Math 251A Fall 2024: Homework 2. Due 10/30.

1. For a bounded, open domain U with C^1 boundary and with exterior ball condition, let $f \in C(U)$ and $g \in C(\partial U)$. Show that if any two smooth (in $C^2(U) \cap C^1(\overline{U})$) solutions exist for the Neumann problem

(P)
$$\begin{cases} -\Delta w = f \text{ in } U;\\ \partial_{\nu} w = g \text{ on } \partial U, \end{cases}$$

where ν denotes the outward normal vector on ∂U with respect to U, differs only by a constant.

2. Let $u \in C^2(U)$, $U = \mathbb{R}^d_+ := \{x : x_d > 0\}$ solve (P). We aim to find a representation formula for u using the corresponding Green's function, assuming that u decays sufficiently fast as $|x| \to \infty$. This content follows the argument given in section 2.2.4. Note that this formula for the Dirichlet problem is given by (30) in section 2.2.4 of Evans.

- (a) What should be the corresponding equation for the corrector $\phi^x(y)$ in U and on ∂U , for which the Green's function will be given as $G(x, y) := \Phi(y x) \phi^x(y)$? Explain.
- (b) Can we explicitly find ϕ^x ?
- 3. Show that if there exists $w \in A := C^2(\overline{U}) \cap C(U)$ minimizing

$$E(w) = \int_{U} (\frac{1}{2}|Dw|^2 - fw) dx$$

over all functions in $w \in \mathcal{A}$, then u solves (P) with g = 0.

4. Let $U \subset \mathbb{R}^d$ be open. Show that if $u \in L^1(U \times [0,T])$ solves the heat equation in distribution sense, namely

$$\int_{U\times(0,T)} (\phi_t + \Delta\phi) u dx dt = 0 \text{ for any } \phi \text{ in } C_c^{\infty}(U\times(0,T)),$$

then $u \in C^{\infty}(U \times [0,T])$.

5. Consider $u \in C_1^2(I\!\!R^n \times (0,\infty)) \cap C(I\!\!R^d \times [0,\infty))$ solution of

$$u_t - \Delta u = u(1-u)$$
 in $\mathbb{I}\!\!R^n \times (0,\infty)$.

with the property that $u \to 0$ as $|x| \to \infty$. Show that if $u(x,0) \in [0,1]$ in \mathbb{R}^d , then $u \in [0,1]$ in $\mathbb{R}^d \times [0,\infty)$.

6. [Long-time behavior] Let $U := \{|x| < 1\}$ and let $g \in C(\partial U), f \in C(\overline{U})$. Suppose that u is a sufficiently smooth solution of the problem

$$\begin{cases} u_t - \Delta u = 0 & \text{in } U \times (0, \infty); \\ u(x, t) = g(x) & \text{on } \partial U \times [0, \infty); \\ u(x, 0) = f(x) & \text{in } U. \end{cases}$$

(a) Show that $v = (u_t)^2$ solves $v_t - \Delta v \leq 0$ in $U \times (0, \infty)$.

- (b) Show that v decays to zero exponentially fast as $t \to \infty$.
- (c) Does the limit $u^*(x) := \lim_{t\to\infty} u(x,t)$ exist in \overline{U} ? Can we have a representation formula for u^* ?
- 7. Evans (2nd edition) p88, Problem 15.