Math 251A Spring 2024: Homework 2. Due: May 3rd

In all of the problems, suppose that U is a bounded domain in \mathbb{R}^d with smooth boundary, and $\nu = \nu_x$ denotes the outward normal vector of U at $x \in \partial U$.

1.

- (a) Show that there exists a minimizer u of $E(w) = \int_U \frac{1}{2} |Dw|^2 + \int_U \frac{1}{2} |x|^2 w^2 dx$ in $M = \{w \in H^1(U) : \int_U w = 1\}.$
- (b) Show that u is the unique minimizer in M.
- (c) Show that there is $\lambda > 0$ such that u is a weak solution of

$$\begin{cases} -\Delta u + |x|^2 u = \lambda & \text{in } U;\\ Du \cdot \nu = 0 & \text{on } \partial U, \end{cases}$$

2. [Elliptic regularity] Show that for $f \in H^{-1}(U)$, show that there exists a unique weak solution in $H^1(U)$ for the oblique boundary value problem

$$\begin{cases} -\Delta u = f & \text{in } U ; \\ Du \cdot \nu + u = 0 & \text{on } \partial U \end{cases}$$

with

$$||u||_{H^1(U)} \le C ||f||_{H^{-1}(U)}$$
, with $C = C(d, U)$.

Here $H^{-1}(U)$ is as given in class (or see section 5.9 of Evans, Chapter 5).

3. Let $\vec{f} \in H^1(U : \mathbb{R}^d)$ and let (\vec{v}_p, p) solve the Stokes problem in $H^1_0(U : \mathbb{R}^d) \times L^2(U)$, namely

$$\int (D\vec{v}: D\vec{\phi} - \vec{f} \cdot \vec{\phi} + p\nabla \cdot \vec{\phi}) \, dx = 0 \quad \text{ for any } \vec{\phi} \in H^1_0(U: \mathbb{R}^d)$$

- (a) Show that \vec{v}_p minimizes $E(\vec{v}) = \int (\frac{1}{2} |D\vec{v}|^2 \vec{f} \cdot \vec{v}) dx$ over divergence-free vector fields $\vec{v} \in H_0^1(U : \mathbb{R}^d)$.
- (b) Show that \vec{v}_p is unique a.e. regardless of the choice of p.
- (c) Show that p can be uniquely chosen up to a constant.

4. Given $1 and <math>f \in L^p(U)$, one can find $\vec{v} \in L^q(U; I\!\!R^d)$, 1/q + 1/p = 1, such that

 $f = \nabla \cdot \vec{v}$ in the distribution sense and $\|\vec{v}\|_{L^q(U)} \leq C \|f\|_{L^p(U)}$, with C = C(p, U).

Hint: Use energy method. This is a much easier exercise than the one by Dacorogna-Moser discussed in class, since we do not impose a boundary condition on \vec{v} .

5. Let $H \in C^1(\mathbb{R}^{2n})$, strictly convex and superlinear. Let A be the symplectic matrix given in the class, and let us denite $\langle a, b \rangle$ as the inner product for vectors in \mathbb{R}^{2n} . Consider the energy

$$E(x) := \frac{1}{2} \int_0^1 \langle x, A\dot{x} \rangle \, dx$$

in the space

$$M := \{ x \in C^1(I\!\!R; I\!\!R^{2n} : x(t+1) = x(t), \int_0^1 H(x(t))dt = \alpha \}$$

Show that, if there exists a minimizer in z in M and if $\alpha > \min H(x)$, then z satisfies the Hamilton's ODE $\dot{z} = \lambda ADH(z)$ for some $\lambda \neq 0$. Is the energy bounded from below in M?

6. This problem is to go through the derivation of Euler-Lagrange equation more carefully, completing the details in Theorem 4, section 8.3.2 of Evans. Let us assume the growth assumptions on L as in section 8.2.3 of Evans, and let us complete the details of the proof of Theorem 4 by answering the following questions:

- (a) Please explain why (41) holds a.e.
- (b) In the argument below (41), please explain where each of Fubini's theorem and Domniated convergence theorem is used.