Math 251A Spring 2024: Homework 1. Due: Apr. 17th

1. Show that the energy

$$
E(u)=\lambda \int_{0}^{1}\left|u^{\prime}(t)\right| d t+\int_{0}^{1}|u(t)-g(t)|^{2} d t, \quad \text { with } g(t)=\chi_{[0,1 / 2]},
$$

does not have a minimizer in $W^{1,1}((0,1))$ for $0<\lambda<\lambda_{0}$, and has a smooth minimizer in $\lambda_{0}<\lambda<1$. Find the value of λ_{0}.
2. Let U be a bounded open domain in \mathbb{R}^{d}, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly convex, C^{2} function. Let $\left\{u_{k}\right\}$ be a sequence in $L^{2}(U)$ such that u_{k} and $f\left(u_{k}\right)$ respectively weakly converge to u and $f(u)$ in $L^{2}(U)$. Show that then u_{k} strongly converges to u in $L^{2}(U)$.
3. Let us define $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as below:

$$
u(x, y)= \begin{cases}1 & \text { if } x \geq|y| \\ x /|y| & \text { if } 0<x<|y| \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that u has a weak derivative.
4. Suppose that and $u \in W^{1, p}((0,1))$ for some $1 \leq p<\infty$. Show that u is a.e. equal to an absolutely continuous function.
5. Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and uniformly Lipschitz. Suppose U is bounded and $u \in W^{1, p}(U)$ for some $1 \leq p \leq \infty$. Show that

$$
v:=F(u) \in W^{1, p}(U) \text { and } D v=F^{\prime}(u) D u .
$$

6. Show that if $u \in W^{1, p}(U)$, then $D u=0$ in $\{u(x)=0\}$. This is not a trivial statement, especially given that the set $\{u(x)=0\}$ is merely measurable. To prove this, you may proceed as below:
(a) Prove that $u^{+}=\max u, 0 \in W^{1, p}(U)$, by using problem 5. and a regularization of the function $F(s):=s_{+}$.
(b) Prove that $D u^{+}=0$ a.e. on $\{u=0\}$.
(c) Conclude using that $u=u^{+}-u^{-}$.
7. Let U be a bounded open domain in \mathbb{R}^{d} with C^{1} boundary. Given two exponents $\alpha, \beta>0$, consider the following energy

$$
E(u):=\int_{U}\left(-|u|^{\alpha}+|\nabla u|^{p}\right) d x+\int_{\partial U}|T(u)|^{\beta} d S .
$$

(a) Show that $E(u)$ has a minimizer in $W^{1, p}(U)$ if $\alpha<\min [\beta, p]$.
(b) Find the Euler-Lagrange equation that the minimizer solve, including the boundary condition.

