

**Exercises from week 3:**

1. Show that, for positive constants  $C$  and  $\gamma$ , if the sequence  $\{V_k\}_{k \in \mathbb{N}}$  satisfies the relation

$$0 \leq V_{k+1} \leq C^k (V_k)^{1+\gamma},$$

then  $V_k \rightarrow 0$  as  $k \rightarrow \infty$  if  $V_1$  is sufficiently small.

2. [Review of  $L^2$  -  $L^\infty$  proof] Let  $v \in H^1(B_1)$  solve  $\mathcal{L}v = f \in L^\infty(B_1)$ , where  $\mathcal{L}$  is the operator from (3.10) of Ros-Oton, Chapter 3.3, with symmetric matrix  $A$ .

- (a) Show that  $w := v_+$  satisfies  $\mathcal{L}w \leq f\chi_{\{w>0\}}$  (as before, in the sense of testing against non-negative  $H^1$  test functions).
- (b) Show that, for any  $\phi \in C_c^\infty(B_1)$ ,

$$\int_{B_1} |\nabla(\varphi w)|^2 dx \leq C(d, \lambda, \Lambda) \left[ \int_{B_1} (|w \nabla \varphi|^2 + f \varphi^2 w) dx \right].$$

- (c) Does the proof of Proposition 3.11 go through if we replace the assumption  $\mathcal{L}v \leq 0$  by  $\mathcal{L}v \leq f$ ? Explain the differences in the proof.