Math 251A Fall 2022: Homework 4. Due Dec. 2nd

1. For a smooth vector field $\vec{b}: \mathbb{R}^d \to \mathbb{R}^d$, let $\Phi: \mathbb{R}^d \to \times [0,\infty)\mathbb{R}^d$ solve the ODE

$$\dot{\Phi}(x,t) = \dot{b}(\Phi(x,t),t), \qquad \Phi(x,0) = x,$$
(1)

where denotes the time derivative.

(a) Show that $J\Phi := \det D\Phi$ satisfies the ODE

$$\dot{J}\Phi(x,t) = \nabla \cdot \vec{b}(\Phi(x,t),t) J\Phi(x,t).$$

(b) Show that

$$\exp^{-\int_0^t \sup_x [\nabla \cdot \vec{b}(x,s)] - ds} \le J\Phi(x,t) \le \exp^{\int_0^t \sup_x [\nabla \cdot \vec{b}(\cdot,s)] + ds}$$

- 2. Consider (1) wth d = 1 and $\vec{b}(x,t) = b_0(x) = |x|^{1/2}$.
- (a) Find a regularized Lagrangian flow Φ for the ODE. Is it unique?
- (b) Construct a family of approximating smooth vector fields b_k that approximates b locally uniformly and the corresponding ODE flow Φ_k converges to Φ .
- (c) Construct a family of approximating smooth vector fields b_k that approximates b locally uniformly and the corresponding ODE flow Φ_k converge to a solution Ψ of (1) with $b = b_0$ that is different from Φ .

3. This problem finishes the proof of stability property for regularized Lagrangian flows. Suppose $\Phi_k : \mathbb{R}^d \times [0, \infty) \to [0, \infty)$ are locally uniformly bounded in $L^{\infty}(\mathbb{R}^d \times [0, \infty))$ and satisfies

$$\lim_{k \to \infty} \int \phi(\Phi_k(x,t),t)\zeta_0(x)dxdt = \int \phi(\Phi(x,t),t)\zeta_0(x)dxdt$$

for any $\phi \in C_c^{\infty}(\mathbb{R}^d \times [0,\infty))$ and $\zeta_0 \in L^{\infty}(\mathbb{R}^d)$. Show that Φ_k converges strongly to Φ in $L^1_{loc}(\mathbb{R}^d \times [0,\infty))$. You may want to first establish weak convergence in appropriate L^p spaces, and then upgrade it to strong convegence in L^1_{loc} .

4. Let $M_{\lambda}f := \sup_{0 < r < \lambda} \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) dy$. Show that, for $f \in W^{1,p}(\mathbb{R}^d)$ with $p \ge 1$, we have $\frac{1}{R} \int_{B_R(x)} \frac{|\nabla f(y)|}{|x-y|^{d-1}} dy \le c_d M_R Df(x).$

5. Consider the initial configuration $f_0: [0,1] \to \{0,1\}$ such that, for some $0 < \kappa < \frac{1}{2}$,

$$\kappa \epsilon < \int_{y}^{y+\epsilon} f(x) dx \le (1-\kappa)\epsilon \quad \text{ for all } y \in [0, 1-\epsilon].$$

We define V(s) as the minimum cost of any sequence of left-to-right transpositions $f_0, f_1, ..., f_n$ such that f_n equals 1 on at least one single interval of length $s \in [0, \kappa]$. Show that

$$V(s) \ge \min_{0 < \sigma < s} [V(s - \sigma) + V(\sigma)] + k^2 s \quad \text{for } \epsilon < s \le \frac{\kappa}{2}.$$

For recalling definitions, wee https://arxiv.org/pdf/math/0302228.pdf