Math 251A Fall 2022: Homework 3, due 11/9.

1. Let $u \in C^{1}\left(B_{1}\right)$ be a H^{1}-solution to $-\nabla \cdot(A(x) \nabla u)=f$ with $f \in L^{d}\left(B_{1}\right)$ and continuous $a_{i j}$ with ellipticity constants λ, Λ. Show that for any $0<\alpha<1$ we have

$$
\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{L^{d}\left(B_{1}\right)}\right)
$$

where C only depends on $\alpha, d, \lambda, \Lambda$ and the mode of continuity for $a_{i j}$. Explain why the proof does not apply to the case to $\alpha=1$.
2. [Boundary regularity] For a given $\alpha \in(0,1)$, let $u \in C^{1}\left(B_{1}\right) \cap C^{\alpha}\left(\overline{B_{1}}\right)$ be a H^{1} solution to $-\nabla \cdot(A(x) \nabla u)=0$ in B_{1}, with continuous $a_{i j}$ in \bar{B}_{1} with ellipticity constants λ and Λ, and boundary data $g \in C^{\alpha}\left(\partial B_{1}\right)$. Show that

$$
\|u\|_{C^{\alpha}\left(\overline{B_{1}}\right)} \leq C\|g\|_{C^{\alpha}\left(\partial B_{1}\right)}
$$

where C depends on the same terms as in problem 1.
\star For problem 1-2, one can use the following lemma (we will prove it in class on $11 / 7$):
Lemma. Let u and f be as given in Problem 1. Then

$$
\|\nabla u\|_{L^{2}\left(B_{1 / 2}\right)} \leq C\left(\|u\|_{L^{2}\left(B_{1}\right)}+\|f\|_{L^{2}\left(B_{1}\right)}\right)
$$

where $C=C(d, \lambda, \Lambda)$.
3. [Existence by fixed point theorem] We will show that there exists at least one solution $u \in C^{2}\left(B_{1}\right) \cap C\left(\overline{B_{1}}\right)$ of the following problem

$$
\Delta u=\sin u \text { in } B_{1}, \quad u=g \text { in } \partial B_{1}
$$

with $g \in C^{1}\left(\partial B_{1}\right)$. Consider the map $T: X \rightarrow X$ with $X=C^{1 / 2}\left(\overline{B_{1}}\right)$, where $T(w)=u$ with u being the unique solution of

$$
\Delta u=\sin w \text { in } B_{1}, \quad u=g \text { in } \partial B_{1}
$$

(a) For $\alpha=1 / 2$, show that $T(X)$ is contained in a compact subset of X.
(b) Apply the Schauder fixed point theorem to show that T has a fixed point.

