Math 266B Winter 2016: Homework 3. Due 1/29.

1. Let U be a bounded domain in \mathbb{R}^n with smooth (C^2) boundary and let $g \in C(\partial U)$. u(x) be as defined in Perron's Method, that is

$$u(x) := \sup\{v(x) : v \text{ is subharmonic } and - M \le v \le g \text{ on } \partial U\}.$$

for a sufficiently large M > 0. In class we have shown that u is harmonic in U.

- (a) Let us fix a boundary point $x_0 \in \partial U$. Construct an explicit function $h \in C(U)$ such that h is harmonic in U, $h(x_0) = 0$ and h < 0 on $\partial U \{x_0\}$ (Hint: use exterior ball property of U at x_0).
- (b) Using (a), show that u is continuous up to the boundary, that is, u(x) converges to $g(x_0)$ as $x \in U$ converges to $x_0 \in \partial U$.

2-4. Evans p. 85. Problem 14,15 and 16.

5. Let U = B(0, R) be a ball of radius R in \mathbb{R}^n with center at origin, and let u be a nonnegative smooth solution of

$$u_t - \Delta u = f(x, t)$$
 in U_T ,

where f satisfies $\max_{U_T} f(x, t) \leq M$.

- (a) Let $x = (x_1, ..., x_n)$. Show that $w(x, t) = u(x, t) e^{R+x_1}M$ satisfies $w_t \Delta w \leq 0$ in U_T .
- (b) Conclude that

$$\sup_{U_T} u \le \sup_{\Gamma_T} u + (e^{2R} - 1)M.$$