay at the origin and u0 ∈ Cδ(IRn) for some δ > 0 but u has no
waiting time. The key idea is to construct Ω0 such that the change of the
geometry of the positive phase caused by the initial heat u0 is big enough
to change the decay rate of the harmonic initial data in a drastic way.

Let a be sufficiently small, let A be sufficiently large. Define a sequence

1 > t1 > s1 > t2 > s2....

by sm = at1+δ
m and tm+1 = sm · (

sm

tm
)A.

Let Er(x) = x + Br(0) ∩ {y ∈ IRn : yn :=< y, en >< 0} be a half-ball
with center x and radius r and let

Ω0 = (B1(0) ∩ W (
π

10
,−en)) ∪m=1,2... E2tm(−

sm

2
en).

(see Figure 5.) Here π/10 is an arbitrarily chosen small number such that
the harmonic function associated with W (π/10,−en) decays strictly faster
than quadratically. (Instead of π/10 one may choose any angle θ0 < θn.)

Since ∂Ω0 ∩ {yn = − sm

2 } is a subset of a hyperplane, we may let βn = 1
in Lemma 3.2 and obtain

(5.1) h0(−smen) ≈
sm

tm
h0(−tmen) >

s2
m

t2+δ
m

h0(−tmen)

Also since tm+1 = sm · (
sm

tm
)A, if A is sufficiently large and if r < 1, then

h0(−ren) ≤ r2+ε for some ε > 0.

Next let us consider a solution v(x, t) of the heat equation in Ω0× [0,∞)
with initial data v(x, 0) ∈ Cδ(IRn) satisfying Ω0 = {v(x, 0) > 0} and
v(−ren, 0) ≥ rδ for sufficiently small r.
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A counterexample for Theorem 1.8: constructing the initial domain.

E 

W( 

sm/2
2 t m

s m
2

e n)

,−e

m
(

π )n/10

2t

Figure 5.

Due to Theorem 4.1,

(5.2) v(−ren, t) ≥ Crδ for 0 ≤ t ≤ r2, r << 1.

On the other hand by Lemma 4.3 there is ε > 0 such that v − v1+ε is
positive and superharmonic in |x| ≤ c0t

1/2 for a universal constant c0 > 0.
Hence by Lemma 4.4 there is a universal constant C > 0 such that

(5.3) v(−sen, t) ≥ C
v(−t1/2en, t)

h(−t1/2en, 0)
h(sen, 0) for s < c0t

1/2,

By (5.1)-(5.2) we then obtain

(5.4) v(−smen, t) ≥ C2k0
s2
m

t2m
. for t ∈ (t2m, 2t2m)

Now consider a viscosity solution u of (ST) with initial data v(x, 0).
By the maximum principle for the heat equation, u is bigger than v. In
particular one can replace v by u in (5.4).

Now let ξ ∈ Γ0 ∈ {xn = −s}. Then by (5.4) and a barrier argument
with radially symmetric subsolution of (ST) as in the proof of Lemma 4.5,
we obtain that

(5.5) dist(ξ,Γ2t2m
(u)) ∼ C

u(−smen, t)

sm
· t2m ≥ C2k0sm.
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(5.5) and the fact that tm and sm is a decreasing sequence which con-
verges to zero implies that for any small t > 0 there exists r > 0 such
that

Γt(u) ∩ {x ∈ IRn : |x| < r} = ∅.

In other words there is no waiting time for u.
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