## Math 266B: Homework 6. Due Feb. 26th

1. p. 88 , Problem 17.
2. Use Fourier Transform to derive d'Alembert's formula for the solution of one-dimensional wave equation.
3. Consider the telegraph equation (where $\alpha, \beta$ are positive constants)

$$
\begin{cases}u_{t t}+(\alpha+\beta) u_{t}+\alpha \beta u=u_{x x} & \text { in } \mathbb{R} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R} \times\{t=0\} .\end{cases}
$$

(a) Using Fourier transform, find a formula for the solution of above equation.
(b) For which $\alpha$ and $\beta$ does all high frequency waves travel with the same speed?
4. Let $n \geq 2$ and consider the Dirichlet problem in the half-space $x_{n}>0$ :

$$
\begin{cases}\Delta u+a \frac{\partial u}{\partial x_{n}}+k^{2} u=0, & \text { in }\left\{x_{n}>0\right\} \\ u\left(x^{\prime}, 0\right)=f\left(x^{\prime}\right), & \text { where } x^{\prime}:=\left(x_{1}, \ldots, x_{n-1}\right) .\end{cases}
$$

Here $a$ and $k$ are constants. Use the Fourier transform to show that for any $f \in L^{2}\left(\mathbb{R}^{n-1}\right)$, there exists a solution $u$ of the above with

$$
\int_{\mathbb{R}^{n-1}}\left|u\left(x^{\prime}, x_{n}\right)\right|^{2} d x^{\prime} \leq C
$$

for all $0<x_{n}<+\infty$, with $C$ independent of $x_{n}$.
5. Find the characteristics for the initial value problem

$$
w_{t}=\frac{1}{2}\left(\left(w_{x}\right)^{2}+x^{2}\right)
$$

with the initial condition $w(x, 0)=x$ on $t=0$. The solution will not be defined for $|t|>\pi / 2$. Explain this from the behavior of characteristics.
6. Evans page 162 Problem 5. Please specify the boundary points where the non-characteristic boundary condition fails. Does your solution make sense at those points?
7. Consider the eikonal equation $|D u|^{2}=1$ in $\mathbb{R}^{2}$ with $u=g(s)$ on a hypersurface $\Gamma=$ $\{x=f(y), y \in \mathbb{R}\}$. Describe the condition on $g$ and $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that we can find a proper initial data for $p$ to solve the characteristic ODEs near $\Gamma$.
8. Consider the initial value problem

$$
\left\{\begin{array}{l}
w_{x}+w_{x} w_{y}=1 \\
w(x, 0)=f(x)
\end{array}\right.
$$

When is this problem non-characteristic? When it is non-characteristic, show that the solution near $y=0$ is given by

$$
w(x, y)=f(t)-y+\frac{2 y}{f^{\prime}(t)}
$$

where $t(x, y)$ is defined by the equation

$$
y=\left(f^{\prime}(t)\right)^{2}(x-t)
$$

Explain why the solvability of that equation for $t(x, y)$ with $t(x, 0)=x$ is equivalent to the non-characteristic condition at $(x, 0)$.

